-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathrtl_fm.c
1264 lines (1156 loc) · 30.9 KB
/
rtl_fm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
* Copyright (C) 2012 by Steve Markgraf <[email protected]>
* Copyright (C) 2012 by Hoernchen <[email protected]>
* Copyright (C) 2012 by Kyle Keen <[email protected]>
* Copyright (C) 2013 by Elias Oenal <[email protected]>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* written because people could not do real time
* FM demod on Atom hardware with GNU radio
* based on rtl_sdr.c and rtl_tcp.c
*
* lots of locks, but that is okay
* (no many-to-many locks)
*
* todo:
* sanity checks
* scale squelch to other input parameters
* test all the demodulations
* pad output on hop
* frequency ranges could be stored better
* scaled AM demod amplification
* auto-hop after time limit
* peak detector to tune onto stronger signals
* fifo for active hop frequency
* clips
* noise squelch
* merge stereo patch
* merge soft agc patch
* merge udp patch
* testmode to detect overruns
* watchdog to reset bad dongle
* fix oversampling
*/
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#ifndef _WIN32
#include <unistd.h>
#else
#include <windows.h>
#include <fcntl.h>
#include <io.h>
#include "getopt/getopt.h"
#define usleep(x) Sleep(x/1000)
#ifdef _MSC_VER
#define round(x) (x > 0.0 ? floor(x + 0.5): ceil(x - 0.5))
#endif
#define _USE_MATH_DEFINES
#endif
#include <math.h>
#include <pthread.h>
#include <libusb.h>
#include "rtl-sdr.h"
#include "convenience/convenience.h"
#define DEFAULT_SAMPLE_RATE 24000
#define DEFAULT_BUF_LENGTH (1 * 16384)
#define MAXIMUM_OVERSAMPLE 16
#define MAXIMUM_BUF_LENGTH (MAXIMUM_OVERSAMPLE * DEFAULT_BUF_LENGTH)
#define AUTO_GAIN -100
#define BUFFER_DUMP 4096
#define FREQUENCIES_LIMIT 1000
static volatile int do_exit = 0;
static int lcm_post[17] = {1,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15,1};
static int ACTUAL_BUF_LENGTH;
static int *atan_lut = NULL;
static int atan_lut_size = 131072; /* 512 KB */
static int atan_lut_coef = 8;
struct dongle_state
{
int exit_flag;
pthread_t thread;
rtlsdr_dev_t *dev;
int dev_index;
uint32_t freq;
uint32_t rate;
int gain;
uint16_t buf16[MAXIMUM_BUF_LENGTH];
uint32_t buf_len;
int ppm_error;
int offset_tuning;
int direct_sampling;
int mute;
struct demod_state *demod_target;
};
struct demod_state
{
int exit_flag;
pthread_t thread;
int16_t lowpassed[MAXIMUM_BUF_LENGTH];
int lp_len;
int16_t lp_i_hist[10][6];
int16_t lp_q_hist[10][6];
int16_t result[MAXIMUM_BUF_LENGTH];
int16_t droop_i_hist[9];
int16_t droop_q_hist[9];
int result_len;
int rate_in;
int rate_out;
int rate_out2;
int now_r, now_j;
int pre_r, pre_j;
int prev_index;
int downsample; /* min 1, max 256 */
int post_downsample;
int output_scale;
int squelch_level, conseq_squelch, squelch_hits, terminate_on_squelch;
