forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmot_sde_infer.py
882 lines (797 loc) · 36.1 KB
/
mot_sde_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import yaml
import cv2
import re
import glob
import numpy as np
from collections import defaultdict
import paddle
from benchmark_utils import PaddleInferBenchmark
from preprocess import decode_image
# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig, load_predictor
from mot_utils import argsparser, Timer, get_current_memory_mb, video2frames, _is_valid_video
from mot.tracker import JDETracker, DeepSORTTracker, OCSORTTracker
from mot.utils import MOTTimer, write_mot_results, get_crops, clip_box, flow_statistic
from mot.visualize import plot_tracking, plot_tracking_dict
from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results
class SDE_Detector(Detector):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
tracker_config (str): tracker config path
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
output_dir (string): The path of output, default as 'output'
threshold (float): Score threshold of the detected bbox, default as 0.5
save_images (bool): Whether to save visualization image results, default as False
save_mot_txts (bool): Whether to save tracking results (txt), default as False
draw_center_traj (bool): Whether drawing the trajectory of center, default as False
secs_interval (int): The seconds interval to count after tracking, default as 10
skip_frame_num (int): Skip frame num to get faster MOT results, default as -1
do_entrance_counting(bool): Whether counting the numbers of identifiers entering
or getting out from the entrance, default as False,only support single class
counting in MOT, and the video should be taken by a static camera.
do_break_in_counting(bool): Whether counting the numbers of identifiers break in
the area, default as False,only support single class counting in MOT,
and the video should be taken by a static camera.
region_type (str): Area type for entrance counting or break in counting, 'horizontal'
and 'vertical' used when do entrance counting. 'custom' used when do break in counting.
Note that only support single-class MOT, and the video should be taken by a static camera.
region_polygon (list): Clockwise point coords (x0,y0,x1,y1...) of polygon of area when
do_break_in_counting. Note that only support single-class MOT and
the video should be taken by a static camera.
reid_model_dir (str): reid model dir, default None for ByteTrack, but set for DeepSORT
mtmct_dir (str): MTMCT dir, default None, set for doing MTMCT
"""
def __init__(self,
model_dir,
tracker_config,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
output_dir='output',
threshold=0.5,
save_images=False,
save_mot_txts=False,
draw_center_traj=False,
secs_interval=10,
skip_frame_num=-1,
do_entrance_counting=False,
do_break_in_counting=False,
region_type='horizontal',
region_polygon=[],
reid_model_dir=None,
mtmct_dir=None):
super(SDE_Detector, self).__init__(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
output_dir=output_dir,
threshold=threshold, )
self.save_images = save_images
self.save_mot_txts = save_mot_txts
self.draw_center_traj = draw_center_traj
self.secs_interval = secs_interval
self.skip_frame_num = skip_frame_num
self.do_entrance_counting = do_entrance_counting
self.do_break_in_counting = do_break_in_counting
self.region_type = region_type
self.region_polygon = region_polygon
if self.region_type == 'custom':
assert len(
self.region_polygon
) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'
assert batch_size == 1, "MOT model only supports batch_size=1."
self.det_times = Timer(with_tracker=True)
self.num_classes = len(self.pred_config.labels)
if self.skip_frame_num > 1:
self.previous_det_result = None
# reid config
self.use_reid = False if reid_model_dir is None else True
if self.use_reid:
self.reid_pred_config = self.set_config(reid_model_dir)
self.reid_predictor, self.config = load_predictor(
reid_model_dir,
run_mode=run_mode,
batch_size=50, # reid_batch_size
min_subgraph_size=self.reid_pred_config.min_subgraph_size,
device=device,
use_dynamic_shape=self.reid_pred_config.use_dynamic_shape,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn)
else:
self.reid_pred_config = None
self.reid_predictor = None
assert tracker_config is not None, 'Note that tracker_config should be set.'
