-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogs.log
8924 lines (8918 loc) · 659 KB
/
logs.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2021-06-21 22:53:38,724:INFO:PyCaret Supervised Module
2021-06-21 22:53:38,725:INFO:ML Usecase: regression
2021-06-21 22:53:38,725:INFO:version 2.3.1
2021-06-21 22:53:38,725:INFO:Initializing setup()
2021-06-21 22:53:38,725:INFO:setup(target=0 1015.0
1 205.0
2 1064.0
3 730.0
4 553.0
5 415.0
6 1804.0
7 700.0
8 301.0
9 820.0
10 234.0
11 841.0
12 226.0
13 75.0
14 73.0
15 359.0
16 62.0
17 159.0
18 63.0
19 91.0
20 179.0
21 671.0
22 133.0
23 386.0
24 266.0
25 98.0
26 131.0
27 78.0
28 316.0
29 108.0
30 116.0
31 649.0
32 254.0
33 129.0
34 70.0
35 236.0
36 510.0
37 253.0
38 127.0
39 132.0
40 313.0
41 382.0
42 364.0
43 94.0
44 189.0
45 873.0
46 359.0
47 172.0
48 498.0
49 149.0
50 31.0
51 125.0
52 177.0
53 90.0
54 302.0
55 496.0
56 236.0
57 839.0
58 96.0
59 235.0
60 359.0
61 120.0
62 60.0
63 65.0
64 135.0
65 376.0
66 93.0
67 209.0
68 204.0
69 86.0
70 19.0
71 62.0
72 430.0
73 1001.0
74 334.0
75 616.0
76 548.0
77 220.0
78 451.0
79 47.0
80 799.0
81 708.0
82 739.0
83 374.0
84 557.0
85 579.0
86 1101.0
87 762.0
88 795.0
89 995.0
90 288.0
91 960.0
92 311.0
93 648.0
94 861.0
95 521.0
96 562.0
97 422.0
98 344.0
99 596.0
100 701.0
101 1117.0
102 297.0
103 1665.0
104 248.0
105 457.0
106 910.0
107 826.0
108 328.0
109 525.0
110 690.0
111 713.0
112 1019.0
113 810.0
114 148.0
115 609.0
116 585.0
117 1162.0
118 318.0
119 761.0
120 572.0
121 979.0
122 1306.0
123 1398.0
124 442.0
125 422.0
126 441.0
127 700.0
128 340.0
129 503.0
130 718.0
131 1159.0
132 373.0
133 1087.0
134 808.0
135 305.0
136 401.0
137 465.0
138 402.0
139 669.0
140 554.0
141 460.0
142 548.0
143 398.0
144 620.0
145 382.0
146 413.0
147 520.0
148 488.0
149 832.0
150 1158.0
151 745.0
152 831.0
153 413.0
154 487.0
155 408.0
156 446.0
157 1150.0
158 840.0
159 709.0
160 480.0
161 505.0
162 449.0
163 1010.0
164 296.0
165 308.0
166 349.0
167 657.0
168 505.0
169 294.0
170 1145.0
171 257.0
172 321.0
173 450.0
174 845.0
175 643.0
176 752.0
177 735.0
178 639.0
179 902.0
180 632.0
181 125.0
182 282.0
183 1279.0
184 782.0
185 375.0
186 438.0
187 540.0
188 226.0
189 302.0
190 156.0
191 730.0
192 417.0
193 505.0
194 1077.0
195 757.0
196 754.0
197 815.0
198 268.0
199 362.0
200 504.0
201 281.0
202 521.0
203 552.0
204 246.0
205 347.0
206 272.0
207 293.0
208 254.0
209 842.0
210 484.0
211 585.0
212 244.0
213 258.0
214 271.0
215 311.0
216 327.0
217 207.0
218 683.0
219 670.0
220 570.0
221 324.0
222 553.0
223 590.0
224 638.0
225 495.0
226 528.0
227 383.0
228 284.0
229 723.0
230 333.0
231 610.0
232 481.0
233 594.0
234 509.0
235 500.0
236 512.0
237 901.0
238 934.0
239 496.0
240 398.0
241 481.0
242 557.0
243 1284.0
244 475.0
245 435.0
246 945.0
247 1044.0
248 375.0
249 1023.0
250 1350.0
251 284.0
252 823.0
253 793.0
254 587.0
255 353.0
256 479.0
257 614.0
258 1101.0
259 652.0
260 509.0
261 437.0
262 163.0
263 589.0
264 403.0
265 22.0
266 322.0
267 566.0
268 277.0
269 822.0
270 770.0
271 345.0
272 1090.0
