-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibrary.c
235 lines (194 loc) · 7.65 KB
/
library.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#include "library.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <dirent.h>
#define MAXCHAR 1000
double sigmoid(double input) {
return 1.0 / (1 + exp(-input));
}
double crossEntropy(double input) {
return input * (1 - input);
}
Matrix* sigmoidPrime(Matrix* m) {
Matrix* newMatrix = apply(crossEntropy, m);
return newMatrix;
}
Matrix* softmax(Matrix* m) {
Matrix* ex = apply(exp, m);
scale(1/sum(ex), ex);
return ex;
}
NeuralNetwork* network_create(int input_size, int* hidden_sizes, int n_layers, int output_size, double lr) {
NeuralNetwork* net = malloc(sizeof(NeuralNetwork));
net->input_size = input_size;
net->hidden_sizes = hidden_sizes;
net->n_layers = n_layers;
net->output_size = output_size;
net->learning_rate = lr;
Layer** layers = malloc(n_layers * sizeof(Layer));
int inputter = input_size;
for(int i = 0; i < n_layers-1; i++) {
Layer* layer = malloc(sizeof(Layer));
layer->input_size = inputter;
inputter = hidden_sizes[i];
layer->output_size = inputter;
Matrix* weights = matrix_create(inputter, layer->input_size);
matrix_randomize(weights, inputter);
layer->weights = weights;
layers[i] = layer;
}
Layer* layer = malloc(sizeof(Layer));
layer->input_size = inputter;
layer->output_size = output_size;
Matrix* weights = matrix_create(output_size, inputter);
matrix_randomize(weights, output_size);
layer->weights = weights;
layers[n_layers-1] = layer;
net->layers = layers;
return net;
}
Matrix* network_predict(NeuralNetwork* net, Matrix* input_data) {
Matrix* hidden_output = matrix_copy(input_data);
for(int i = 0; i < net->n_layers; i++) {
hidden_output = apply(sigmoid, dot(net->layers[i]->weights, hidden_output));
}
return hidden_output;
}
void network_train(NeuralNetwork* net, Matrix* input, Matrix* output) {
Matrix** outputs = malloc(net->n_layers * sizeof(Matrix));
Matrix* hidden_output = matrix_copy(input);
for(int i = 0; i < net->n_layers; i++) {
// printf("Weights size %d %d\n", net->layers[i]->weights->rows, net->layers[i]->weights->cols);
// printf("Output size %d %d\n", hidden_output->rows, hidden_output->cols);
// printf("hidden %d\n", i);
hidden_output = apply(sigmoid, dot(net->layers[i]->weights, hidden_output));
outputs[i] = hidden_output;
}
Matrix ** errors = malloc(net -> n_layers * sizeof(Matrix));
// printf("output size %d %d\n", output->rows, output->cols);
// printf("hidden_output size %d %d\n", hidden_output->rows, hidden_output->cols);
Matrix* hidden_error = subtract(output, hidden_output);
// printf("transposed outputs %d %d\n", outputs[net->n_layers-2]->cols, outputs[net->n_layers-2]->rows);
net->layers[net->n_layers-1]->weights = add(
net->layers[net->n_layers-1]->weights, // (10, 9)
scale(
net->learning_rate,
dot(
multiply(
hidden_error, // (10, 1)
sigmoidPrime(output) // (10, 1)
),
matrix_transpose(outputs[net->n_layers-2]) // (1, 9)
) // (10, 9)
) // (10, 9)
);
// printf("Output backprop done\n");
for(int i = net->n_layers-2; i >= 0; i--) {
hidden_output = outputs[i];
// printf("transposed weights %d %d\n", net->layers[i+1]->weights->cols, net->layers[i+1]->weights->rows);
// printf("hidden error %d %d\n", hidden_error->rows, hidden_error->cols);