self.tracker_config = tracker_config
tracker_cfg = yaml.safe_load(open(self.tracker_config))
cfg = tracker_cfg[tracker_cfg['type']]
# tracker config
self.use_deepsort_tracker = True if tracker_cfg[
'type'] == 'DeepSORTTracker' else False
self.use_ocsort_tracker = True if tracker_cfg[
'type'] == 'OCSORTTracker' else False
if self.use_deepsort_tracker:
if self.reid_pred_config is not None and hasattr(
self.reid_pred_config, 'tracker'):
cfg = self.reid_pred_config.tracker
budget = cfg.get('budget', 100)
max_age = cfg.get('max_age', 30)
max_iou_distance = cfg.get('max_iou_distance', 0.7)
matching_threshold = cfg.get('matching_threshold', 0.2)
min_box_area = cfg.get('min_box_area', 0)
vertical_ratio = cfg.get('vertical_ratio', 0)
self.tracker = DeepSORTTracker(
budget=budget,
max_age=max_age,
max_iou_distance=max_iou_distance,
matching_threshold=matching_threshold,
min_box_area=min_box_area,
vertical_ratio=vertical_ratio, )
elif self.use_ocsort_tracker:
det_thresh = cfg.get('det_thresh', 0.4)
max_age = cfg.get('max_age', 30)
min_hits = cfg.get('min_hits', 3)
iou_threshold = cfg.get('iou_threshold', 0.3)
delta_t = cfg.get('delta_t', 3)
inertia = cfg.get('inertia', 0.2)
min_box_area = cfg.get('min_box_area', 0)
vertical_ratio = cfg.get('vertical_ratio', 0)
use_byte = cfg.get('use_byte', False)
self.tracker = OCSORTTracker(
det_thresh=det_thresh,
max_age=max_age,
min_hits=min_hits,
iou_threshold=iou_threshold,
delta_t=delta_t,
inertia=inertia,
min_box_area=min_box_area,
vertical_ratio=vertical_ratio,
use_byte=use_byte)
else:
# use ByteTracker
use_byte = cfg.get('use_byte', False)
det_thresh = cfg.get('det_thresh', 0.3)
min_box_area = cfg.get('min_box_area', 0)
vertical_ratio = cfg.get('vertical_ratio', 0)
match_thres = cfg.get('match_thres', 0.9)
conf_thres = cfg.get('conf_thres', 0.6)
low_conf_thres = cfg.get('low_conf_thres', 0.1)
self.tracker = JDETracker(
use_byte=use_byte,
det_thresh=det_thresh,
num_classes=self.num_classes,
min_box_area=min_box_area,
vertical_ratio=vertical_ratio,
match_thres=match_thres,
conf_thres=conf_thres,
low_conf_thres=low_conf_thres, )
self.do_mtmct = False if mtmct_dir is None else True
self.mtmct_dir = mtmct_dir
def postprocess(self, inputs, result):
# postprocess output of predictor
keep_idx = result['boxes'][:, 1] > self.threshold
result['boxes'] = result['boxes'][keep_idx]
np_boxes_num = [len(result['boxes'])]
if np_boxes_num[0] <= 0:
print('[WARNNING] No object detected.')
result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
result = {k: v for k, v in result.items() if v is not None}
return result
def reidprocess(self, det_results, repeats=1):
pred_dets = det_results['boxes'] # cls_id, score, x0, y0, x1, y1
pred_xyxys = pred_dets[:, 2:6]
ori_image = det_results['ori_image']
ori_image_shape = ori_image.shape[:2]
pred_xyxys, keep_idx = clip_box(pred_xyxys, ori_image_shape)
if len(keep_idx[0]) == 0:
det_results['boxes'] = np.zeros((1, 6), dtype=np.float32)
det_results['embeddings'] = None
return det_results
pred_dets = pred_dets[keep_idx[0]]
pred_xyxys = pred_dets[:, 2:6]
w, h = self.tracker.input_size
crops = get_crops(pred_xyxys, ori_image, w, h)
# to keep fast speed, only use topk crops
crops = crops[:50] # reid_batch_size
det_results['crops'] = np.array(crops).astype('float32')
det_results['boxes'] = pred_dets[:50]