273 951.0
274 1595.0
275 410.0
276 549.0
277 166.0
278 647.0
279 793.0
280 1084.0
281 682.0
282 645.0
283 733.0
284 262.0
285 365.0
286 950.0
287 244.0
288 343.0
289 613.0
290 561.0
291 899.0
292 957.0
293 412.0
294 979.0
295 1709.0
296 881.0
297 1595.0
298 309.0
299 55.0
300 442.0
301 551.0
302 1240.0
303 886.0
304 713.0
305 606.0
306 870.0
307 410.0
308 800.0
309 420.0
310 505.0
311 752.0
312 630.0
313 982.0
314 652.0
315 451.0
316 821.0
317 255.0
318 855.0
319 625.0
320 1653.0
321 2315.0
322 498.0
323 787.0
324 1668.0
325 207.0
326 579.0
327 359.0
328 330.0
329 217.0
330 763.0
331 572.0
332 922.0
333 526.0
334 1246.0
335 228.0
336 1730.0
337 712.0
338 780.0
339 1200.0
340 202.0
341 979.0
342 946.0
343 1832.0
344 508.0
345 763.0
346 326.0
347 404.0
348 336.0
349 555.0
350 417.0
351 1255.0
352 2550.0
353 751.0
354 243.0
355 586.0
356 924.0
357 600.0
358 1153.0
359 164.0
360 783.0
361 1044.0
362 719.0
363 220.0
364 887.0
365 616.0
366 559.0
367 416.0
368 701.0
369 1983.0
370 1896.0
371 780.0
372 1359.0
373 646.0
374 1433.0
375 854.0
376 1378.0
377 345.0
378 995.0
379 205.0
380 509.0
381 588.0
382 396.0
383 693.0
384 155.0
385 133.0
386 78.0
387 568.0
388 358.0
389 123.0
390 148.0
391 1524.0
392 713.0
393 124.0
394 1400.0
395 609.0
396 196.0
397 189.0
398 98.0
399 13.0
400 165.0
401 507.0
402 444.0
403 448.0
404 921.0
405 1374.0
406 266.0
407 59.0
408 159.0
409 267.0
410 130.0
411 419.0
412 505.0
413 396.0
414 280.0
415 744.0
416 619.0
417 1204.0
418 57.0
419 246.0
420 19.0
421 16.0
422 146.0
Name: 등록차량수, dtype: float64, ml_usecase=regression, available_plots={'parameter': 'Hyperparameters', 'residuals': 'Residuals', 'error': 'Prediction Error', 'cooks': 'Cooks Distance', 'rfe': 'Feature Selection', 'learning': 'Learning Curve', 'manifold': 'Manifold Learning', 'vc': 'Validation Curve', 'feature': 'Feature Importance', 'feature_all': 'Feature Importance (All)', 'tree': 'Decision Tree', 'residuals_interactive': 'Interactive Residuals'}, train_size=0.7, test_data=None, preprocess=True, imputation_type=simple, iterative_imputation_iters=5, categorical_features=[], categorical_imputation=constant, categorical_iterative_imputer=lightgbm, ordinal_features=None, high_cardinality_features=None, high_cardinality_method=frequency, numeric_features=None, numeric_imputation=mean, numeric_iterative_imputer=lightgbm, date_features=None, ignore_features=None, normalize=True, normalize_method=zscore, transformation=False, transformation_method=yeo-johnson, handle_unknown_categorical=True, unknown_categorical_method=least_frequent, pca=False, pca_method=linear, pca_components=None, ignore_low_variance=True, combine_rare_levels=False, rare_level_threshold=0.1, bin_numeric_features=None, remove_outliers=False, outliers_threshold=0.05, remove_multicollinearity=True, multicollinearity_threshold=0.9, remove_perfect_collinearity=True, create_clusters=False, cluster_iter=20, polynomial_features=False, polynomial_degree=2, trigonometry_features=False, polynomial_threshold=0.1, group_features