forked from qqueing/DeepSpeaker-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepSpeakerDataset_dynamic.py
106 lines (74 loc) · 3.1 KB
/
DeepSpeakerDataset_dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from __future__ import print_function
import numpy as np
import torch.utils.data as data
def find_classes(voxceleb):
classes = list(set([datum['speaker_id'] for datum in voxceleb]))
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def create_indices(_features):
inds = dict()
for idx, (feature_path,label) in enumerate(_features):
if label not in inds:
inds[label] = []
inds[label].append(feature_path)
return inds
def generate_triplets_call(indices,n_classes):
# Indices = array of labels and each label is an array of indices
#indices = create_indices(features)
c1 = np.random.randint(0, n_classes)
c2 = np.random.randint(0, n_classes)
while len(indices[c1]) < 2:
c1 = np.random.randint(0, n_classes)
while c1 == c2:
c2 = np.random.randint(0, n_classes)
if len(indices[c1]) == 2: # hack to speed up process
n1, n2 = 0, 1
else:
n1 = np.random.randint(0, len(indices[c1]) - 1)
n2 = np.random.randint(0, len(indices[c1]) - 1)
while n1 == n2:
n2 = np.random.randint(0, len(indices[c1]) - 1)
if len(indices[c2]) ==1:
n3 = 0
else:
n3 = np.random.randint(0, len(indices[c2]) - 1)
return ([indices[c1][n1], indices[c1][n2], indices[c2][n3],c1,c2])
class DeepSpeakerDataset(data.Dataset):
def __init__(self, voxceleb, dir, n_triplets,loader, transform=None, *arg, **kw):
print('Looking for audio [wav] files in {}.'.format(dir))
if len(voxceleb) == 0:
raise(RuntimeError(('Have you converted flac files to wav? If not, run audio/convert_flac_2_wav.sh')))
classes, class_to_idx = find_classes(voxceleb)
features = []
for vox_item in voxceleb:
item = (dir +'/voxceleb1_wav/' + vox_item['filename']+'.wav', class_to_idx[vox_item['speaker_id']])
features.append(item)
self.root = dir
#self.features = features
self.classes = classes
self.class_to_idx = class_to_idx
self.transform = transform
self.loader = loader
self.n_triplets = n_triplets
#print('Generating {} triplets'.format(self.n_triplets))
self.indices = create_indices(features)
def __getitem__(self, index):
'''
Args:
index: Index of the triplet or the matches - not of a single feature
Returns:
'''
def transform(feature_path):
"""Convert image into numpy array and apply transformation
Doing this so that it is consistent with all other datasets
"""
feature = self.loader(feature_path)
return self.transform(feature)
# Get the index of each feature in the triplet
a, p, n, c1, c2 = generate_triplets_call(self.indices, len(self.classes))
# transform features if required
feature_a, feature_p, feature_n = transform(a), transform(p), transform(n)
return feature_a, feature_p, feature_n,c1,c2
def __len__(self):
return self.n_triplets