int downsample_passes;
int comp_fir_size;
int custom_atan;
int deemph, deemph_a;
int now_lpr;
int prev_lpr_index;
int dc_block, dc_avg;
void (*mode_demod)(struct demod_state*);
pthread_rwlock_t rw;
pthread_cond_t ready;
pthread_mutex_t ready_m;
struct output_state *output_target;
};
struct output_state
{
int exit_flag;
pthread_t thread;
FILE *file;
char *filename;
int16_t result[MAXIMUM_BUF_LENGTH];
int result_len;
int rate;
pthread_rwlock_t rw;
pthread_cond_t ready;
pthread_mutex_t ready_m;
};
struct controller_state
{
int exit_flag;
pthread_t thread;
uint32_t freqs[FREQUENCIES_LIMIT];
int freq_len;
int freq_now;
int edge;
int wb_mode;
pthread_cond_t hop;
pthread_mutex_t hop_m;
};
// multiple of these, eventually
struct dongle_state dongle;
struct demod_state demod;
struct output_state output;
struct controller_state controller;
void usage(void)
{
fprintf(stderr,
"rtl_fm, a simple narrow band FM demodulator for RTL2832 based DVB-T receivers\n\n"
"Use:\trtl_fm -f freq [-options] [filename]\n"
"\t-f frequency_to_tune_to [Hz]\n"
"\t use multiple -f for scanning (requires squelch)\n"
"\t ranges supported, -f 118M:137M:25k\n"
"\t[-M modulation (default: fm)]\n"
"\t fm, wbfm, raw, am, usb, lsb\n"
"\t wbfm == -M fm -s 170k -o 4 -A fast -r 32k -l 0 -E deemp\n"
"\t raw mode outputs 2x16 bit IQ pairs\n"
"\t[-s sample_rate (default: 24k)]\n"
"\t[-d device_index (default: 0)]\n"
"\t[-g tuner_gain (default: automatic)]\n"
"\t[-l squelch_level (default: 0/off)]\n"
//"\t for fm squelch is inverted\n"
//"\t[-o oversampling (default: 1, 4 recommended)]\n"
"\t[-p ppm_error (default: 0)]\n"
"\t[-E enable_option (default: none)]\n"
"\t use multiple -E to enable multiple options\n"
"\t edge: enable lower edge tuning\n"
"\t dc: enable dc blocking filter\n"
"\t deemp: enable de-emphasis filter\n"
"\t direct: enable direct sampling\n"
"\t offset: enable offset tuning\n"
"\tfilename ('-' means stdout)\n"
"\t omitting the filename also uses stdout\n\n"
"Experimental options:\n"
"\t[-r resample_rate (default: none / same as -s)]\n"
"\t[-t squelch_delay (default: 10)]\n"
"\t +values will mute/scan, -values will exit\n"
"\t[-F fir_size (default: off)]\n"
"\t enables low-leakage downsample filter\n"
"\t size can be 0 or 9. 0 has bad roll off\n"
"\t[-A std/fast/lut choose atan math (default: std)]\n"
//"\t[-C clip_path (default: off)\n"
//"\t (create time stamped raw clips, requires squelch)\n"
//"\t (path must have '\%s' and will expand to date_time_freq)\n"
//"\t[-H hop_fifo (default: off)\n"
//"\t (fifo will contain the active frequency)\n"
"\n"
"Produces signed 16 bit ints, use Sox or aplay to hear them.\n"
"\trtl_fm ... | play -t raw -r 24k -es -b 16 -c 1 -V1 -\n"
"\t | aplay -r 24k -f S16_LE -t raw -c 1\n"
"\t -M wbfm | play -r 32k ... \n"