=None, group_names=None, feature_selection=True, feature_selection_threshold=0.8, feature_selection_method=classic, feature_interaction=False, feature_ratio=False, interaction_threshold=0.01, fix_imbalance=False, fix_imbalance_method=None, transform_target=False, transform_target_method=box-cox, data_split_shuffle=True, data_split_stratify=True, fold_strategy=stratifiedkfold, fold=5, fold_shuffle=True, fold_groups=None, n_jobs=-1, use_gpu=False, custom_pipeline=None, html=True, session_id=42, log_experiment=False, experiment_name=None, log_plots=False, log_profile=False, log_data=False, silent=False, verbose=True, profile=False, profile_kwargs=None, display=None)
2021-06-21 22:53:38,725:INFO:Checking environment
2021-06-21 22:53:38,725:INFO:python_version: 3.8.0
2021-06-21 22:53:38,725:INFO:python_build: ('default', 'Nov 6 2019 16:00:02')
2021-06-21 22:53:38,726:INFO:machine: AMD64
2021-06-21 22:53:38,726:INFO:platform: Windows-10-10.0.19041-SP0
2021-06-21 22:53:38,726:INFO:Memory: svmem(total=34266161152, available=20596195328, percent=39.9, used=13669965824, free=20596195328)
2021-06-21 22:53:38,726:INFO:Physical Core: 12
2021-06-21 22:53:38,726:INFO:Logical Core: 24
2021-06-21 22:53:38,726:INFO:Checking libraries
2021-06-21 22:53:38,726:INFO:pd==1.2.4
2021-06-21 22:53:38,726:INFO:numpy==1.19.5
2021-06-21 22:53:38,726:INFO:sklearn==0.23.2
2021-06-21 22:53:38,726:INFO:lightgbm==3.2.0
2021-06-21 22:53:38,726:INFO:catboost==0.25
2021-06-21 22:53:40,779:INFO:xgboost==1.3.3
2021-06-21 22:53:41,336:INFO:mlflow==1.17.0
2021-06-21 22:53:41,336:INFO:Checking Exceptions
2021-06-21 23:10:58,487:INFO:PyCaret Supervised Module
2021-06-21 23:10:58,488:INFO:ML Usecase: regression
2021-06-21 23:10:58,488:INFO:version 2.3.1
2021-06-21 23:10:58,488:INFO:Initializing setup()
2021-06-21 23:10:58,488:INFO:setup(target=0 1015.0
1 205.0
2 1064.0
3 730.0
4 553.0
5 415.0
6 1804.0
7 700.0
8 301.0
9 820.0
10 234.0
11 841.0
12 226.0
13 75.0
14 73.0
15 359.0
16 62.0
17 159.0
18 63.0
19 91.0
20 179.0
21 671.0
22 133.0
23 386.0
24 266.0
25 98.0
26 131.0
27 78.0
28 316.0
29 108.0
30 116.0
31 649.0
32 254.0
33 129.0
34 70.0
35 236.0
36 510.0
37 253.0
38 127.0
39 132.0
40 313.0
41 382.0
42 364.0
43 94.0
44 189.0
45 873.0
46 359.0
47 172.0
48 498.0
49 149.0
50 31.0
51 125.0
52 177.0
53 90.0
54 302.0
55 496.0
56 236.0
57 839.0
58 96.0
59 235.0
60 359.0
61 120.0
62 60.0
63 65.0
64 135.0
65 376.0
66 93.0
67 209.0
68 204.0
69 86.0
70 19.0
71 62.0
72 430.0
73 1001.0
74 334.0
75 616.0
76 548.0
77 220.0
78 451.0
79 47.0
80 799.0
81 708.0
82 739.0
83 374.0
84 557.0
85 579.0
86 1101.0
87 762.0
88 795.0
89 995.0
90 288.0
91 960.0
92 311.0
93 648.0
94 861.0
95 521.0
96 562.0
97 422.0
98 344.0
99 596.0
100 701.0
101 1117.0
102 297.0
103 1665.0
104 248.0
105 457.0
106 910.0
107 826.0
108 328.0
109 525.0
110 690.0
111 713.0
112 1019.0
113 810.0
114 148.0
115 609.0
116 585.0
117 1162.0
118 318.0
119 761.0
120 572.0
121 979.0
122 1306.0
123 1398.0
124 442.0
125 422.0
126 441.0
127 700.0
128 340.0
129 503.0
130 718.0
