forked from clovaai/donut
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainv2.py
executable file
·200 lines (169 loc) · 6.4 KB
/
trainv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import datetime
import os
from logging import Logger
from os.path import basename
from pathlib import Path
from typing import Any, Dict, List, Optional
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
from pytorch_lightning.plugins import CheckpointIO
from pytorch_lightning.utilities import rank_zero_only
from tap import Tap
from config import Config
from donut import DonutDataset
from donut.dataset import DonutDatasetV2
from lightning_module import DonutDataPLModule, DonutModelPLModule
from lightning_fabric.utilities.types import _PATH
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
class CustomCheckpointIO(CheckpointIO):
def save_checkpoint(
self,
checkpoint: Dict[str, Any],
path: _PATH,
storage_options: Optional[Any] = None,
):
del checkpoint["state_dict"]
torch.save(checkpoint, path)
def load_checkpoint(self, path: _PATH, map_location: Optional[Any] = None):
checkpoint = torch.load(path + "artifacts.ckpt")
state_dict = torch.load(path + "pytorch_model.bin")
checkpoint["state_dict"] = {
"model." + key: value for key, value in state_dict.items()
}
return checkpoint
def remove_checkpoint(self, path: _PATH) -> None:
return super().remove_checkpoint(path)
@rank_zero_only
def save_config_file(config: Config, path: str) -> None:
if not Path(path).exists():
os.makedirs(path)
save_path = Path(path) / "config.yaml"
print(config.dumps())
with open(save_path, "w") as f:
f.write(config.dumps())
print(f"Config is saved at {save_path}")
def prepare_datasets(model_module: DonutModelPLModule, data_module: DonutDataPLModule):
# add datasets to data_module
datasets = {"train": [], "validation": []}
for i, dataset_name_or_path in enumerate(config.dataset_name_or_paths):
task_name = os.path.basename(
dataset_name_or_path
) # e.g., cord-v2, docvqa, rvlcdip, ...
task_start_token = (
config.task_start_tokens[i]
if config.get("task_start_tokens", None)
else f"<s_{task_name}>"
)
prompt_end_token = (
"<s_answer>" if "docvqa" in dataset_name_or_path else task_start_token
)
for split in ["train", "validation"]:
max_samples = (
config.train_max_samples
if split == "train"
else config.validation_max_samples
)
data_augmentation = split == "train" and config.data_augmentation
datasets[split].append(
DonutDatasetV2(
dataset_name_or_path=dataset_name_or_path,
donut_model=model_module.model,
max_length=config.max_length,
split=split,
task_start_token=task_start_token,
prompt_end_token=prompt_end_token,
sort_json_key=config.sort_json_key,
preload=config.preload,
debug_mode=config.debug_mode,
max_samples=max_samples,
data_augmentation=data_augmentation,
)
)
# prompt_end_token is used for ignoring a given prompt in a loss function
# for docvqa task, i.e., {"question": {used as a prompt}, "answer": {prediction target}},
# set prompt_end_token to "<s_answer>"
data_module.train_datasets = datasets["train"]
data_module.val_datasets = datasets["validation"]
def train(config: Config):
# pl.utilities.seed.seed_everything(config.get("seed", 42), workers=True)
model_module = DonutModelPLModule(config)
data_module = DonutDataPLModule(config)
prepare_datasets(model_module, data_module)
print("Num. tokens", len(model_module.model.decoder.tokenizer))
loggers: List[Logger] = []
tb_logger = TensorBoardLogger(
save_dir=config.result_path,
name=config.exp_name,
version=config.exp_version,
default_hp_metric=False,
)
loggers.append(tb_logger)
if config.get("wandb", False):
wb_logger = WandbLogger(
project=config.exp_name,
name=config.exp_version,
save_dir=config.result_path,
config=config.asdict(),
log_model=True,
)
loggers.append(wb_logger)
lr_callback = LearningRateMonitor(logging_interval="step")
checkpoint_callback = ModelCheckpoint(
monitor="val_metric",
dirpath=Path(config.result_path) / config.exp_name / config.exp_version,
filename="artifacts",
save_top_k=2,
save_last=True,
mode="min",
)
custom_ckpt = CustomCheckpointIO()
trainer = pl.Trainer(
# resume_from_checkpoint=config.get("resume_from_checkpoint_path", None),
strategy="ddp_find_unused_parameters_true",
accelerator="gpu",
plugins=custom_ckpt,
max_epochs=config.max_epochs,
max_steps=config.max_steps,
devices=config.devices,
val_check_interval=config.val_check_interval,
check_val_every_n_epoch=config.check_val_every_n_epoch,
gradient_clip_val=config.gradient_clip_val,
precision=16,
num_sanity_val_steps=0,
logger=loggers,
accumulate_grad_batches=config.accumulate_grad_batches,
callbacks=[lr_callback, checkpoint_callback],
)
trainer.fit(model_module, data_module)
class ArgumentParser(Tap):
config: str
exp_version: Optional[str] = None
if __name__ == "__main__":
parser = ArgumentParser()
args, left_argv = parser.parse_known_args()
args: ArgumentParser
config = Config(args.config)
config.argv_update(left_argv)
config.exp_name = os.path.splitext(basename(args.config))[0]
config.exp_version = (
datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
if not args.exp_version
else args.exp_version
)
assert (
len(config.dataset_name_or_paths)
== len(config.splits)
== len(config.task_start_tokens)
)
save_config_file(
config, Path(config.result_path) / config.exp_name / config.exp_version
)
train(config)