"\t -s 22050 | multimon -t raw /dev/stdin\n\n");
exit(1);
}
#ifdef _WIN32
BOOL WINAPI
sighandler(int signum)
{
if (CTRL_C_EVENT == signum) {
fprintf(stderr, "Signal caught, exiting!\n");
do_exit = 1;
rtlsdr_cancel_async(dongle.dev);
return TRUE;
}
return FALSE;
}
#else
static void sighandler(int signum)
{
fprintf(stderr, "Signal caught, exiting!\n");
do_exit = 1;
rtlsdr_cancel_async(dongle.dev);
}
#endif
/* more cond dumbness */
#define safe_cond_signal(n, m) pthread_mutex_lock(m); pthread_cond_signal(n); pthread_mutex_unlock(m)
#define safe_cond_wait(n, m) pthread_mutex_lock(m); pthread_cond_wait(n, m); pthread_mutex_unlock(m)
/* {length, coef, coef, coef} and scaled by 2^15
for now, only length 9, optimal way to get +85% bandwidth */
#define CIC_TABLE_MAX 10
int cic_9_tables[][10] = {
{0,},
{9, -156, -97, 2798, -15489, 61019, -15489, 2798, -97, -156},
{9, -128, -568, 5593, -24125, 74126, -24125, 5593, -568, -128},
{9, -129, -639, 6187, -26281, 77511, -26281, 6187, -639, -129},
{9, -122, -612, 6082, -26353, 77818, -26353, 6082, -612, -122},
{9, -120, -602, 6015, -26269, 77757, -26269, 6015, -602, -120},
{9, -120, -582, 5951, -26128, 77542, -26128, 5951, -582, -120},
{9, -119, -580, 5931, -26094, 77505, -26094, 5931, -580, -119},
{9, -119, -578, 5921, -26077, 77484, -26077, 5921, -578, -119},
{9, -119, -577, 5917, -26067, 77473, -26067, 5917, -577, -119},
{9, -199, -362, 5303, -25505, 77489, -25505, 5303, -362, -199},
};
#ifdef _MSC_VER
double log2(double n)
{
return log(n) / log(2.0);
}
#endif
void rotate_90(unsigned char *buf, uint32_t len)
/* 90 rotation is 1+0j, 0+1j, -1+0j, 0-1j
or [0, 1, -3, 2, -4, -5, 7, -6] */
{
uint32_t i;
unsigned char tmp;
for (i=0; i<len; i+=8) {
/* uint8_t negation = 255 - x */
tmp = 255 - buf[i+3];
buf[i+3] = buf[i+2];
buf[i+2] = tmp;
buf[i+4] = 255 - buf[i+4];
buf[i+5] = 255 - buf[i+5];
tmp = 255 - buf[i+6];
buf[i+6] = buf[i+7];
buf[i+7] = tmp;
}
}
void low_pass(struct demod_state *d)
/* simple square window FIR */
{
int i=0, i2=0;
while (i < d->lp_len) {
d->now_r += d->lowpassed[i];
d->now_j += d->lowpassed[i+1];
i += 2;
d->prev_index++;
if (d->prev_index < d->downsample) {
continue;
}
d->lowpassed[i2] = d->now_r; // * d->output_scale;
d->lowpassed[i2+1] = d->now_j; // * d->output_scale;
d->prev_index = 0;
d->now_r = 0;
d->now_j = 0;
i2 += 2;
}
d->lp_len = i2;
}
int low_pass_simple(int16_t *signal2, int len, int step)
// no wrap around, length must be multiple of step
{
int i, i2, sum;
for(i=0; i < len; i+=step) {
sum = 0;
for(i2=0; i2<step; i2++) {
sum += (int)signal2[i + i2];
}
//signal2[i/step] = (int16_t)(sum / step);
signal2[i/step] = (int16_t)(sum);
}
signal2[i/step + 1] = signal2[i/step];
return len / step;
}
void low_pass_real(struct demod_state *s)
/* simple square window FIR */
// add support for upsampling?