131 1159.0
132 373.0
133 1087.0
134 808.0
135 305.0
136 401.0
137 465.0
138 402.0
139 669.0
140 554.0
141 460.0
142 548.0
143 398.0
144 620.0
145 382.0
146 413.0
147 520.0
148 488.0
149 832.0
150 1158.0
151 745.0
152 831.0
153 413.0
154 487.0
155 408.0
156 446.0
157 1150.0
158 840.0
159 709.0
160 480.0
161 505.0
162 449.0
163 1010.0
164 296.0
165 308.0
166 349.0
167 657.0
168 505.0
169 294.0
170 1145.0
171 257.0
172 321.0
173 450.0
174 845.0
175 643.0
176 752.0
177 735.0
178 639.0
179 902.0
180 632.0
181 125.0
182 282.0
183 1279.0
184 782.0
185 375.0
186 438.0
187 540.0
188 226.0
189 302.0
190 156.0
191 730.0
192 417.0
193 505.0
194 1077.0
195 757.0
196 754.0
197 815.0
198 268.0
199 362.0
200 504.0
201 281.0
202 521.0
203 552.0
204 246.0
205 347.0
206 272.0
207 293.0
208 254.0
209 842.0
210 484.0
211 585.0
212 244.0
213 258.0
214 271.0
215 311.0
216 327.0
217 207.0
218 683.0
219 670.0
220 570.0
221 324.0
222 553.0
223 590.0
224 638.0
225 495.0
226 528.0
227 383.0
228 284.0
229 723.0
230 333.0
231 610.0
232 481.0
233 594.0
234 509.0
235 500.0
236 512.0
237 901.0
238 934.0
239 496.0
240 398.0
241 481.0
242 557.0
243 1284.0
244 475.0
245 435.0
246 945.0
247 1044.0
248 375.0
249 1023.0
250 1350.0
251 284.0
252 823.0
253 793.0
254 587.0
255 353.0
256 479.0
257 614.0
258 1101.0
259 652.0
260 509.0
261 437.0
262 163.0
263 589.0
264 403.0
265 22.0
266 322.0
267 566.0
268 277.0
269 822.0
270 770.0
271 345.0
272 1090.0
273 951.0
274 1595.0
275 410.0
276 549.0
277 166.0
278 647.0
279 793.0
280 1084.0
281 682.0
282 645.0
283 733.0
284 262.0
285 365.0
286 950.0
287 244.0
288 343.0
289 613.0
290 561.0
291 899.0
292 957.0
293 412.0
294 979.0
295 1709.0
296 881.0
297 1595.0
298 309.0
299 55.0
300 442.0
301 551.0
302 1240.0
303 886.0
304 713.0
305 606.0
306 870.0
307 410.0
308 800.0
309 420.0
310 505.0
311 752.0
312 630.0
313 982.0
314 652.0
315 451.0
316 821.0
317 255.0
318 855.0
319 625.0
320 1653.0
321 2315.0
322 498.0
323 787.0
324 1668.0
325 207.0
326 579.0
327 359.0
328 330.0
329 217.0
330 763.0
331 572.0
332 922.0
333 526.0
334 1246.0
335 228.0
336 1730.0
337 712.0
338 780.0
339 1200.0
340 202.0
341 979.0
342 946.0
343 1832.0
344 508.0
345 763.0
346 326.0
347 404.0
348 336.0
349 555.0
350 417.0
351 1255.0
352 2550.0
353 751.0
354 243.0
355 586.0
356 924.0
357 600.0
358 1153.0
359 164.0
360 783.0
361 1044.0
362 719.0
363 220.0
364 887.0
365 616.0
366 559.0
367 416.0
368 701.0
369 1983.0
370 1896.0
371 780.0
372 1359.0
373 646.0
374 1433.0
375 854.0
376 1378.0
377 345.0
378 995.0
379 205.0
380 509.0
381 588.0
382 396.0
383 693.0
384 155.0
385 133.0
386 78.0
387 568.0
388 358.0
389 123.0
390 148.0
391 1524.0
392 713.0
393 124.0
394 1400.0
395 609.0
396 196.0
397 189.0
398 98.0
399 13.0
400 165.0
401 507.0
402 444.0
403 448.0
404 921.0
405 1374.0
406 266.0
407 59.0
408 159.0
409 267.0
410 130.0
411 419.0
412 505.0
413 396.0
414 280.0
415 744.0
416 619.0
417 1204.0
418 57.0
419 246.0
420 19.0
421 16.0
422 146.0
