-
Notifications
You must be signed in to change notification settings - Fork 0
/
voting.py
155 lines (138 loc) · 5.57 KB
/
voting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from sklearn.metrics import classification_report, f1_score
from data_utils import DataProcessor
from sklearn.model_selection import train_test_split
from assess import sentiment_f1_score
from constant import *
import pickle
import argparse
import numpy as np
import json
import os
from itertools import combinations
from collections import Counter
class Voting(object):
def __init__(self, args):
self.args = args
self.X_train_dir = args.X_train_dir
# self.data_dir = args.data_dir
self.X_test_dir = args.X_test_dir
def load_y_train(self):
args = self.args
processor = DataProcessor(args)
all_train_examples = processor.get_train_examples()
all_train_labels = processor.get_train_labels()
train_examples, dev_examples, _, _ = train_test_split(all_train_examples, all_train_labels,
random_state=233)
# dev_labels = [example.labels for example in dev_examples]
label_list = processor.get_labels()
label_map = {label: i for i, label in enumerate(label_list)}
def convert_labels_to_id(labels):
label_ids = [0] * 8
for l in labels:
label_ids[label_map[l]] = 1
return label_ids
targets = []
for example in dev_examples:
target = convert_labels_to_id(example.labels)
targets.append(target)
# targets = [label_map[example.label] for example in train_examples]
return np.array(targets)
def load_X_train(self, path):
path = os.path.join(path, 'oof_train')
with open(path, 'rb') as f:
data = pickle.load(f)
return data
def load_X_test(self, path):
path = os.path.join(path, 'oof_test')
with open(path, 'rb') as f:
data = pickle.load(f)
return data
def filter_path(self, paths):
filter_names = ['new_model']
result_paths = []
# for path in paths:
# if not any(fn in path for fn in filter_names):
# result_paths.append(path)
for path in paths:
if any(fn in path for fn in filter_names):
result_paths.append(path)
result_paths = [
# 'new_model1',
# 'new_model2',
# 'new_model3',
# 'new_model4',
'new_model5',
# 'new_model6',
'baseline',
]
return result_paths
def load_data(self):
self.y_train = self.load_y_train()
self.labels = LABEL_LIST
self.n_classes = len(self.labels)
pathes = os.listdir(self.X_train_dir)
pathes = self.filter_path(pathes)
self.X_train = np.zeros((len(self.y_train), self.n_classes))
for i, path in enumerate(pathes):
try:
self.X_train[:, :] += self.load_X_train(os.path.join(self.X_train_dir, path))
except:
print(path)
self.X_train = self.X_train/len(pathes)
# pathes = os.listdir(self.X_test_dir)
# pathes = self.filter_path(pathes)
n_test = len(self.load_X_test(os.path.join(self.X_test_dir,pathes[0])))
n_train = len(self.y_train)
self.X_test = np.zeros((n_test, self.n_classes))
for i, path in enumerate(pathes):
self.X_test[:, :] += self.load_X_test(os.path.join(self.X_train_dir, path))
self.X_test = self.X_test/len(pathes)
self.X_train = self.X_train.reshape(n_train, -1)
self.X_test = self.X_test.reshape(n_test, -1)
def get_result(self, preds, reals):
f_score = sentiment_f1_score(y_true=reals, y_pred=preds, average='macro')
return f_score
def stack(self, reload=True):
if reload:
self.load_data()
pred_labels = (self.X_train > 0.46).astype(np.int)
# for i, p in enumerate(pred_labels):
# if np.sum(p) == 0:
# j = np.argmax(p)
# pred_labels[i, j] = 1
real_labels = self.y_train
f_score = self.get_result(pred_labels, real_labels)
return f_score
def predict(self):
print(self.X_test.shape)
preds = (self.X_test > 0.46).astype(np.int)
return preds
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# mode = 'virus'
parser.add_argument('--X_train_dir', type=str, default='sentiment_model',
help='模型的预测输出位置,应为一个examples nums * class nums的矩阵')
parser.add_argument('--data_dir', type=str, default='data/no_split_word',
help='模型的真实数据,包含句子的真正标签')
parser.add_argument('--X_test_dir', type=str, default='sentiment_model',
help='模型的test数据,生成的oof_test')
parser.add_argument('--output_dir', type=str, default='voting_results',
help='输出的目录')
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
st = Voting(args)
st.load_data()
f_score = st.stack()
print(f_score)
preds = st.predict()
preds = preds.tolist()
label_list = LABEL_LIST
label_map = {label:id for id, label in enumerate(label_list)}
import csv
with open(os.path.join(args.output_dir, 'submit2.csv'), 'w', encoding='utf-8') as fw:
writer = csv.writer(fw)
writer.writerow(["ID", "Labels"])
for id, label in enumerate(preds):
labels = [RAW_LABEL_LIST[i] for i, l in enumerate(label) if l != 0]
writer.writerow([id, labels])