{
int i=0, i2=0;
int fast = (int)s->rate_out;
int slow = s->rate_out2;
while (i < s->result_len) {
s->now_lpr += s->result[i];
i++;
s->prev_lpr_index += slow;
if (s->prev_lpr_index < fast) {
continue;
}
s->result[i2] = (int16_t)(s->now_lpr / (fast/slow));
s->prev_lpr_index -= fast;
s->now_lpr = 0;
i2 += 1;
}
s->result_len = i2;
}
void fifth_order(int16_t *data, int length, int16_t *hist)
/* for half of interleaved data */
{
int i;
int16_t a, b, c, d, e, f;
a = hist[1];
b = hist[2];
c = hist[3];
d = hist[4];
e = hist[5];
f = data[0];
/* a downsample should improve resolution, so don't fully shift */
data[0] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
for (i=4; i<length; i+=4) {
a = c;
b = d;
c = e;
d = f;
e = data[i-2];
f = data[i];
data[i/2] = (a + (b+e)*5 + (c+d)*10 + f) >> 4;
}
/* archive */
hist[0] = a;
hist[1] = b;
hist[2] = c;
hist[3] = d;
hist[4] = e;
hist[5] = f;
}
void generic_fir(int16_t *data, int length, int *fir, int16_t *hist)
/* Okay, not at all generic. Assumes length 9, fix that eventually. */
{
int d, temp, sum;
for (d=0; d<length; d+=2) {
temp = data[d];
sum = 0;
sum += (hist[0] + hist[8]) * fir[1];
sum += (hist[1] + hist[7]) * fir[2];
sum += (hist[2] + hist[6]) * fir[3];
sum += (hist[3] + hist[5]) * fir[4];
sum += hist[4] * fir[5];
data[d] = sum >> 15 ;
hist[0] = hist[1];
hist[1] = hist[2];
hist[2] = hist[3];
hist[3] = hist[4];
hist[4] = hist[5];
hist[5] = hist[6];
hist[6] = hist[7];
hist[7] = hist[8];
hist[8] = temp;
}
}
/* define our own complex math ops
because ARMv5 has no hardware float */
void multiply(int ar, int aj, int br, int bj, int *cr, int *cj)
{
*cr = ar*br - aj*bj;
*cj = aj*br + ar*bj;
}
int polar_discriminant(int ar, int aj, int br, int bj)
{
int cr, cj;
double angle;
multiply(ar, aj, br, -bj, &cr, &cj);
angle = atan2((double)cj, (double)cr);
return (int)(angle / 3.14159 * (1<<14));
}
int fast_atan2(int y, int x)
/* pre scaled for int16 */
{
int yabs, angle;
int pi4=(1<<12), pi34=3*(1<<12); // note pi = 1<<14
if (x==0 && y==0) {
return 0;
}
yabs = y;
if (yabs < 0) {
yabs = -yabs;
}
if (x >= 0) {
angle = pi4 - pi4 * (x-yabs) / (x+yabs);
} else {
angle = pi34 - pi4 * (x+yabs) / (yabs-x);
}
if (y < 0) {
return -angle;
}
return angle;
}
int polar_disc_fast(int ar, int aj, int br, int bj)
{
int cr, cj;
multiply(ar, aj, br, -bj, &cr, &cj);
return fast_atan2(cj, cr);
}
int atan_lut_init(void)
{
int i = 0;
atan_lut = malloc(atan_lut_size * sizeof(int));
for (i = 0; i < atan_lut_size; i++) {
atan_lut[i] = (int) (atan((double) i / (1<<atan_lut_coef)) / 3.14159 * (1<<14));
}
return 0;
}
int polar_disc_lut(int ar, int aj, int br, int bj)
{
int cr, cj, x, x_abs;
multiply(ar, aj, br, -bj, &cr, &cj);
/* special cases */
if (cr == 0 || cj == 0) {
if (cr == 0 && cj == 0)
{return 0;}
if (cr == 0 && cj > 0)
{return 1 << 13;}
if (cr == 0 && cj < 0)
{return -(1 << 13);}
if (cj == 0 && cr > 0)
{return 0;}
if (cj == 0 && cr < 0)
{return 1 << 14;}
}
/* real range -32768 - 32768 use 64x range -> absolute maximum: 2097152 */
x = (cj << atan_lut_coef) / cr;
x_abs = abs(x);
if (x_abs >= atan_lut_size) {
/* we can use linear range, but it is not necessary */
return (cj > 0) ? 1<<13 : -1<<13;
}
if (x > 0) {
return (cj > 0) ? atan_lut[x] : atan_lut[x] - (1<<14);
