-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
426 lines (352 loc) Β· 14.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#!/usr/bin/env python
# coding=utf-8
"""
Training a CLIP like dual encoder models using text and vision encoders in the library.
For more information, refer to: https://github.com/huggingface/transformers/blob/main/examples/pytorch/contrastive-image-text/run_clip.py
"""
import os
import time
import json
import logging
from functools import partial
from dataclasses import dataclass, field
from pathlib import Path
from typing import Callable, Optional
from tqdm import tqdm
import datetime
from accelerate import Accelerator
from accelerate.utils import set_seed
from accelerate.logging import get_logger
import torch
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as T
import transformers
from transformers import (
VisionTextDualEncoderModel,
AutoTokenizer,
HfArgumentParser,
TrainingArguments,
)
from dataset import ImageTextDataset
from const import *
logger = get_logger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune or train from scratch.
"""
text_model_name_or_path: str = field(
metadata={
"help": "The text model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
vision_model_name_or_path: str = field(
metadata={
"help": "The vision model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
from_pt: bool = field(
default=True,
metadata={"help": "Whether to load the text and vision model using PyTorch checkpoints."},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizers (backed by the tokenizers library) or not."},
)
mixed_precision: Optional[str] = field(
default=None,
metadata={
"help": "Floating-point format in which the model weights should be initialized and trained."
"Choose one of `[no, fp16, bf16]`."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."})
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines file)."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "An optional input evaluation data file (a jsonlines file)."}
)
max_seq_length: Optional[int] = field(
default=72,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated; sequences shorter will be padded."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=8, metadata={"help": "The number of processes to use for the preprocessing."}
)
def __post_init__(self):
if self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class CustomTrainingArguments(TrainingArguments):
gradient_accumulation_steps: int = field(
default=1, metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."}
)
def create_learning_rate_fn(
total_train_steps: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], float]:
"""Returns a linear warmup, linear decay learning rate function."""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / max(1, num_warmup_steps)
return max(
0.0, float(total_train_steps - current_step) / max(1, total_train_steps - num_warmup_steps)
)
return lr_lambda
def collate_fn(examples, tokenizer, max_seq_length):
examples = list(filter(lambda x: x is not None, examples))
pixel_values = torch.stack([example[0] for example in examples])
captions = [example[1] for example in examples]
inputs = tokenizer(
captions,
max_length=max_seq_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)
batch = {
"pixel_values": pixel_values,
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
}
return batch
def collate_fn_eval(batch, tokenizer, classes, class_mapping):
images = torch.stack([item[0] for item in batch])
labels = torch.tensor([item[1] for item in batch])
class_inputs = tokenizer(
[f"{class_mapping[c]}μ μ¬μ§" for c in classes],
return_tensors="pt",
padding=True
)
return images, labels, class_inputs
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
accelerator = Accelerator(
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
mixed_precision=model_args.mixed_precision,
)
timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
training_args.output_dir = os.path.join(training_args.output_dir, timestamp)
os.makedirs(training_args.output_dir, exist_ok=True)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
# Set seed for reproducibility
set_seed(training_args.seed)
# Load tokenizer
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
elif model_args.text_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.text_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
tokenizer.save_pretrained(training_args.output_dir)
# Load model
model = VisionTextDualEncoderModel.from_vision_text_pretrained(