Name: 등록차량수, dtype: float64, ml_usecase=regression, available_plots={'parameter': 'Hyperparameters', 'residuals': 'Residuals', 'error': 'Prediction Error', 'cooks': 'Cooks Distance', 'rfe': 'Feature Selection', 'learning': 'Learning Curve', 'manifold': 'Manifold Learning', 'vc': 'Validation Curve', 'feature': 'Feature Importance', 'feature_all': 'Feature Importance (All)', 'tree': 'Decision Tree', 'residuals_interactive': 'Interactive Residuals'}, train_size=0.8, test_data=None, preprocess=True, imputation_type=simple, iterative_imputation_iters=5, categorical_features=None, categorical_imputation=constant, categorical_iterative_imputer=lightgbm, ordinal_features=None, high_cardinality_features=None, high_cardinality_method=frequency, numeric_features=None, numeric_imputation=mean, numeric_iterative_imputer=lightgbm, date_features=None, ignore_features=None, normalize=True, normalize_method=minmax, transformation=False, transformation_method=yeo-johnson, handle_unknown_categorical=True, unknown_categorical_method=least_frequent, pca=False, pca_method=linear, pca_components=None, ignore_low_variance=True, combine_rare_levels=False, rare_level_threshold=0.1, bin_numeric_features=None, remove_outliers=False, outliers_threshold=0.05, remove_multicollinearity=True, multicollinearity_threshold=0.9, remove_perfect_collinearity=True, create_clusters=False, cluster_iter=20, polynomial_features=False, polynomial_degree=2, trigonometry_features=False, polynomial_threshold=0.1, group_features=None, group_names=None, feature_selection=True, feature_selection_threshold=0.8, feature_selection_method=classic, feature_interaction=False, feature_ratio=False, interaction_threshold=0.01, fix_imbalance=False, fix_imbalance_method=None, transform_target=False, transform_target_method=box-cox, data_split_shuffle=True, data_split_stratify=False, fold_strategy=kfold, fold=10, fold_shuffle=False, fold_groups=None, n_jobs=-1, use_gpu=False, custom_pipeline=None, html=True, session_id=42, log_experiment=False, experiment_name=None, log_plots=False, log_profile=False, log_data=False, silent=False, verbose=True, profile=False, profile_kwargs=None, display=None)
2021-06-21 23:10:58,488:INFO:Checking environment
2021-06-21 23:10:58,489:INFO:python_version: 3.8.0
2021-06-21 23:10:58,489:INFO:python_build: ('default', 'Nov 6 2019 16:00:02')
2021-06-21 23:10:58,489:INFO:machine: AMD64
2021-06-21 23:10:58,489:INFO:platform: Windows-10-10.0.19041-SP0
2021-06-21 23:10:58,489:INFO:Memory: svmem(total=34266161152, available=20545138688, percent=40.0, used=13721022464, free=20545138688)
2021-06-21 23:10:58,489:INFO:Physical Core: 12
2021-06-21 23:10:58,489:INFO:Logical Core: 24
2021-06-21 23:10:58,489:INFO:Checking libraries
2021-06-21 23:10:58,489:INFO:pd==1.2.4
2021-06-21 23:10:58,489:INFO:numpy==1.19.5
2021-06-21 23:10:58,489:INFO:sklearn==0.23.2
2021-06-21 23:10:58,489:INFO:lightgbm==3.2.0
2021-06-21 23:10:58,489:INFO:catboost==0.25
2021-06-21 23:10:58,489:INFO:xgboost==1.3.3
2021-06-21 23:10:58,489:INFO:mlflow==1.17.0
2021-06-21 23:10:58,489:INFO:Checking Exceptions