} else {
return (cj > 0) ? (1<<14) - atan_lut[-x] : -atan_lut[-x];
}
return 0;
}
void fm_demod(struct demod_state *fm)
{
int i, pcm;
int16_t *lp = fm->lowpassed;
pcm = polar_discriminant(lp[0], lp[1],
fm->pre_r, fm->pre_j);
fm->result[0] = (int16_t)pcm;
for (i = 2; i < (fm->lp_len-1); i += 2) {
switch (fm->custom_atan) {
case 0:
pcm = polar_discriminant(lp[i], lp[i+1],
lp[i-2], lp[i-1]);
break;
case 1:
pcm = polar_disc_fast(lp[i], lp[i+1],
lp[i-2], lp[i-1]);
break;
case 2:
pcm = polar_disc_lut(lp[i], lp[i+1],
lp[i-2], lp[i-1]);
break;
}
fm->result[i/2] = (int16_t)pcm;
}
fm->pre_r = lp[fm->lp_len - 2];
fm->pre_j = lp[fm->lp_len - 1];
fm->result_len = fm->lp_len/2;
}
void am_demod(struct demod_state *fm)
// todo, fix this extreme laziness
{
int i, pcm;
int16_t *lp = fm->lowpassed;
int16_t *r = fm->result;
for (i = 0; i < fm->lp_len; i += 2) {
// hypot uses floats but won't overflow
//r[i/2] = (int16_t)hypot(lp[i], lp[i+1]);
pcm = lp[i] * lp[i];
pcm += lp[i+1] * lp[i+1];
r[i/2] = (int16_t)sqrt(pcm) * fm->output_scale;
}
fm->result_len = fm->lp_len/2;
// lowpass? (3khz) highpass? (dc)
}
void usb_demod(struct demod_state *fm)
{
int i, pcm;
int16_t *lp = fm->lowpassed;
int16_t *r = fm->result;
for (i = 0; i < fm->lp_len; i += 2) {
pcm = lp[i] + lp[i+1];
r[i/2] = (int16_t)pcm * fm->output_scale;
}
fm->result_len = fm->lp_len/2;
}
void lsb_demod(struct demod_state *fm)
{
int i, pcm;
int16_t *lp = fm->lowpassed;
int16_t *r = fm->result;
for (i = 0; i < fm->lp_len; i += 2) {
pcm = lp[i] - lp[i+1];
r[i/2] = (int16_t)pcm * fm->output_scale;
}
fm->result_len = fm->lp_len/2;
}
void raw_demod(struct demod_state *fm)
{
int i;
for (i = 0; i < fm->lp_len; i++) {
fm->result[i] = (int16_t)fm->lowpassed[i];
}
fm->result_len = fm->lp_len;
}
void deemph_filter(struct demod_state *fm)
{
static int avg; // cheating...
int i, d;
// de-emph IIR
// avg = avg * (1 - alpha) + sample * alpha;
for (i = 0; i < fm->result_len; i++) {
d = fm->result[i] - avg;
if (d > 0) {
avg += (d + fm->deemph_a/2) / fm->deemph_a;
} else {
avg += (d - fm->deemph_a/2) / fm->deemph_a;
}
fm->result[i] = (int16_t)avg;
}
}
void dc_block_filter(struct demod_state *fm)
{
int i, avg;
int64_t sum = 0;
for (i=0; i < fm->result_len; i++) {
sum += fm->result[i];
}
avg = sum / fm->result_len;
avg = (avg + fm->dc_avg * 9) / 10;
for (i=0; i < fm->result_len; i++) {
fm->result[i] -= avg;
}
fm->dc_avg = avg;
}
int mad(int16_t *samples, int len, int step)
/* mean average deviation */
{
int i=0, sum=0, ave=0;
if (len == 0)
{return 0;}
for (i=0; i<len; i+=step) {
sum += samples[i];
}
ave = sum / (len * step);
sum = 0;
for (i=0; i<len; i+=step) {
sum += abs(samples[i] - ave);
}
return sum / (len / step);
}
int rms(int16_t *samples, int len, int step)
/* largely lifted from rtl_power */
{
int i;
long p, t, s;
double dc, err;
p = t = 0L;
for (i=0; i<len; i+=step) {
s = (long)samples[i];
t += s;
p += s * s;
}
/* correct for dc offset in squares */
dc = (double)(t*step) / (double)len;
err = t * 2 * dc - dc * dc * len;
return (int)sqrt((p-err) / len);
}
void arbitrary_upsample(int16_t *buf1, int16_t *buf2, int len1, int len2)
/* linear interpolation, len1 < len2 */
{
int i = 1;
int j = 0;
int tick = 0;
double frac; // use integers...