input_names = self.reid_predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.reid_predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(det_results[input_names[i]])
# model prediction
for i in range(repeats):
self.reid_predictor.run()
output_names = self.reid_predictor.get_output_names()
feature_tensor = self.reid_predictor.get_output_handle(output_names[
0])
pred_embs = feature_tensor.copy_to_cpu()
det_results['embeddings'] = pred_embs
return det_results
def tracking(self, det_results):
pred_dets = det_results['boxes'] # cls_id, score, x0, y0, x1, y1
pred_embs = det_results.get('embeddings', None)
if self.use_deepsort_tracker:
# use DeepSORTTracker, only support singe class
self.tracker.predict()
online_targets = self.tracker.update(pred_dets, pred_embs)
online_tlwhs, online_scores, online_ids = [], [], []
if self.do_mtmct:
online_tlbrs, online_feats = [], []
for t in online_targets:
if not t.is_confirmed() or t.time_since_update > 1:
continue
tlwh = t.to_tlwh()
tscore = t.score
tid = t.track_id
if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > self.tracker.vertical_ratio:
continue
online_tlwhs.append(tlwh)
online_scores.append(tscore)
online_ids.append(tid)
if self.do_mtmct:
online_tlbrs.append(t.to_tlbr())
online_feats.append(t.feat)
tracking_outs = {
'online_tlwhs': online_tlwhs,
'online_scores': online_scores,
'online_ids': online_ids,
}
if self.do_mtmct:
seq_name = det_results['seq_name']
frame_id = det_results['frame_id']
tracking_outs['feat_data'] = {}
for _tlbr, _id, _feat in zip(online_tlbrs, online_ids,
online_feats):
feat_data = {}
feat_data['bbox'] = _tlbr
feat_data['frame'] = f"{frame_id:06d}"
feat_data['id'] = _id
_imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
feat_data['imgname'] = _imgname
feat_data['feat'] = _feat
tracking_outs['feat_data'].update({_imgname: feat_data})
return tracking_outs
elif self.use_ocsort_tracker:
# use OCSORTTracker, only support singe class
online_targets = self.tracker.update(pred_dets, pred_embs)
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
for t in online_targets:
tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
tscore = float(t[4])
tid = int(t[5])
if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > self.tracker.vertical_ratio:
continue
if tlwh[2] * tlwh[3] > 0:
online_tlwhs[0].append(tlwh)
online_ids[0].append(tid)
online_scores[0].append(tscore)
tracking_outs = {
'online_tlwhs': online_tlwhs,
'online_scores': online_scores,
'online_ids': online_ids,
}
return tracking_outs
else:
# use ByteTracker, support multiple class
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
if self.do_mtmct:
online_tlbrs, online_feats = defaultdict(list), defaultdict(
list)
online_targets_dict = self.tracker.update(pred_dets, pred_embs)
for cls_id in range(self.num_classes):
online_targets = online_targets_dict[cls_id]
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] <= self.tracker.min_box_area:
continue
if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > self.tracker.vertical_ratio:
continue
online_tlwhs[cls_id].append(tlwh)
online_ids[cls_id].append(tid)
online_scores[cls_id].append(tscore)
if self.do_mtmct:
online_tlbrs[cls_id].append(t.tlbr)
online_feats[cls_id].append(t.curr_feat)
if self.do_mtmct:
assert self.num_classes == 1, 'MTMCT only support single class.'