2021-06-21 23:11:49,618:INFO:PyCaret Supervised Module
2021-06-21 23:11:49,618:INFO:ML Usecase: regression
2021-06-21 23:11:49,618:INFO:version 2.3.1
2021-06-21 23:11:49,618:INFO:Initializing setup()
2021-06-21 23:11:49,618:INFO:setup(target=등록차량수, ml_usecase=regression, available_plots={'parameter': 'Hyperparameters', 'residuals': 'Residuals', 'error': 'Prediction Error', 'cooks': 'Cooks Distance', 'rfe': 'Feature Selection', 'learning': 'Learning Curve', 'manifold': 'Manifold Learning', 'vc': 'Validation Curve', 'feature': 'Feature Importance', 'feature_all': 'Feature Importance (All)', 'tree': 'Decision Tree', 'residuals_interactive': 'Interactive Residuals'}, train_size=0.8, test_data=None, preprocess=True, imputation_type=simple, iterative_imputation_iters=5, categorical_features=None, categorical_imputation=constant, categorical_iterative_imputer=lightgbm, ordinal_features=None, high_cardinality_features=None, high_cardinality_method=frequency, numeric_features=None, numeric_imputation=mean, numeric_iterative_imputer=lightgbm, date_features=None, ignore_features=['단지코드'], normalize=True, normalize_method=minmax, transformation=False, transformation_method=yeo-johnson, handle_unknown_categorical=True, unknown_categorical_method=least_frequent, pca=False, pca_method=linear, pca_components=None, ignore_low_variance=True, combine_rare_levels=False, rare_level_threshold=0.1, bin_numeric_features=None, remove_outliers=False, outliers_threshold=0.05, remove_multicollinearity=True, multicollinearity_threshold=0.9, remove_perfect_collinearity=True, create_clusters=False, cluster_iter=20, polynomial_features=False, polynomial_degree=2, trigonometry_features=False, polynomial_threshold=0.1, group_features=None, group_names=None, feature_selection=True, feature_selection_threshold=0.8, feature_selection_method=classic, feature_interaction=False, feature_ratio=False, interaction_threshold=0.01, fix_imbalance=False, fix_imbalance_method=None, transform_target=False, transform_target_method=box-cox, data_split_shuffle=True, data_split_stratify=False, fold_strategy=kfold, fold=10, fold_shuffle=False, fold_groups=None, n_jobs=-1, use_gpu=False, custom_pipeline=None, html=True, session_id=42, log_experiment=False, experiment_name=None, log_plots=False, log_profile=False, log_data=False, silent=False, verbose=True, profile=False, profile_kwargs=None, display=None)
2021-06-21 23:11:49,619:INFO:Checking environment
2021-06-21 23:11:49,619:INFO:python_version: 3.8.0
2021-06-21 23:11:49,619:INFO:python_build: ('default', 'Nov 6 2019 16:00:02')
2021-06-21 23:11:49,619:INFO:machine: AMD64
2021-06-21 23:11:49,619:INFO:platform: Windows-10-10.0.19041-SP0
2021-06-21 23:11:49,619:INFO:Memory: svmem(total=34266161152, available=20534190080, percent=40.1, used=13731971072, free=20534190080)
2021-06-21 23:11:49,619:INFO:Physical Core: 12
2021-06-21 23:11:49,619:INFO:Logical Core: 24
2021-06-21 23:11:49,619:INFO:Checking libraries
2021-06-21 23:11:49,619:INFO:pd==1.2.4
