We put datasets out-of-source, as in XMem. You do not need BL30K. The directory structure should look like this:
├── Cutie
├── DAVIS
│ └── 2017
│ ├── test-dev
│ │ ├── Annotations
│ │ └── ...
│ └── trainval
│ ├── Annotations
│ └── ...
├── BURST
│ ├── frames
│ ├── val
│ │ ├── all_classes.json
│ │ └── first_frame_annotations.json
│ ├── train
│ │ └── train.json
│ └── train-vos
│ ├── JEPGImages
│ └── Annotations
├── static
│ ├── BIG_small
│ └── ...
└── YouTube
│ ├── all_frames
│ │ └── valid_all_frames
│ ├── train
│ └── valid
├── OVIS-VOS-train
│ ├── JPEGImages
│ └── Annotations
└── MOSE
├── JPEGImages
└── Annotations
DEVA has a script for downloading some of these datasets: https://github.com/hkchengrex/Tracking-Anything-with-DEVA/blob/main/docs/TRAINING.md.
To generate train-vos
for BURST, use the script scripts/convert_burst_to_vos_train.py
which extracts masks from the JSON file into the DAVIS/YouTubeVOS format for training:
python scripts/convert_burst_to_vos_train.py --json_path ../BURST/train/train.json --frames_path ../BURST/frames/train --output_path ../BURST/train-vos
To generate OVIS-VOS-train, use something like https://github.com/youtubevos/vis2vos or download our preprocessed version from https://drive.google.com/uc?id=1AZPyyqVqOl6j8THgZ1UdNJY9R1VGEFrX.
Links to the datasets:
- DAVIS: https://davischallenge.org/
- YouTubeVOS: https://youtube-vos.org/
- BURST: https://github.com/Ali2500/BURST-benchmark
- MOSE: https://henghuiding.github.io/MOSE/
- LVOS: https://lingyihongfd.github.io/lvos.github.io/
- OVIS: https://songbai.site/ovis/
We trained with four A100 GPUs, which took around 30 hours.
OMP_NUM_THREADS=4 torchrun --master_port 25357 --nproc_per_node=4 train.py exp_id=[some unique id] model=[small/base] data=[base/with-mose/mega]
- Change
nproc_per_node
to change the number of GPUs. - Prepend
CUDA_VISIBLE_DEVICES=...
if you want to use specific GPUs. - Change
master_port
if you encounter port collision. exp_id
is a unique experiment identifier that does not affect how the training is done.- Models and visualizations will be saved in
./output/
. - For pre-training only, specify
main_training.enabled=False
. - For main training only, specify
pre_training.enabled=False
. - To load a pre-trained model, e.g., to continue main training from the final model from pre-training, specify
weights=[path to the model]
.