-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
206 lines (168 loc) · 8.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
from tasks import get_task
import time
import os
import pandas as pd
import torch.optim as optim
import torch
from alignment import alignment, layer_alignment, compute_trK
import numpy as np
from nngeometry.object import PVector
start_time = time.time()
parser = argparse.ArgumentParser(description='Compute various NTK alignment quantities')
parser.add_argument('--task', required=True, type=str, help='Task',
choices=['mnist_fc', 'cifar10_vgg19', 'cifar10_resnet18'])
parser.add_argument('--depth', default=0, type=int, help='network depth (only works with MNIST MLP)')
parser.add_argument('--width', default=0, type=int, help='network width (MLP) or base for channels (VGG)')
parser.add_argument('--lr', default=0.1, type=float, help='Learning rate')
parser.add_argument('--mom', default=0.9, type=float, help='Momentum')
parser.add_argument('--diff', default=0., type=float, help='Proportion of difficult examples')
parser.add_argument('--diff-type', default='random', type=str, help='Type of difficult examples',
choices=['random', 'other'])
parser.add_argument('--align-train', action='store_true', help='Compute alignment with train set')
parser.add_argument('--align-test', action='store_true', help='Compute alignment with test set')
parser.add_argument('--align-easy-diff', action='store_true', help='Compute alignment with easy and difficult samples (requires diff > 0)')
parser.add_argument('--layer-align-train', action='store_true', help='Compute alignment with each layer separately (train set)')
parser.add_argument('--layer-align-test', action='store_true', help='Compute alignment with each layer separately (test set)')
parser.add_argument('--complexity', action='store_true', help='Compute trace(K) and norm(dw) in order to compute the complexity')
parser.add_argument('--no-centering', action='store_true', help='Disable centering when computing kernels')
parser.add_argument('--save-ntk-train', action='store_true', help='Save training set ntk')
parser.add_argument('--save-ntk-test', action='store_true', help='Save test set ntk')
parser.add_argument('--seed', default=1, type=int, help='Seed')
parser.add_argument('--epochs', default=100, type=int, help='epochs')
args = parser.parse_args()
model, dataloaders, criterion = get_task(args)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.mom,
weight_decay=5e-4)
class RunningAverageEstimator:
def __init__(self, gamma=.9):
self.estimates = dict()
self.gamma = gamma
def update(self, key, val):
if key in self.estimates.keys():
self.estimates[key] = (self.gamma * self.estimates[key] +
(1 - self.gamma) * val)
else:
self.estimates[key] = val
def get(self, key):
return self.estimates[key]
rae = RunningAverageEstimator()
def output_fn(x, t):
return model(x)
def stopping_criterion(log):
if (log.loc[len(log) - 1]['train_loss'] < 1e-2
and log.loc[len(log) - 2]['train_loss'] < 1e-2):
return True
return False
def do_compute_ntk(iterations):
return iterations == 0 or iterations in 5 * (1.15 ** np.arange(300)).astype('int')
# Training
def train(args, log, rae):
model.train()
train_loss = 0
correct = 0
total = 0
iterations = 0
if args.complexity:
w_before = PVector.from_model(model).clone().detach()
for epoch in range(args.epochs):
print('\nEpoch: %d' % epoch)
for batch_idx, (inputs, targets) in enumerate(dataloaders['train']):
inputs, targets = inputs.to('cuda'), targets.to('cuda')
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
_, pred = outputs.max(1)
acc = pred.eq(targets.view_as(pred)).float().mean()
rae.update('train_loss', loss.item())
rae.update('train_acc', acc.item())
if do_compute_ntk(iterations):
to_log = pd.Series()
to_log['time'] = time.time() - start_time
if args.layer_align_train:
to_log['layer_align_train'] = \
layer_alignment(model, output_fn, dataloaders['micro_train'], 10,
centering=not args.no_centering)
if args.layer_align_test:
to_log['layer_align_test'] = \
layer_alignment(model, output_fn, dataloaders['micro_test'], 10,
centering=not args.no_centering)
if args.align_train or args.save_ntk_train:
to_log['align_train'], ntk = alignment(model, output_fn, dataloaders['micro_train'],
10, centering=not args.no_centering)
if args.save_ntk_train:
ntk_path = os.path.join(results_dir,'train_ntk_%.6d.pkl' % iterations)
torch.save(ntk, ntk_path)
if args.align_test or args.save_ntk_test:
to_log['align_test'], ntk = alignment(model, output_fn, dataloaders['micro_test'],
10, centering=not args.no_centering)
if args.save_ntk_test:
ntk_path = os.path.join(results_dir,'test_ntk_%.6d.pkl' % iterations)
torch.save(ntk, ntk_path)
if args.align_easy_diff:
to_log['align_easy_train'], ntk = alignment(model, output_fn,
dataloaders['micro_train_easy'],
10, centering=not args.no_centering)
to_log['align_diff_train'], ntk = alignment(model, output_fn,
dataloaders['micro_train_diff'],
10, centering=not args.no_centering)
if args.complexity:
w_after = PVector.from_model(model).clone().detach()
to_log['norm_dw'] = torch.norm((w_after - w_before).get_flat_representation()).item()
w_before = w_after
to_log['trK'] = compute_trK(dataloaders['micro_train'], model, output_fn, 10)
to_log['iteration'] = iterations
to_log['epoch'] = epoch
to_log['train_acc'], to_log['train_loss'] = rae.get('train_acc'), rae.get('train_loss')
to_log['test_acc'], to_log['test_loss'] = test(dataloaders['mini_test'])
log.loc[len(log)] = to_log
print(log.loc[len(log) - 1])
log.to_pickle(os.path.join(results_dir,'log.pkl'))
iterations += 1
def test(loader):
model.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(loader):
inputs, targets = inputs.to('cuda'), targets.to('cuda')
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
model.train()
return correct / total, test_loss / (batch_idx + 1)
name = ''
for k, v in sorted(args.__dict__.items(), key=lambda a: a[0]):
if (k not in ['save_ntk_train', 'save_ntk_test']
and v is not False):
name += '%s=%s,' % (k, str(v))
name = name[:-1]
results_dir = os.path.join('results', name)
try:
os.mkdir(results_dir)
except:
print('I will be overwriting a previous experiment')
columns = ['iteration', 'time', 'epoch',
'train_loss', 'train_acc',
'test_loss', 'test_acc']
if args.layer_align_train:
columns.append('layer_align_train')
if args.layer_align_test:
columns.append('layer_align_test')
if args.align_train or args.save_ntk_train:
columns.append('align_train')
if args.align_test or args.save_ntk_test:
columns.append('align_test')
if args.align_easy_diff:
columns.append('align_easy_train')
columns.append('align_diff_train')
if args.complexity:
columns += ['trK', 'norm_dw']
log = pd.DataFrame(columns=columns)
train(args, log, rae)