while (j < len2) {
frac = (double)tick / (double)len2;
buf2[j] = (int16_t)(buf1[i-1]*(1-frac) + buf1[i]*frac);
j++;
tick += len1;
if (tick > len2) {
tick -= len2;
i++;
}
if (i >= len1) {
i = len1 - 1;
tick = len2;
}
}
}
void arbitrary_downsample(int16_t *buf1, int16_t *buf2, int len1, int len2)
/* fractional boxcar lowpass, len1 > len2 */
{
int i = 1;
int j = 0;
int tick = 0;
double remainder = 0;
double frac; // use integers...
buf2[0] = 0;
while (j < len2) {
frac = 1.0;
if ((tick + len2) > len1) {
frac = (double)(len1 - tick) / (double)len2;}
buf2[j] += (int16_t)((double)buf1[i] * frac + remainder);
remainder = (double)buf1[i] * (1.0-frac);
tick += len2;
i++;
if (tick > len1) {
j++;
buf2[j] = 0;
tick -= len1;
}
if (i >= len1) {
i = len1 - 1;
tick = len1;
}
}
for (j=0; j<len2; j++) {
buf2[j] = buf2[j] * len2 / len1;}
}
void arbitrary_resample(int16_t *buf1, int16_t *buf2, int len1, int len2)
/* up to you to calculate lengths and make sure it does not go OOB
* okay for buffers to overlap, if you are downsampling */
{
if (len1 < len2) {
arbitrary_upsample(buf1, buf2, len1, len2);
} else {
arbitrary_downsample(buf1, buf2, len1, len2);
}
}
void full_demod(struct demod_state *d)
{
int i, ds_p;
int sr = 0;
ds_p = d->downsample_passes;
if (ds_p) {
for (i=0; i < ds_p; i++) {
fifth_order(d->lowpassed, (d->lp_len >> i), d->lp_i_hist[i]);
fifth_order(d->lowpassed+1, (d->lp_len >> i) - 1, d->lp_q_hist[i]);
}
d->lp_len = d->lp_len >> ds_p;
/* droop compensation */
if (d->comp_fir_size == 9 && ds_p <= CIC_TABLE_MAX) {
generic_fir(d->lowpassed, d->lp_len,
cic_9_tables[ds_p], d->droop_i_hist);
generic_fir(d->lowpassed+1, d->lp_len-1,
cic_9_tables[ds_p], d->droop_q_hist);
}
} else {
low_pass(d);
}
/* power squelch */
if (d->squelch_level) {
sr = rms(d->lowpassed, d->lp_len, 1);
if (sr < d->squelch_level) {
d->squelch_hits++;
for (i=0; i<d->lp_len; i++) {
d->lowpassed[i] = 0;
}
} else {
d->squelch_hits = 0;}
}
d->mode_demod(d); /* lowpassed -> result */
if (d->mode_demod == &raw_demod) {
return;
}
/* todo, fm noise squelch */
// use nicer filter here too?
