-
Notifications
You must be signed in to change notification settings - Fork 3
/
test.athinput
85 lines (72 loc) · 3.41 KB
/
test.athinput
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# AthenaXXX input file for HYDRO linear wave tests
<comment>
problem = hydro linear waves
reference = Stone et al, ApJS 178, 137 (2008), sect 8.1
<job>
basename = LinWave # problem ID: basename of output filenames
<mesh>
nghost = 2 # Number of ghost cells
nx1 = 64 # Number of zones in X1-direction #> SCALE 16:512:16
x1min = 0.0 # minimum value of X1
x1max = 3.0 # maximum value of X1
ix1_bc = periodic # inner-X1 boundary flag
ox1_bc = periodic # outer-X1 boundary flag
nx2 = 32 # Number of zones in X2-direction #> RADIO 1,16,32,64,128,256
x2min = 0.0 # minimum value of X2
x2max = 1.5 # maximum value of X2
ix2_bc = periodic # inner-X2 boundary flag
ox2_bc = periodic # outer-X2 boundary flag
nx3 = 32 # Number of zones in X3-direction #> RADIO 1,16,32,64,128,256
x3min = 0.0 # minimum value of X3
x3max = 1.5 # maximum value of X3
ix3_bc = periodic # inner-X3 boundary flag
ox3_bc = periodic # outer-X3 boundary flag
<meshblock>
nx1 = 64 # Number of cells in each MeshBlock, X1-dir
nx2 = 32 # Number of cells in each MeshBlock, X2-dir
nx3 = 32 # Number of cells in each MeshBlock, X3-dir
<time>
evolution = dynamic # dynamic/kinematic/static
integrator = rk2 # time integration algorithm
cfl_number = 0.3 # The Courant, Friedrichs, & Lewy (CFL) Number #> SCALE 0:1.2:0.1
nlim = -1 # cycle limit (no limit if <0)
tlim = 5.0 # time limit #> SCALE 1:100:1
ndiag = 1 # cycles between diagostic output
<hydro>
eos = ideal # EOS type
reconstruct = plm # spatial reconstruction method
rsolver = llf # Riemann-solver to be used
gamma = 1.66666666667 # gamma = C_p/C_v
<problem>
pgen_name = linear_wave # problem generator name
wave_flag = 0 # Wave family number ([0-4] for adiabatic hydro, [0-6] for MHD)
amp = 1.0e-3 # Wave Amplitude
vflow = 0.0 # background flow velocity
along_x1 = false # set to 'true' for wave along x1-axis
along_x2 = false # set to 'true' for wave along x2-axis
along_x3 = false # set to 'true' for wave along x3-axis
<output1>
file_type = tab # Tabular data dump
variable = hydro_w # variables to be output
data_format = %12.5e # Optional data format string
dt = 0.05 # time increment between outputs
slice_x2 = 1.0 # slice in x2
slice_x3 = 1.0 # slice in x3
ghost_zones = false # switch to output ghost cells
<output2>
file_type = vtk # legacy VTK output
variable = hydro_w # variables to be output
dt = 0.05 # time increment between outputs
ghost_zones = false # switch to output ghost cells
<output3>
file_type = hst # history data dump
data_format = %12.5e # Optional data format string
dt = 0.1 # time increment between outputs
<test>
input_field = 3.14 # test input button field #> ENTRY
check_field = op1,op3 # test check button field #> CHECK op1,op2,op3,op4,op5
in_file_field = ~/in.txt # test input file field #> IFILE
out_file_field = ~/out.txt # test output file field #> OFILE
in_dir_field = ~/ # test input dir field #> IDIR
out_dir_field = ~/ # test output dir field #> ODIR
nx1 = 64 # test slider #> SCALE 1:100:0.1