2021-06-21 23:11:49,619:INFO:numpy==1.19.5
2021-06-21 23:11:49,619:INFO:sklearn==0.23.2
2021-06-21 23:11:49,619:INFO:lightgbm==3.2.0
2021-06-21 23:11:49,619:INFO:catboost==0.25
2021-06-21 23:11:49,619:INFO:xgboost==1.3.3
2021-06-21 23:11:49,620:INFO:mlflow==1.17.0
2021-06-21 23:11:49,620:INFO:Checking Exceptions
2021-06-21 23:11:49,620:INFO:Declaring global variables
2021-06-21 23:11:49,620:INFO:USI: 15fa
2021-06-21 23:11:49,620:INFO:pycaret_globals: {'fold_groups_param_full', 'pycaret_globals', 'exp_name_log', 'master_model_container', 'y_test', 'iterative_imputation_iters_param', 'imputation_classifier', 'prep_pipe', 'imputation_regressor', 'fix_imbalance_method_param', 'fold_groups_param', 'display_container', 'fix_imbalance_param', 'USI', 'transform_target_param', 'logging_param', '_ml_usecase', 'gpu_param', '_available_plots', 'data_before_preprocess', 'X_train', 'X_test', '_all_models_internal', '_all_metrics', 'transform_target_method_param', 'fold_generator', 'y', 'html_param', 'target_param', 'y_train', '_internal_pipeline', 'fold_shuffle_param', 'experiment__', '_gpu_n_jobs_param', 'stratify_param', 'create_model_container', 'X', 'n_jobs_param', 'log_plots_param', 'fold_param', '_all_models', 'seed'}
2021-06-21 23:11:49,620:INFO:Preparing display monitor
2021-06-21 23:11:49,620:INFO:Preparing display monitor
2021-06-21 23:11:49,628:INFO:Importing libraries
2021-06-21 23:11:49,628:INFO:Copying data for preprocessing
2021-06-21 23:11:49,633:INFO:Declaring preprocessing parameters
2021-06-21 23:11:49,634:INFO:Creating preprocessing pipeline
2021-06-21 23:11:49,654:INFO:Preprocessing pipeline created successfully
2021-06-21 23:11:49,654:ERROR:(Process Exit): setup has been interupted with user command 'quit'. setup must rerun.
2021-06-21 23:11:49,654:INFO:Creating global containers
2021-06-21 23:11:49,656:INFO:Internal pipeline: Pipeline(memory=None, steps=[('empty_step', 'passthrough')], verbose=False)
2021-06-21 23:12:10,211:INFO:Creating grid variables
2021-06-21 23:12:10,224:INFO:create_model_container: 0
2021-06-21 23:12:10,224:INFO:master_model_container: 0
2021-06-21 23:12:10,224:INFO:display_container: 1
2021-06-21 23:12:10,229:INFO:Pipeline(memory=None,
steps=[('dtypes',
DataTypes_Auto_infer(categorical_features=[],
display_types=True,
features_todrop=['단지코드'], id_columns=[],
ml_usecase='regression',
numerical_features=[], target='등록차량수',
time_features=[])),
('imputer',
Simple_Imputer(categorical_strategy='not_available',
fill_value_categorical=None,
fill_value_numerical=None,
numeric_stra...
Advanced_Feature_Selection_Classic(ml_usecase='regression',
n_jobs=-1, random_state=42,
subclass='binary',
target='등록차량수',
top_features_to_pick=0.19999999999999996)),
('fix_multi',
Fix_multicollinearity(correlation_with_target_preference=None,
correlation_with_target_threshold=0.0,
target_variable='등록차량수',
threshold=0.9)),
('dfs', 'passthrough'), ('pca', 'passthrough')],
verbose=False)
2021-06-21 23:12:10,229:INFO:setup() succesfully completed......................................
