-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·178 lines (154 loc) · 6.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""
MIT License
Copyright (c) 2019 Antonin RAFFIN
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import argparse
import difflib
import importlib
import os
import time
import uuid
import gym
import numpy as np
import rl_zoo3.import_envs # noqa: F401 pytype: disable=import-error
from envs import register_env
from my_experiment_manager import MyExperimentManager
from randomness_utils import set_random_seed
from training_args import TrainingArgs
def train(exp_manager: MyExperimentManager, args: argparse.Namespace) -> None:
# Going through custom gym packages to let them register in the global registry
for env_module in args.gym_packages:
importlib.import_module(env_module)
env_id = args.env
registered_envs = set(
gym.envs.registry.env_specs.keys()
) # pytype: disable=module-attr
# If the environment is not found, suggest the closest match
if env_id not in registered_envs:
try:
closest_match = difflib.get_close_matches(env_id, registered_envs, n=1)[0]
except IndexError:
closest_match = "'no close match found...'"
raise ValueError(
f"{env_id} not found in gym registry, you maybe meant {closest_match}?"
)
if args.trained_agent != "":
assert args.trained_agent.endswith(".zip") and os.path.isfile(
args.trained_agent
), "The trained_agent must be a valid path to a .zip file"
print("=" * 10, env_id, "=" * 10)
print(f"Seed: {args.seed}")
if args.track:
try:
import wandb
except ImportError:
raise ImportError(
"if you want to use Weights & Biases to track experiment, please install W&B via `pip install wandb`"
)
run_name = f"{args.env}__{args.algo}__{args.seed}__{int(time.time())}"
run = wandb.init(
name=run_name,
project=args.wandb_project_name,
entity=args.wandb_entity,
config=vars(args),
sync_tensorboard=True, # auto-upload sb3's tensorboard metrics
monitor_gym=True, # auto-upload the videos of agents playing the game
save_code=True, # optional
)
args.tensorboard_log = f"runs{os.path.sep}{run_name}"
# Prepare experiment and launch hyperparameter optimization if needed
results = exp_manager.setup_experiment()
if results is not None:
model, saved_hyperparams = results
if args.track:
# we need to save the loaded hyperparameters
args.saved_hyperparams = saved_hyperparams
run.config.setdefaults(vars(args))
# Normal training
if model is not None:
exp_manager.learn(model)
exp_manager.save_trained_model(model)
else:
exp_manager.hyperparameters_optimization()
if __name__ == "__main__":
all_args = TrainingArgs().parse()
# Unique id to ensure there is no race condition for the folder creation
uuid_str = f"_{uuid.uuid4()}" if all_args.uuid else ""
if all_args.seed < 0:
# Seed but with a random one
all_args.seed = np.random.randint(2**32 - 1, dtype="int64").item()
set_random_seed(seed=all_args.seed)
exp_manager = MyExperimentManager(
args=all_args,
algo=all_args.algo,
env_id=all_args.env,
log_folder=all_args.log_folder,
log_success=all_args.log_success,
tensorboard_log=all_args.tensorboard_log,
n_timesteps=all_args.n_timesteps,
eval_freq=all_args.eval_freq,
n_eval_episodes=all_args.eval_episodes,
save_freq=all_args.save_freq,
hyperparams=all_args.hyperparams,
env_kwargs=all_args.env_kwargs,
trained_agent=all_args.trained_agent,
optimize_hyperparameters=all_args.optimize_hyperparameters,
storage=all_args.storage,
study_name=all_args.study_name,
n_trials=all_args.n_trials,
max_total_trials=all_args.max_total_trials,
n_jobs=all_args.n_jobs,
sampler=all_args.sampler,
pruner=all_args.pruner,
optimization_log_path=all_args.optimization_log_path,
n_startup_trials=all_args.n_startup_trials,
n_evaluations=all_args.n_evaluations,
truncate_last_trajectory=all_args.truncate_last_trajectory,
uuid_str=uuid_str,
seed=all_args.seed,
log_interval=all_args.log_interval,
save_replay_buffer=all_args.save_replay_buffer,
verbose=all_args.verbose,
vec_env_type=all_args.vec_env,
n_eval_envs=all_args.n_eval_envs,
no_optim_plots=all_args.no_optim_plots,
device=all_args.device,
yaml_file=all_args.yaml_file,
show_progress=all_args.progress,
test_generation=all_args.test_generation,
)
if all_args.register_env:
if all_args.custom_env_kwargs is None:
all_kwargs = {}
else:
all_kwargs = all_args.custom_env_kwargs
time_wrapper = False
if all_args.wrapper_kwargs is not None:
all_kwargs.update(all_args.wrapper_kwargs)
if "timeout_steps" in all_kwargs.keys():
time_wrapper = True
register_env(
env_name=all_args.env,
seed=all_args.seed,
training=True,
time_wrapper=time_wrapper,
failure_predictor_path=exp_manager.save_path,
test_generation=all_args.test_generation,
**all_kwargs,
)
train(exp_manager=exp_manager, args=all_args)