tracking_outs = {
'online_tlwhs': online_tlwhs[0],
'online_scores': online_scores[0],
'online_ids': online_ids[0],
}
seq_name = det_results['seq_name']
frame_id = det_results['frame_id']
tracking_outs['feat_data'] = {}
for _tlbr, _id, _feat in zip(online_tlbrs[0], online_ids[0],
online_feats[0]):
feat_data = {}
feat_data['bbox'] = _tlbr
feat_data['frame'] = f"{frame_id:06d}"
feat_data['id'] = _id
_imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
feat_data['imgname'] = _imgname
feat_data['feat'] = _feat
tracking_outs['feat_data'].update({_imgname: feat_data})
return tracking_outs
else:
tracking_outs = {
'online_tlwhs': online_tlwhs,
'online_scores': online_scores,
'online_ids': online_ids,
}
return tracking_outs
def predict_image(self,
image_list,
run_benchmark=False,
repeats=1,
visual=True,
seq_name=None,
reuse_det_result=False):
num_classes = self.num_classes
image_list.sort()
ids2names = self.pred_config.labels
if self.do_mtmct:
mot_features_dict = {} # cid_tid_fid feats
else:
mot_results = []
for frame_id, img_file in enumerate(image_list):
if self.do_mtmct:
if frame_id % 10 == 0:
print('Tracking frame: %d' % (frame_id))
batch_image_list = [img_file] # bs=1 in MOT model
frame, _ = decode_image(img_file, {})
if run_benchmark:
# preprocess
inputs = self.preprocess(batch_image_list) # warmup
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
# model prediction
result_warmup = self.predict(repeats=repeats) # warmup
self.det_times.inference_time_s.start()
result = self.predict(repeats=repeats)
self.det_times.inference_time_s.end(repeats=repeats)
# postprocess
result_warmup = self.postprocess(inputs, result) # warmup
self.det_times.postprocess_time_s.start()
det_result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
# tracking
if self.use_reid:
det_result['frame_id'] = frame_id
det_result['seq_name'] = seq_name
det_result['ori_image'] = frame
det_result = self.reidprocess(det_result)
result_warmup = self.tracking(det_result)
self.det_times.tracking_time_s.start()
if self.use_reid:
det_result = self.reidprocess(det_result)
tracking_outs = self.tracking(det_result)
self.det_times.tracking_time_s.end()
self.det_times.img_num += 1
cm, gm, gu = get_current_memory_mb()
self.cpu_mem += cm
self.gpu_mem += gm
self.gpu_util += gu
else:
self.det_times.preprocess_time_s.start()
if not reuse_det_result:
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
self.det_times.inference_time_s.start()
if not reuse_det_result:
result = self.predict()
self.det_times.inference_time_s.end()
self.det_times.postprocess_time_s.start()
if not reuse_det_result:
det_result = self.postprocess(inputs, result)
self.previous_det_result = det_result
else:
assert self.previous_det_result is not None
det_result = self.previous_det_result
self.det_times.postprocess_time_s.end()
# tracking process
self.det_times.tracking_time_s.start()
if self.use_reid:
det_result['frame_id'] = frame_id
det_result['seq_name'] = seq_name
det_result['ori_image'] = frame
det_result = self.reidprocess(det_result)
tracking_outs = self.tracking(det_result)
self.det_times.tracking_time_s.end()
self.det_times.img_num += 1
online_tlwhs = tracking_outs['online_tlwhs']
online_scores = tracking_outs['online_scores']
online_ids = tracking_outs['online_ids']
if self.do_mtmct:
feat_data_dict = tracking_outs['feat_data']
mot_features_dict = dict(mot_features_dict, **feat_data_dict)
else:
mot_results.append([online_tlwhs, online_scores, online_ids])
if visual:
if len(image_list) > 1 and frame_id % 10 == 0:
print('Tracking frame {}'.format(frame_id))
frame, _ = decode_image(img_file, {})
if isinstance(online_tlwhs, defaultdict):
im = plot_tracking_dict(
frame,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
ids2names=ids2names)
else:
im = plot_tracking(
frame,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
ids2names=ids2names)
save_dir = os.path.join(self.output_dir, seq_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
cv2.imwrite(
os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
if self.do_mtmct:
return mot_features_dict
else:
return mot_results
def predict_video(self, video_file, camera_id):
video_out_name = 'output.mp4'
if camera_id != -1:
capture = cv2.VideoCapture(camera_id)
else:
capture = cv2.VideoCapture(video_file)
video_out_name = os.path.split(video_file)[-1]
# Get Video info : resolution, fps, frame count
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print("fps: %d, frame_count: %d" % (fps, frame_count))
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
out_path = os.path.join(self.output_dir, video_out_name)
video_format = 'mp4v'
fourcc = cv2.VideoWriter_fourcc(*video_format)
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 0
timer = MOTTimer()
results = defaultdict(list)
num_classes = self.num_classes
data_type = 'mcmot' if num_classes > 1 else 'mot'
ids2names = self.pred_config.labels
center_traj = None
entrance = None
records = None
if self.draw_center_traj:
center_traj = [{} for i in range(num_classes)]
if num_classes == 1:
id_set = set()
interval_id_set = set()
in_id_list = list()
out_id_list = list()
prev_center = dict()
records = list()
if self.do_entrance_counting or self.do_break_in_counting:
if self.region_type == 'horizontal':
entrance = [0, height / 2., width, height / 2.]
