-
Notifications
You must be signed in to change notification settings - Fork 1
/
create_data.py
40 lines (32 loc) · 1.02 KB
/
create_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Creating database
# It captures images and stores them in datasets
# folder under the folder name of sub_data
import cv2, sys, numpy, os
# All the faces data will be
# present this folder
datasets = 'datasets'
sub_data = 'tonytran'
path = os.path.join(datasets, sub_data)
if not os.path.isdir(path):
os.mkdir(path)
# defining the size of images
(width, height) = (130, 100)
# Load the cascade
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
webcam = cv2.VideoCapture("/dev/video1")
# The program loops until it has 30 images of the face.
count = 1
while count < 30:
(_, im) = webcam.read()
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 4)
for (x, y, w, h) in faces:
cv2.rectangle(im, (x, y), (x + w, y + h), (255, 0, 0), 2)
face = gray[y:y + h, x:x + w]
face_resize = cv2.resize(face, (width, height))
cv2.imwrite('% s/% s.png' % (path, count), face_resize)
count += 1
cv2.imshow('OpenCV', im)
key = cv2.waitKey(10)
if key == 27:
break