-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
158 lines (138 loc) · 5.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from bs4 import BeautifulSoup
import re
import os
import requests
from typing import List
import pandas as pd
from tqdm import tqdm
from matplotlib import pyplot as plt
import japanize_matplotlib
import datetime
import collections
URL = "https://kakaku.com/pc/pc-memory/itemlist.aspx?pdf_Spec105=1&pdf_so=e2&pdf_vi=d&pdf_pg={int}"
DIR = os.path.dirname(__file__)
JP_SPACE = ' '
DF_COL = ['Manufacturer',
'ProductName',
'ReleaseYear',
'ReleaseMonth',
'ReleaseDay',
'DDR_ver',
'Bandwidth']
DDR2_PIN = 240
DDR3_PIN = 240
DDR4_PIN = 288
DDR5_PIN = 288
def gen_URL(id: int) -> str:
return f"https://kakaku.com/pc/pc-memory/itemlist.aspx?pdf_Spec105=1&pdf_so=e2&pdf_vi=d&pdf_pg={id}"
def soup_htmlPage(url: str) -> str:
texted = requests.get(url).text
souped = BeautifulSoup(texted, "html.parser")
return souped
def get_resultTable(souped_html: BeautifulSoup) -> pd.DataFrame:
df = pd.DataFrame(columns=DF_COL)
# manifacture, name, etc
item_names = souped_html.select("td[class=\"ckitemLink\"]")
# release data str
item_release = souped_html.select("td[class=\"swdate1\"]")
# detail specs
item_spec_detail = souped_html.select("div[class=\"ckitemSpecInnr\"]")
item_count = len(item_names)
for i in range(item_count):
# parse each info
item_names_str = item_names[i].text
release_str = item_release[i].text
# ex: ドスパラ 【直販モデル】 D4N3200-16G1A2 [SODIMM DDR4 PC4-25600 16GB]
print(item_names_str)
manufacturer = re.search(r"(^.*)\u3000", item_names_str).group(1)
if manufacturer != "ノーブランド":
productname = re.search(
r"\u3000(.*) [\[\(]", item_names_str).group(1)
else:
productname = None
# PC{DDR_VERSION}-{BAND_WIDTH}の体裁でないものは拒否
specs = re.search(r".* ?PC([0-9])L?-([0-9]+) ?.*", item_names_str)
if specs == None:
continue
ddr_ver = int(specs.group(1))
band_width = int(specs.group(2))
release_date = re.search(r"([0-9]+)/([0-9]+)/ ?([0-9]+)", release_str)
yyyy = int(release_date.group(1))
mm = int(release_date.group(2))
dd = int(release_date.group(3))
append_df = pd.DataFrame(data=[[manufacturer,
productname,
yyyy,
mm,
dd,
ddr_ver,
band_width]],
columns=DF_COL)
df = pd.concat([df, append_df], ignore_index=True)
return df
def scrape():
id = range(1, 48) # 2023/20/17現在,最大47ページ
df = pd.DataFrame(columns=DF_COL)
dt_now = datetime.datetime.now()
for i in id:
print(f"{i}")
url = gen_URL(i)
soup = soup_htmlPage(url)
append_df = get_resultTable(soup)
df = pd.concat([df, append_df], ignore_index=True)
df.to_csv(f"{DIR}/{dt_now.year}{dt_now.month}{dt_now.day}{dt_now.hour}.csv")
target_year_products = df.query("2020 <= ReleaseYear <= 2022")
target_year_products.to_csv(f"{DIR}/2020_2022.csv")
def read_localCsv(filepath: str) -> pd.DataFrame:
return pd.read_csv(filepath)
def create_date_band_table(df: pd.DataFrame, ddr_ver: int) -> List:
ddr_div = df[df["DDR_ver"] == ddr_ver]
ddr_div = ddr_div.reset_index(drop=True)
date_band = pd.DataFrame()
date_band["Name"] = ddr_div["ProductName"]
date_band["Band"] = ddr_div["Bandwidth"] / 1000 # MB/s -> GB/s
date_band["Date"] = pd.to_datetime(ddr_div["ReleaseYear"].astype(str)+'-' +
ddr_div["ReleaseMonth"].astype(str)+'-' +
ddr_div["ReleaseDay"].astype(str),
format="%Y-%m-%d")
return date_band
if __name__ == "__main__":
# scrape()
df = read_localCsv(f"{DIR}/202310174.csv")
mfacs = df[["ReleaseYear", "ReleaseMonth",
"ReleaseDay", "DDR_ver", "Bandwidth"]]
ddr2 = create_date_band_table(df, 2)
ddr3 = create_date_band_table(df, 3)
ddr4 = create_date_band_table(df, 4)
ddr5 = create_date_band_table(df, 5)
plt.rcParams['figure.subplot.bottom'] = 0.15 # xラベル見切れ対処
scat_size = 8
# plt.scatter(ddr2["Date"], ddr2["Band"], label="DDR2", s=scat_size)
# plt.scatter(ddr3["Date"], ddr3["Band"], label="DDR3", s=scat_size)
# plt.scatter(ddr4["Date"], ddr4["Band"], label="DDR4", s=scat_size)
# plt.scatter(ddr5["Date"], ddr5["Band"], label="DDR5", s=scat_size)
plt.scatter(ddr2["Band"] / DDR2_PIN * 1000,
ddr2["Band"],
label="DDR2",
s=scat_size)
plt.scatter(ddr3["Band"] / DDR3_PIN * 1000,
ddr3["Band"],
label="DDR3",
s=scat_size)
plt.scatter(ddr4["Band"] / DDR4_PIN * 1000,
ddr4["Band"],
label="DDR4",
s=scat_size)
plt.scatter(ddr5["Band"] / DDR5_PIN * 1000,
ddr5["Band"],
label="DDR5",
s=scat_size)
plt.title("メモリの種類とバンド幅・ピンごとの転送速度の関係")
plt.legend()
plt.grid(linewidth=0.5)
plt.yscale("log", base=2)
plt.ylabel("バンド幅[GB/s]")
plt.xticks(rotation=30)
plt.xscale("log", base=2)
plt.xlabel("ピン1つあたりの転送速度[MB/s]")
plt.savefig(f"{DIR}/Band_pin__memoryType_wholeYear.png", dpi=900)