elif self.region_type == 'vertical':
entrance = [width / 2, 0., width / 2, height]
elif self.region_type == 'custom':
entrance = []
assert len(
self.region_polygon
) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
for i in range(0, len(self.region_polygon), 2):
entrance.append([
self.region_polygon[i], self.region_polygon[i + 1]
])
entrance.append([width, height])
else:
raise ValueError("region_type:{} is not supported.".format(
self.region_type))
video_fps = fps
while (1):
ret, frame = capture.read()
if not ret:
break
if frame_id % 10 == 0:
print('Tracking frame: %d' % (frame_id))
timer.tic()
mot_skip_frame_num = self.skip_frame_num
reuse_det_result = False
if mot_skip_frame_num > 1 and frame_id > 0 and frame_id % mot_skip_frame_num > 0:
reuse_det_result = True
seq_name = video_out_name.split('.')[0]
mot_results = self.predict_image(
[frame],
visual=False,
seq_name=seq_name,
reuse_det_result=reuse_det_result)
timer.toc()
# bs=1 in MOT model
online_tlwhs, online_scores, online_ids = mot_results[0]
# flow statistic for one class, and only for bytetracker
if num_classes == 1 and not self.use_deepsort_tracker and not self.use_ocsort_tracker:
result = (frame_id + 1, online_tlwhs[0], online_scores[0],
online_ids[0])
statistic = flow_statistic(
result,
self.secs_interval,
self.do_entrance_counting,
self.do_break_in_counting,
self.region_type,
video_fps,
entrance,
id_set,
interval_id_set,
in_id_list,
out_id_list,
prev_center,
records,
data_type,
ids2names=self.pred_config.labels)
records = statistic['records']
fps = 1. / timer.duration
if self.use_deepsort_tracker or self.use_ocsort_tracker:
# use DeepSORTTracker or OCSORTTracker, only support singe class
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
im = plot_tracking(
frame,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
fps=fps,
ids2names=ids2names,
do_entrance_counting=self.do_entrance_counting,
entrance=entrance)
else:
# use ByteTracker, support multiple class
for cls_id in range(num_classes):
results[cls_id].append(
(frame_id + 1, online_tlwhs[cls_id],
online_scores[cls_id], online_ids[cls_id]))
im = plot_tracking_dict(
frame,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
fps=fps,
ids2names=ids2names,
do_entrance_counting=self.do_entrance_counting,
entrance=entrance,
records=records,
center_traj=center_traj)
writer.write(im)
if camera_id != -1:
cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
frame_id += 1
if self.save_mot_txts:
result_filename = os.path.join(
self.output_dir, video_out_name.split('.')[-2] + '.txt')
write_mot_results(result_filename, results)
result_filename = os.path.join(
self.output_dir,
video_out_name.split('.')[-2] + '_flow_statistic.txt')
f = open(result_filename, 'w')
for line in records:
f.write(line)
print('Flow statistic save in {}'.format(result_filename))
f.close()
writer.release()
def predict_mtmct(self, mtmct_dir, mtmct_cfg):
cameras_bias = mtmct_cfg['cameras_bias']
cid_bias = parse_bias(cameras_bias)
scene_cluster = list(cid_bias.keys())
# 1.zone releated parameters
use_zone = mtmct_cfg.get('use_zone', False)
zone_path = mtmct_cfg.get('zone_path', None)
# 2.tricks parameters, can be used for other mtmct dataset
use_ff = mtmct_cfg.get('use_ff', False)
use_rerank = mtmct_cfg.get('use_rerank', False)
# 3.camera releated parameters
use_camera = mtmct_cfg.get('use_camera', False)
use_st_filter = mtmct_cfg.get('use_st_filter', False)
# 4.zone releated parameters
use_roi = mtmct_cfg.get('use_roi', False)
roi_dir = mtmct_cfg.get('roi_dir', False)
mot_list_breaks = []
cid_tid_dict = dict()
output_dir = self.output_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
seqs = os.listdir(mtmct_dir)