if (d->post_downsample > 1) {
d->result_len = low_pass_simple(d->result, d->result_len, d->post_downsample);}
if (d->deemph) {
deemph_filter(d);}
if (d->dc_block) {
dc_block_filter(d);}
if (d->rate_out2 > 0) {
low_pass_real(d);
//arbitrary_resample(d->result, d->result, d->result_len, d->result_len * d->rate_out2 / d->rate_out);
}
}
static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx)
{
int i;
struct dongle_state *s = ctx;
struct demod_state *d = s->demod_target;
if (do_exit) {
return;}
if (!ctx) {
return;}
if (s->mute) {
for (i=0; i<s->mute; i++) {
buf[i] = 127;}
s->mute = 0;
}
if (!s->offset_tuning) {
rotate_90(buf, len);}
for (i=0; i<(int)len; i++) {
s->buf16[i] = (int16_t)buf[i] - 127;}
pthread_rwlock_wrlock(&d->rw);
memcpy(d->lowpassed, s->buf16, 2*len);
d->lp_len = len;
pthread_rwlock_unlock(&d->rw);
safe_cond_signal(&d->ready, &d->ready_m);
}
static void *dongle_thread_fn(void *arg)
{
struct dongle_state *s = arg;
rtlsdr_read_async(s->dev, rtlsdr_callback, s, 0, s->buf_len);
return 0;
}
static void *demod_thread_fn(void *arg)
{
struct demod_state *d = arg;
struct output_state *o = d->output_target;
while (!do_exit) {
safe_cond_wait(&d->ready, &d->ready_m);
pthread_rwlock_wrlock(&d->rw);
full_demod(d);
pthread_rwlock_unlock(&d->rw);
if (d->exit_flag) {
do_exit = 1;
}
if (d->squelch_level && d->squelch_hits > d->conseq_squelch) {
d->squelch_hits = d->conseq_squelch + 1; /* hair trigger */
safe_cond_signal(&controller.hop, &controller.hop_m);
continue;
}
pthread_rwlock_wrlock(&o->rw);
memcpy(o->result, d->result, 2*d->result_len);
o->result_len = d->result_len;
pthread_rwlock_unlock(&o->rw);
safe_cond_signal(&o->ready, &o->ready_m);
}
return 0;
}
static void *output_thread_fn(void *arg)
{
struct output_state *s = arg;
while (!do_exit) {
// use timedwait and pad out under runs
safe_cond_wait(&s->ready, &s->ready_m);
pthread_rwlock_rdlock(&s->rw);
fwrite(s->result, 2, s->result_len, s->file);
pthread_rwlock_unlock(&s->rw);
}
return 0;
}
static void optimal_settings(int freq, int rate)
{
// giant ball of hacks
// seems unable to do a single pass, 2:1
int capture_freq, capture_rate;
struct dongle_state *d = &dongle;
struct demod_state *dm = &demod;
struct controller_state *cs = &controller;
dm->downsample = (1000000 / dm->rate_in) + 1;
if (dm->downsample_passes) {
dm->downsample_passes = (int)log2(dm->downsample) + 1;
dm->downsample = 1 << dm->downsample_passes;
}
capture_freq = freq;
capture_rate = dm->downsample * dm->rate_in;
if (!d->offset_tuning) {
capture_freq = freq + capture_rate/4;}
capture_freq += cs->edge * dm->rate_in / 2;
dm->output_scale = (1<<15) / (128 * dm->downsample);
if (dm->output_scale < 1) {
dm->output_scale = 1;}
if (dm->mode_demod == &fm_demod) {
dm->output_scale = 1;}
d->freq = (uint32_t)capture_freq;
d->rate = (uint32_t)capture_rate;
}
static void *controller_thread_fn(void *arg)
{
// thoughts for multiple dongles