2021-06-21 23:13:03,298:INFO:Initializing compare_models()
2021-06-21 23:13:03,298:INFO:compare_models(include=None, fold=None, round=4, cross_validation=True, sort=mse, n_select=1, budget_time=None, turbo=True, errors=ignore, fit_kwargs=None, groups=None, verbose=True, display=None, exclude=['svm', 'ridge'])
2021-06-21 23:13:03,298:INFO:Checking exceptions
2021-06-21 23:13:03,300:INFO:Preparing display monitor
2021-06-21 23:13:03,300:INFO:Preparing display monitor
2021-06-21 23:13:03,318:INFO:Initializing Linear Regression
2021-06-21 23:13:03,318:INFO:Total runtime is 0.0 minutes
2021-06-21 23:13:03,324:INFO:SubProcess create_model() called ==================================
2021-06-21 23:13:03,324:INFO:Initializing create_model()
2021-06-21 23:13:03,324:INFO:create_model(estimator=lr, fold=KFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, verbose=False, system=False, metrics=None, display=<pycaret.internal.Display.Display object at 0x00000204FF0A66A0>, kwargs={})
2021-06-21 23:13:03,324:INFO:Checking exceptions
2021-06-21 23:13:03,324:INFO:Importing libraries
2021-06-21 23:13:03,324:INFO:Copying training dataset
2021-06-21 23:13:03,325:INFO:Defining folds
2021-06-21 23:13:03,325:INFO:Declaring metric variables
2021-06-21 23:13:03,330:INFO:Importing untrained model
2021-06-21 23:13:03,335:INFO:Linear Regression Imported succesfully
2021-06-21 23:13:03,346:INFO:Starting cross validation
2021-06-21 23:13:03,352:INFO:Cross validating with KFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
2021-06-21 23:13:08,370:INFO:Calculating mean and std
2021-06-21 23:13:08,370:INFO:Creating metrics dataframe
2021-06-21 23:13:08,373:INFO:Uploading results into container
2021-06-21 23:13:08,374:INFO:Uploading model into container now
2021-06-21 23:13:08,374:INFO:create_model_container: 1
2021-06-21 23:13:08,374:INFO:master_model_container: 1
2021-06-21 23:13:08,374:INFO:display_container: 2
2021-06-21 23:13:08,374:INFO:LinearRegression(copy_X=True, fit_intercept=True, n_jobs=-1, normalize=False)
2021-06-21 23:13:08,374:INFO:create_model() succesfully completed......................................
2021-06-21 23:13:08,484:INFO:SubProcess create_model() end ==================================
2021-06-21 23:13:08,484:INFO:Creating metrics dataframe
2021-06-21 23:13:08,494:INFO:Initializing Lasso Regression
2021-06-21 23:13:08,494:INFO:Total runtime is 0.08626201947530111 minutes
2021-06-21 23:13:08,500:INFO:SubProcess create_model() called ==================================
2021-06-21 23:13:08,500:INFO:Initializing create_model()
2021-06-21 23:13:08,500:INFO:create_model(estimator=lasso, fold=KFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, verbose=False, system=False, metrics=None, display=<pycaret.internal.Display.Display object at 0x00000204FF0A66A0>, kwargs={})
2021-06-21 23:13:08,500:INFO:Checking exceptions
2021-06-21 23:13:08,500:INFO:Importing libraries
2021-06-21 23:13:08,500:INFO:Copying training dataset
2021-06-21 23:13:08,501:INFO:Defining folds
2021-06-21 23:13:08,501:INFO:Declaring metric variables
2021-06-21 23:13:08,506:INFO:Importing untrained model
2021-06-21 23:13:08,511:INFO:Lasso Regression Imported succesfully
2021-06-21 23:13:08,522:INFO:Starting cross validation
2021-06-21 23:13:08,523:INFO:Cross validating with KFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
2021-06-21 23:13:12,475:INFO:Calculating mean and std