forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolox_nano_300e_coco.yml
81 lines (69 loc) · 1.87 KB
/
yolox_nano_300e_coco.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'./_base_/optimizer_300e.yml',
'./_base_/yolox_cspdarknet.yml',
'./_base_/yolox_reader.yml'
]
depth_mult: 0.33
width_mult: 0.25
log_iter: 100
snapshot_epoch: 10
weights: output/yolox_nano_300e_coco/model_final
### model config:
# Note: YOLOX-nano use depthwise conv in backbone, neck and head.
YOLOX:
backbone: CSPDarkNet
neck: YOLOCSPPAN
head: YOLOXHead
size_stride: 32
size_range: [10, 20] # multi-scale range [320*320 ~ 640*640]
CSPDarkNet:
arch: "X"
return_idx: [2, 3, 4]
depthwise: True
YOLOCSPPAN:
depthwise: True
YOLOXHead:
depthwise: True
### reader config:
# Note: YOLOX-tiny/nano uses 416*416 for evaluation and inference.
# And multi-scale training setting is in model config, TrainReader's operators use 640*640 as default.
worker_num: 4
TrainReader:
sample_transforms:
- Decode: {}
- Mosaic:
prob: 0.5 # 1.0 in YOLOX-tiny/s/m/l/x
input_dim: [640, 640]
degrees: [-10, 10]
scale: [0.5, 1.5] # [0.1, 2.0] in YOLOX-s/m/l/x
shear: [-2, 2]
translate: [-0.1, 0.1]
enable_mixup: False # True in YOLOX-s/m/l/x
- AugmentHSV: {is_bgr: False, hgain: 5, sgain: 30, vgain: 30}
- PadResize: {target_size: 640}
- RandomFlip: {}
batch_transforms:
- Permute: {}
batch_size: 8
shuffle: True
drop_last: True
collate_batch: False
mosaic_epoch: 285
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
- Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
- Permute: {}
batch_size: 8
TestReader:
inputs_def:
image_shape: [3, 416, 416]
sample_transforms:
- Decode: {}
- Resize: {target_size: [416, 416], keep_ratio: True, interp: 1}
- Pad: {size: [416, 416], fill_value: [114., 114., 114.]}
- Permute: {}
batch_size: 1