// might be no good using a controller thread if retune/rate blocks
int i;
struct controller_state *s = arg;
if (s->wb_mode) {
for (i=0; i < s->freq_len; i++) {
s->freqs[i] += 16000;}
}
/* set up primary channel */
optimal_settings(s->freqs[0], demod.rate_in);
if (dongle.direct_sampling) {
verbose_direct_sampling(dongle.dev, 1);}
if (dongle.offset_tuning) {
verbose_offset_tuning(dongle.dev);}
/* Set the frequency */
verbose_set_frequency(dongle.dev, dongle.freq);
fprintf(stderr, "Oversampling input by: %ix.\n", demod.downsample);
fprintf(stderr, "Oversampling output by: %ix.\n", demod.post_downsample);
fprintf(stderr, "Buffer size: %0.2fms\n",
1000 * 0.5 * (float)ACTUAL_BUF_LENGTH / (float)dongle.rate);
/* Set the sample rate */
verbose_set_sample_rate(dongle.dev, dongle.rate);
fprintf(stderr, "Output at %u Hz.\n", demod.rate_in/demod.post_downsample);
while (!do_exit) {
safe_cond_wait(&s->hop, &s->hop_m);
if (s->freq_len <= 1) {
continue;}
/* hacky hopping */
s->freq_now = (s->freq_now + 1) % s->freq_len;
optimal_settings(s->freqs[s->freq_now], demod.rate_in);
rtlsdr_set_center_freq(dongle.dev, dongle.freq);
dongle.mute = BUFFER_DUMP;
}
return 0;
}
void frequency_range(struct controller_state *s, char *arg)
{
char *start, *stop, *step;
int i;
start = arg;
stop = strchr(start, ':') + 1;
stop[-1] = '\0';
step = strchr(stop, ':') + 1;
step[-1] = '\0';
for(i=(int)atofs(start); i<=(int)atofs(stop); i+=(int)atofs(step))
{
s->freqs[s->freq_len] = (uint32_t)i;
s->freq_len++;
if (s->freq_len >= FREQUENCIES_LIMIT) {
break;}
}
stop[-1] = ':';
step[-1] = ':';
}
void dongle_init(struct dongle_state *s)
{
s->rate = DEFAULT_SAMPLE_RATE;
s->gain = AUTO_GAIN; // tenths of a dB
s->mute = 0;
s->direct_sampling = 0;
s->offset_tuning = 0;
s->demod_target = &demod;
}
void demod_init(struct demod_state *s)
{
s->rate_in = DEFAULT_SAMPLE_RATE;
s->rate_out = DEFAULT_SAMPLE_RATE;
s->squelch_level = 0;
s->conseq_squelch = 10;
s->terminate_on_squelch = 0;
s->squelch_hits = 11;
s->downsample_passes = 0;
s->comp_fir_size = 0;
s->prev_index = 0;
s->post_downsample = 1; // once this works, default = 4
s->custom_atan = 0;
s->deemph = 0;
s->rate_out2 = -1; // flag for disabled
s->mode_demod = &fm_demod;
s->pre_j = s->pre_r = s->now_r = s->now_j = 0;
s->prev_lpr_index = 0;
s->deemph_a = 0;
s->now_lpr = 0;
s->dc_block = 0;
s->dc_avg = 0;
pthread_rwlock_init(&s->rw, NULL);
pthread_cond_init(&s->ready, NULL);
pthread_mutex_init(&s->ready_m, NULL);
s->output_target = &output;
}
void demod_cleanup(struct demod_state *s)
{
pthread_rwlock_destroy(&s->rw);
pthread_cond_destroy(&s->ready);
pthread_mutex_destroy(&s->ready_m);
}
void output_init(struct output_state *s)
{
s->rate = DEFAULT_SAMPLE_RATE;
pthread_rwlock_init(&s->rw, NULL);
pthread_cond_init(&s->ready, NULL);
pthread_mutex_init(&s->ready_m, NULL);
}
void output_cleanup(struct output_state *s)
{
pthread_rwlock_destroy(&s->rw);
pthread_cond_destroy(&s->ready);
pthread_mutex_destroy(&s->ready_m);
}