forked from RWransky/dialogue-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
al_neural_dialogue_train.py
executable file
·294 lines (222 loc) · 12.3 KB
/
al_neural_dialogue_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import tensorflow as tf
import numpy as np
import sys
import time
from six.moves import xrange # pylint: disable=redefined-builtin
import gen.generator as gens
import disc.hier_disc as h_disc
import random
import utils.conf as conf
import utils.data_utils as data_utils
gen_config = conf.gen_config
disc_config = conf.disc_config
evl_config = conf.disc_config
# pre train discriminator
def disc_pre_train():
#discs.train_step(disc_config, evl_config)
h_disc.hier_train(disc_config, evl_config)
# pre train generator
def gen_pre_train():
gens.train(gen_config)
# gen data for disc training
def gen_disc():
gens.decoder(gen_config)
# test gen model
def gen_test():
gens.test_decoder(gen_config)
# prepare disc_data for discriminator and generator
def disc_train_data(sess, gen_model, vocab, source_inputs, source_outputs,
encoder_inputs, decoder_inputs, target_weights, bucket_id, mc_search=False):
train_query, train_answer = [], []
query_len = gen_config.buckets[bucket_id][0]
answer_len = gen_config.buckets[bucket_id][1]
for query, answer in zip(source_inputs, source_outputs):
query = query[:query_len] + [int(data_utils.PAD_ID)] * (query_len - len(query) if query_len > len(query) else 0)
train_query.append(query)
answer = answer[:-1] # del tag EOS
answer = answer[:answer_len] + [int(data_utils.PAD_ID)] * (answer_len - len(answer) if answer_len > len(answer) else 0)
train_answer.append(answer)
train_labels = [1 for _ in source_inputs]
def decoder(num_roll):
for _ in xrange(num_roll):
_, _, output_logits = gen_model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id,
forward_only=True, mc_search=mc_search)
seq_tokens = []
resps = []
for seq in output_logits:
row_token = []
for t in seq:
row_token.append(int(np.argmax(t, axis=0)))
seq_tokens.append(row_token)
seq_tokens_t = []
for col in range(len(seq_tokens[0])):
seq_tokens_t.append([seq_tokens[row][col] for row in range(len(seq_tokens))])
for seq in seq_tokens_t:
if data_utils.EOS_ID in seq:
resps.append(seq[:seq.index(data_utils.EOS_ID)][:gen_config.buckets[bucket_id][1]])
else:
resps.append(seq[:gen_config.buckets[bucket_id][1]])
for i, output in enumerate(resps):
output = output[:answer_len] + [data_utils.PAD_ID] * (answer_len - len(output) if answer_len > len(output) else 0)
train_query.append(train_query[i])
train_answer.append(output)
train_labels.append(0)
return train_query, train_answer, train_labels
if mc_search:
train_query, train_answer, train_labels = decoder(gen_config.beam_size)
else:
train_query, train_answer, train_labels = decoder(1)
return train_query, train_answer, train_labels
def softmax(x):
prob = np.exp(x) / np.sum(np.exp(x), axis=0)
return prob
# discriminator api
def disc_step(sess, bucket_id, disc_model, train_query, train_answer, train_labels, forward_only=False):
feed_dict={}
for i in xrange(len(train_query)):
feed_dict[disc_model.query[i].name] = train_query[i]
for i in xrange(len(train_answer)):
feed_dict[disc_model.answer[i].name] = train_answer[i]
feed_dict[disc_model.target.name]=train_labels
loss = 0.0
if forward_only:
fetches = [disc_model.b_logits[bucket_id]]
logits = sess.run(fetches, feed_dict)
logits = logits[0]
else:
fetches = [disc_model.b_train_op[bucket_id], disc_model.b_loss[bucket_id], disc_model.b_logits[bucket_id]]
train_op, loss, logits = sess.run(fetches,feed_dict)
# softmax operation
logits = np.transpose(softmax(np.transpose(logits)))
reward, gen_num = 0.0, 0
for logit, label in zip(logits, train_labels):
if int(label) == 0:
reward += logit[1]
gen_num += 1
reward = reward / gen_num
return reward, loss
# Adversarial Learning for Neural Dialogue Generation
def al_train():
with tf.Session() as sess:
vocab, rev_vocab, dev_set, train_set = gens.prepare_data(gen_config)
for set in train_set:
print("al train len: ", len(set))
train_bucket_sizes = [len(train_set[b]) for b in xrange(len(gen_config.buckets))]
train_total_size = float(sum(train_bucket_sizes))
train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size
for i in xrange(len(train_bucket_sizes))]
disc_model = h_disc.create_model(sess, disc_config, disc_config.name_model)
gen_model = gens.create_model(sess, gen_config, forward_only=False, name_scope=gen_config.name_model)
current_step = 0
step_time, disc_loss, gen_loss, t_loss, batch_reward = 0.0, 0.0, 0.0, 0.0, 0.0
gen_loss_summary = tf.Summary()
disc_loss_summary = tf.Summary()
gen_writer = tf.summary.FileWriter(gen_config.tensorboard_dir, sess.graph)
disc_writer = tf.summary.FileWriter(disc_config.tensorboard_dir, sess.graph)
while True:
current_step += 1
start_time = time.time()
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in xrange(len(train_buckets_scale))
if train_buckets_scale[i] > random_number_01])
# disc_config.max_len = gen_config.buckets[bucket_id][0] + gen_config.buckets[bucket_id][1]
print("==================Update Discriminator: %d=====================" % current_step)