model_args.vision_model_name_or_path,
model_args.text_model_name_or_path,
)
# Move model to GPU if available
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
device = accelerator.device
model.to(device, dtype=weight_dtype)
# Initialize transforms
logger.info(f"Resize image ({model.config.vision_config.image_size})")
image_transform = T.Compose([
T.Resize([model.config.vision_config.image_size], interpolation=T.InterpolationMode.BICUBIC),
T.CenterCrop(model.config.vision_config.image_size),
T.ToTensor(),
T.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711)
),
])
# Initialize the image-text datasets
train_dataset = ImageTextDataset(
data_args.data_dir,
data_args.train_file,
transform=image_transform,
)
eval_dataset = ImageTextDataset(
data_args.data_dir,
data_args.validation_file,
transform=image_transform,
)
# Store some constants
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size)
eval_batch_size = int(training_args.per_device_eval_batch_size)
steps_per_epoch = len(train_dataset) // train_batch_size
total_train_steps = steps_per_epoch * num_epochs
collate_fn_with_args = partial(collate_fn, tokenizer=tokenizer, max_seq_length=data_args.max_seq_length)
train_loader = DataLoader(
train_dataset,
batch_size=train_batch_size,
num_workers=data_args.preprocessing_num_workers,
drop_last=True,
collate_fn=collate_fn_with_args,
shuffle=True,
)
eval_loader = DataLoader(
eval_dataset,
batch_size=eval_batch_size,
num_workers=data_args.preprocessing_num_workers,
collate_fn=collate_fn_with_args,
shuffle=False,
)
# Create optimizer and scheduler
optimizer = AdamW(
model.parameters(),
lr=training_args.learning_rate,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
)
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=create_learning_rate_fn(
total_train_steps, training_args.warmup_steps, training_args.learning_rate
),
)
model, optimizer, train_loader, eval_loader, lr_scheduler = accelerator.prepare(
model, optimizer, train_loader, eval_loader, lr_scheduler
)
# Training loop
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(f" Total train batch size = {train_batch_size}")
logger.info(f" Total optimization steps = {total_train_steps}")
global_step = 0
train_time = 0
for epoch in range(num_epochs):
model.train()
epoch_loss = 0.0
start_time = time.time()
train_progress_bar = tqdm(train_loader, desc=f"Epoch {epoch + 1}/{num_epochs}", disable=not accelerator.is_local_main_process)
for batch in train_progress_bar:
with accelerator.accumulate(model):
optimizer.zero_grad()
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
pixel_values = batch["pixel_values"].to(device)
outputs = model(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
return_dict=True,
)
logits_per_image = outputs.logits_per_image
logits_per_text = outputs.logits_per_text
ground_truth = torch.arange(len(logits_per_image)).to(device)
loss_i = F.cross_entropy(logits_per_image, ground_truth)
loss_t = F.cross_entropy(logits_per_text, ground_truth)
loss = (loss_i + loss_t) / 2
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
epoch_loss += loss.item()
train_progress_bar.set_postfix({"loss": loss.item()})
global_step += 1
train_time += time.time() - start_time
avg_train_loss = epoch_loss / len(train_loader)
logger.info(f"Epoch {epoch + 1}/{num_epochs} - Train loss: {avg_train_loss:.4f}")
# Evaluation
# model.eval()
# eval_loss = 0.0
# eval_progress_bar = tqdm(eval_loader, desc="Evaluating", disable=not accelerator.is_local_main_process)
# with torch.no_grad():
# for batch in eval_progress_bar:
# input_ids = batch["input_ids"].to(device)
# attention_mask = batch["attention_mask"].to(device)
# pixel_values = batch["pixel_values"].to(device)
# outputs = model(
# input_ids=input_ids,
# pixel_values=pixel_values,
# attention_mask=attention_mask,
# return_dict=True,
# )
# logits_per_image = outputs.logits_per_image
# logits_per_text = outputs.logits_per_text
# ground_truth = torch.arange(len(logits_per_image)).to(device)
# loss_i = F.cross_entropy(logits_per_image, ground_truth)
# loss_t = F.cross_entropy(logits_per_text, ground_truth)
# loss = (loss_i + loss_t) / 2
# eval_loss += loss.item()
# avg_eval_loss = eval_loss / len(eval_loader)
# logger.info(f"Epoch {epoch + 1}/{num_epochs} - Eval loss: {avg_eval_loss:.4f}")
# Save checkpoint
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(f"{training_args.output_dir}", save_function=accelerator.save)
logger.info(f"Model saved to {training_args.output_dir}")
if __name__ == "__main__":
main()