for seq in sorted(seqs):
fpath = os.path.join(mtmct_dir, seq)
if os.path.isfile(fpath) and _is_valid_video(fpath):
seq = seq.split('.')[-2]
print('ffmpeg processing of video {}'.format(fpath))
frames_path = video2frames(
video_path=fpath, outpath=mtmct_dir, frame_rate=25)
fpath = os.path.join(mtmct_dir, seq)
if os.path.isdir(fpath) == False:
print('{} is not a image folder.'.format(fpath))
continue
if os.path.exists(os.path.join(fpath, 'img1')):
fpath = os.path.join(fpath, 'img1')
assert os.path.isdir(fpath), '{} should be a directory'.format(
fpath)
image_list = glob.glob(os.path.join(fpath, '*.jpg'))
image_list.sort()
assert len(image_list) > 0, '{} has no images.'.format(fpath)
print('start tracking seq: {}'.format(seq))
mot_features_dict = self.predict_image(
image_list, visual=False, seq_name=seq)
cid = int(re.sub('[a-z,A-Z]', "", seq))
tid_data, mot_list_break = trajectory_fusion(
mot_features_dict,
cid,
cid_bias,
use_zone=use_zone,
zone_path=zone_path)
mot_list_breaks.append(mot_list_break)
# single seq process
for line in tid_data:
tracklet = tid_data[line]
tid = tracklet['tid']
if (cid, tid) not in cid_tid_dict:
cid_tid_dict[(cid, tid)] = tracklet
map_tid = sub_cluster(
cid_tid_dict,
scene_cluster,
use_ff=use_ff,
use_rerank=use_rerank,
use_camera=use_camera,
use_st_filter=use_st_filter)
pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
if use_camera:
gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
else:
gen_res(
pred_mtmct_file,
scene_cluster,
map_tid,
mot_list_breaks,
use_roi=use_roi,
roi_dir=roi_dir)
camera_results, cid_tid_fid_res = get_mtmct_matching_results(
pred_mtmct_file)
crops_dir = os.path.join(output_dir, 'mtmct_crops')
save_mtmct_crops(
cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)
save_dir = os.path.join(output_dir, 'mtmct_vis')
save_mtmct_vis_results(
camera_results,
images_dir=mtmct_dir,
save_dir=save_dir,
save_videos=FLAGS.save_images)
def main():
deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
with open(deploy_file) as f:
yml_conf = yaml.safe_load(f)
arch = yml_conf['arch']
detector = SDE_Detector(
FLAGS.model_dir,
tracker_config=FLAGS.tracker_config,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=1,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
output_dir=FLAGS.output_dir,
threshold=FLAGS.threshold,
save_images=FLAGS.save_images,
save_mot_txts=FLAGS.save_mot_txts,
draw_center_traj=FLAGS.draw_center_traj,
secs_interval=FLAGS.secs_interval,
skip_frame_num=FLAGS.skip_frame_num,
do_entrance_counting=FLAGS.do_entrance_counting,
do_break_in_counting=FLAGS.do_break_in_counting,
region_type=FLAGS.region_type,
region_polygon=FLAGS.region_polygon,
reid_model_dir=FLAGS.reid_model_dir,
mtmct_dir=FLAGS.mtmct_dir, )
# predict from video file or camera video stream
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
elif FLAGS.mtmct_dir is not None:
with open(FLAGS.mtmct_cfg) as f:
mtmct_cfg = yaml.safe_load(f)
detector.predict_mtmct(FLAGS.mtmct_dir, mtmct_cfg)
else:
# predict from image
if FLAGS.image_dir is None and FLAGS.image_file is not None:
assert FLAGS.batch_size == 1, "--batch_size should be 1 in MOT models."
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
seq_name = FLAGS.image_dir.split('/')[-1]
detector.predict_image(
img_list, FLAGS.run_benchmark, repeats=10, seq_name=seq_name)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
else:
mode = FLAGS.run_mode
model_dir = FLAGS.model_dir
model_info = {
'model_name': model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(detector, img_list, model_info, name='MOT')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU'
], "device should be CPU, GPU or XPU"
main()