-
Notifications
You must be signed in to change notification settings - Fork 5
/
caffe_transform.py
140 lines (128 loc) · 4.16 KB
/
caffe_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
from torchvision import transforms
import os
from PIL import Image, ImageOps
import numbers
import torch
class ResizeImage():
def __init__(self, size):
if isinstance(size, int):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img):
th, tw = self.size
return img.resize((th, tw))
class PlaceCrop(object):
"""Crops the given PIL.Image at the particular index.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (w, h), a square crop (size, size) is
made.
"""
def __init__(self, size, start_x, start_y):
if isinstance(size, int):
self.size = (int(size), int(size))
else:
self.size = size
self.start_x = start_x
self.start_y = start_y
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be cropped.
Returns:
PIL.Image: Cropped image.
"""
th, tw = self.size
return img.crop((self.start_x, self.start_y, self.start_x + tw, self.start_y + th))
class ForceFlip(object):
"""Horizontally flip the given PIL.Image randomly with a probability of 0.5."""
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Randomly flipped image.
"""
return img.transpose(Image.FLIP_LEFT_RIGHT)
def transform_train(resize_size=256, crop_size=224):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
return transforms.Compose([
ResizeImage(resize_size),
transforms.RandomResizedCrop(crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
def transform_test(data_transforms=None, resize_size=256, crop_size=224):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
#ten crops for image when validation, input the data_transforms dictionary
start_first = 0
start_center = (resize_size - crop_size - 1) / 2
start_last = resize_size - crop_size - 1
if not data_transforms:
data_transforms = {}
data_transforms['val0'] = transforms.Compose([
ResizeImage(resize_size),ForceFlip(),
PlaceCrop(crop_size, start_first, start_first),
transforms.ToTensor(),
normalize
])
data_transforms['val1'] = transforms.Compose([
ResizeImage(resize_size),ForceFlip(),
PlaceCrop(crop_size, start_last, start_last),
transforms.ToTensor(),
normalize
])
data_transforms['val2'] = transforms.Compose([
ResizeImage(resize_size),ForceFlip(),
PlaceCrop(crop_size, start_last, start_first),
transforms.ToTensor(),
normalize
])
data_transforms['val3'] = transforms.Compose([
ResizeImage(resize_size),ForceFlip(),
PlaceCrop(crop_size, start_first, start_last),
transforms.ToTensor(),
normalize
])
data_transforms['val4'] = transforms.Compose([
ResizeImage(resize_size),ForceFlip(),
PlaceCrop(crop_size, start_center, start_center),
transforms.ToTensor(),
normalize
])
data_transforms['val5'] = transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_first, start_first),
transforms.ToTensor(),
normalize
])
data_transforms['val6'] = transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_last, start_last),
transforms.ToTensor(),
normalize
])
data_transforms['val7'] = transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_last, start_first),
transforms.ToTensor(),
normalize
])
data_transforms['val8'] = transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_first, start_last),
transforms.ToTensor(),
normalize
])
data_transforms['val9'] = transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_center, start_center),
transforms.ToTensor(),
normalize
])
return data_transforms