// printf("hidden output %d %d\n", hidden_output->rows, hidden_output->cols);
// printf("transposed outputs %d %d\n", (i == 0 ? input : outputs[i-1])->cols, (i == 0 ? input : outputs[i-1])->rows);
hidden_error = dot(matrix_transpose(net->layers[i+1]->weights), hidden_error);
net->layers[i]->weights = add(
net->layers[i]->weights,
scale(
net->learning_rate,
dot(
multiply(
hidden_error,
sigmoidPrime(hidden_output)
),
matrix_transpose(i == 0 ? input : outputs[i-1])
)
)
);
}
}
void network_train_batch_imgs(NeuralNetwork* net, Img** imgs, int batch_size) {
for(int i = 0; i < batch_size; i++) {
if(i % 100 == 0) printf("Img No. %d\n", i);
Img* cur_img = imgs[i];
Matrix* img_data = matrix_flatten(cur_img->img_data, 0);
Matrix* output = matrix_create(10, 1);
output->entries[cur_img->label][0] = 1;
network_train(net, img_data, output);
matrix_free(output);
matrix_free(img_data);
}
}
Matrix* network_predict_img(NeuralNetwork* net, Img* img) {
Matrix* img_data = matrix_flatten(img->img_data, 0);
Matrix* res = network_predict(net, img_data);
matrix_free(img_data);
return res;
}
double network_predict_imgs(NeuralNetwork* net, Img** imgs, int n) {
int n_correct = 0;
for(int i = 0; i < n; i++) {
Matrix* prediction = network_predict_img(net, imgs[i]);
if(matrix_argmax(prediction) == imgs[i]->label) n_correct++;
matrix_free(prediction);
}
return 1.0 * n_correct / n;
}
void network_save(NeuralNetwork* net, char* file_string) {
mkdir(file_string);
chdir(file_string);
FILE* descriptor = fopen("descriptor", "w");
fprintf(descriptor, "%d\n", net->input_size);
for(int i = 0; i < net->n_layers; i++) {
fprintf(descriptor, "%d\n", net->hidden_sizes[i]);
}
fprintf(descriptor, "%d\n", net->output_size);
fprintf(descriptor, "%0.4f\n", net->learning_rate);
fclose(descriptor);
int str_size = 8+(int)log10(net->n_layers);
for(int i = 0; i < net->n_layers-1; i++) {
char *filename = (char*)malloc(str_size * sizeof(char));
sprintf(filename, "hidden %d", i);
matrix_save(net->layers[i]->weights, filename);
}
matrix_save(net->layers[net->n_layers-1]->weights, "output");
printf("Successfully written to '%s'\n", file_string);
chdir("-");
}
NeuralNetwork* network_load(char* file_string) {
char entry[MAXCHAR];
chdir(file_string);
FILE* descriptor = fopen("descriptor", "r");
// first we need to get the size of the hidden sizes array
int size = -3;
while(feof(descriptor) != 1) {
fgets(entry, MAXCHAR, descriptor);
size++;
}
fclose(descriptor);
descriptor = fopen("descriptor", "r");
fgets(entry, MAXCHAR, descriptor);
int input_size = atoi(entry);
int* hidden_sizes = malloc(size * sizeof(int));
for(int i = 0; i < size; i++) {
fgets(entry, MAXCHAR, descriptor);
int cur_size = atoi(entry);
hidden_sizes[i] = cur_size;
}
fgets(entry, MAXCHAR, descriptor);
int output_size = atoi(entry);
fgets(entry, MAXCHAR, descriptor);
double learning_rate = strtod(entry, NULL);
fclose(descriptor);
NeuralNetwork* net = network_create(input_size, hidden_sizes, size+1, output_size, learning_rate);
int str_size = 8+(int)log10(net->n_layers);
for(int i = 0; i < size; i++) {
char *filename = (char*)malloc(str_size * sizeof(char));
sprintf(filename, "hidden %d", i);
net->layers[i]->weights = matrix_load(filename);
}
net->layers[size]->weights = matrix_load("output");
chdir("-");
return net;
}
void network_print(NeuralNetwork* net);
void network_free(NeuralNetwork* net);