# 1.Sample (X,Y) from real disc_data
# print("bucket_id: %d" %bucket_id)
encoder_inputs, decoder_inputs, target_weights, source_inputs, source_outputs = gen_model.get_batch(train_set, bucket_id, gen_config.batch_size)
# 2.Sample (X,Y) and (X, ^Y) through ^Y ~ G(*|X)
train_query, train_answer, train_labels = disc_train_data(sess, gen_model, vocab, source_inputs, source_outputs,
encoder_inputs, decoder_inputs, target_weights, bucket_id, mc_search=False)
print("==============================mc_search: False===================================")
if current_step % 200 == 0:
print("train_query: ", len(train_query))
print("train_answer: ", len(train_answer))
print("train_labels: ", len(train_labels))
for i in xrange(len(train_query)):
print("label: ", train_labels[i])
print("train_answer_sentence: ", train_answer[i])
print(" ".join([tf.compat.as_str(rev_vocab[output]) for output in train_answer[i]]))
train_query = np.transpose(train_query)
train_answer = np.transpose(train_answer)
# 3.Update D using (X, Y ) as positive examples and(X, ^Y) as negative examples
_, disc_step_loss = disc_step(sess, bucket_id, disc_model, train_query, train_answer, train_labels, forward_only=False)
disc_loss += disc_step_loss / disc_config.steps_per_checkpoint
print("==================Update Generator: %d=========================" % current_step)
# 1.Sample (X,Y) from real disc_data
update_gen_data = gen_model.get_batch(train_set, bucket_id, gen_config.batch_size)
encoder, decoder, weights, source_inputs, source_outputs = update_gen_data
# 2.Sample (X,Y) and (X, ^Y) through ^Y ~ G(*|X) with Monte Carlo search
train_query, train_answer, train_labels = disc_train_data(sess, gen_model, vocab, source_inputs, source_outputs,
encoder, decoder, weights, bucket_id, mc_search=True)
print("=============================mc_search: True====================================")
if current_step % 200 == 0:
for i in xrange(len(train_query)):
print("label: ", train_labels[i])
print(" ".join([tf.compat.as_str(rev_vocab[output]) for output in train_answer[i]]))
train_query = np.transpose(train_query)
train_answer = np.transpose(train_answer)
# 3.Compute Reward r for (X, ^Y ) using D.---based on Monte Carlo search
reward, _ = disc_step(sess, bucket_id, disc_model, train_query, train_answer, train_labels, forward_only=True)
batch_reward += reward / gen_config.steps_per_checkpoint
print("step_reward: ", reward)
# 4.Update G on (X, ^Y ) using reward r
gan_adjusted_loss, gen_step_loss, _ =gen_model.step(sess, encoder, decoder, weights, bucket_id, forward_only=False,
reward=reward, up_reward=True, debug=True)
gen_loss += gen_step_loss / gen_config.steps_per_checkpoint
print("gen_step_loss: ", gen_step_loss)
print("gen_step_adjusted_loss: ", gan_adjusted_loss)
# 5.Teacher-Forcing: Update G on (X, Y )
t_adjusted_loss, t_step_loss, a = gen_model.step(sess, encoder, decoder, weights, bucket_id, forward_only=False)
t_loss += t_step_loss / gen_config.steps_per_checkpoint
print("t_step_loss: ", t_step_loss)
print("t_adjusted_loss", t_adjusted_loss) # print("normal: ", a)
if current_step % gen_config.steps_per_checkpoint == 0:
step_time += (time.time() - start_time) / gen_config.steps_per_checkpoint
print("current_steps: %d, step time: %.4f, disc_loss: %.3f, gen_loss: %.3f, t_loss: %.3f, reward: %.3f"
%(current_step, step_time, disc_loss, gen_loss, t_loss, batch_reward))
disc_loss_value = disc_loss_summary.value.add()
disc_loss_value.tag = disc_config.name_loss
disc_loss_value.simple_value = float(disc_loss)
disc_writer.add_summary(disc_loss_summary, int(sess.run(disc_model.global_step)))
gen_global_steps = sess.run(gen_model.global_step)
gen_loss_value = gen_loss_summary.value.add()
gen_loss_value.tag = gen_config.name_loss
gen_loss_value.simple_value = float(gen_loss)
t_loss_value = gen_loss_summary.value.add()
t_loss_value.tag = gen_config.teacher_loss
t_loss_value.simple_value = float(t_loss)
batch_reward_value = gen_loss_summary.value.add()
batch_reward_value.tag = gen_config.reward_name
batch_reward_value.simple_value = float(batch_reward)
gen_writer.add_summary(gen_loss_summary, int(gen_global_steps))
if current_step % (gen_config.steps_per_checkpoint * 2) == 0:
print("current_steps: %d, save disc model" % current_step)
disc_ckpt_dir = os.path.abspath(os.path.join(disc_config.train_dir, "checkpoints"))
if not os.path.exists(disc_ckpt_dir):
os.makedirs(disc_ckpt_dir)
disc_model_path = os.path.join(disc_ckpt_dir, "disc.model")
disc_model.saver.save(sess, disc_model_path, global_step=disc_model.global_step)
print("current_steps: %d, save gen model" % current_step)
gen_ckpt_dir = os.path.abspath(os.path.join(gen_config.train_dir, "checkpoints"))
if not os.path.exists(gen_ckpt_dir):
os.makedirs(gen_ckpt_dir)
gen_model_path = os.path.join(gen_ckpt_dir, "gen.model")
gen_model.saver.save(sess, gen_model_path, global_step=gen_model.global_step)
step_time, disc_loss, gen_loss, t_loss, batch_reward = 0.0, 0.0, 0.0, 0.0, 0.0
sys.stdout.flush()
def main(_):
# step_1 training gen model
gen_pre_train()
# model test
# gen_test()
# step_2 gen training data for disc
# gen_disc()
# step_3 training disc model
# disc_pre_train()
# step_4 training al model
# al_train()
# model test
# gen_test()
if __name__ == "__main__":
tf.app.run()