-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
355 lines (293 loc) · 13.1 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import numpy as np
import traceback
import os
import time
import datetime
import operator
import random
import tensorflow as tf
import pickle
import copy
import json
import Discriminator
from data_helper import encode_sent
import data_helper
# Model Hyperparameters
tf.flags.DEFINE_integer("max_sequence_length", 20, "Max sequence length fo sentence (default: 200)")
tf.flags.DEFINE_integer("embedding_dim", 100, "Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.01, "L2 regularizaion lambda (default: 0.0)")
tf.flags.DEFINE_float("learning_rate", 0.05, "learning_rate (default: 0.1)")
# Training parameters
tf.flags.DEFINE_integer("hidden_size", 50, "Hidden Size (default: 100)")
tf.flags.DEFINE_integer("batch_size", 25, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 10000, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 10, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
FLAGS.flag_values_dict()
timeStamp = time.strftime("%Y%m%d%H%M%S", time.localtime(int(time.time())))
print(("Loading data..."))
vocab = data_helper.build_vocab() # 加载vocab,需修改参数 QA Web 默认是QA
embeddings =data_helper.load_vectors(vocab) #需修改参数 QA Web
alist = data_helper.read_alist("WebAP") # 加载所有例子里的回答
qs=data_helper.qname("WebAP/qeo-train.txt")
number=data_helper.qid("WebAP/qeo-train.txt")
numbertest=data_helper.qid("WebAP/qeo-test.txt")
qstest=data_helper.qname("WebAP/qeo-test.txt")
test1List = data_helper.loadTestSet(dataset="WebAP",filename="term-test")
test2List = data_helper.loadTestSet(dataset="WebAP",filename="term-train")
print("Load done...")
precision = 'WebAP/log/test1.dns' + timeStamp
precision1 ='WebAP/logtrain/train.dns' + timeStamp
loss_precision = 'WebAP/log/qterm.gan_loss' + timeStamp
from functools import wraps
# print( tf.__version__)
def log_time_delta(func):
@wraps(func)
def _deco(*args, **kwargs):
start = time.time()
ret = func(*args, **kwargs)
end = time.time()
delta = end - start
#print("%s runed %.2f seconds" % (func.__name__, delta))
return ret
return _deco
@log_time_delta
def generate_uniform():
samples = []
count=0
for _index,i in enumerate(number):
if i==0:
continue
neg_alist_index = [j for j in range(count,count+i)]
pools=[]
termpools=[]
#items中含有标签 问题长度 问题编号 问题 回答
for z in neg_alist_index:
pools.append(alist[z])
for pool in pools:
termpools.append(pool[4])
termpools=np.array(termpools)
neg_index=[i for i in range(len(pools))]
for indexi,pair in enumerate(pools):
label=pair[0]
if int(label)==int(1):
#print(indexi)
neg_index.remove(indexi)
for pair in pools:
label=pair[0]
#print(pair)
if int(label)==int(1) and len(neg_index) > 0:
qq = pair[3]
aa=pair[4]
pos_len=pair[1]
#print(pos_len)
neg=termpools[neg_index]
neg_samples = np.random.choice(neg, size=1, replace=False)
#print(neg_samples)
for neg in neg_samples:
samples.append([encode_sent(vocab, qq, FLAGS.max_sequence_length),
encode_sent(vocab, aa, FLAGS.max_sequence_length),
encode_sent(vocab, neg, FLAGS.max_sequence_length),
int(pos_len)
])
count=count+i
return samples
@log_time_delta
def test(sess, cnn, testList,merged):
label = []
sum_pair = 0
for i in numbertest:
sum_pair += i
for line in testList:
label_item = int(line[0])
label.append(label_item)
x_test_1, x_test_2, x_test_3 = data_helper.load_val_batch(testList, vocab,0,sum_pair)
feed_dict = {
cnn.input_x_1: x_test_1,
cnn.input_x_2: x_test_2, # x_test_2 equals x_test_3 for the test case
cnn.lengths:x_test_3,
cnn.label : np.array(label)
}
summary,acc = sess.run([merged,cnn.accuracy], feed_dict)
return summary,acc
def dcg_at_k(r, k):
r = np.asfarray(r)[:k]
return np.sum(r / np.log2(np.arange(2, r.size + 2)))
def ndcg_at_k(r, k):
dcg_max = dcg_at_k(sorted(r, reverse=True), k)
if not dcg_max:
return 0.
return dcg_at_k(r, k) / dcg_max
def dev_step(sess, cnn, testList):
ndcg3=[]
ndcg5=[]
ndcg10=[]
ndcg20=[]
sum1=0
for i in numbertest:
queryList=[]
x_test_1, x_test_2, x_test_3 = data_helper.load_val_batch(testList, vocab,sum1,i)
feed_dict = {
cnn.input_x_1: x_test_1,
cnn.input_x_2: x_test_2, # x_test_2 equals x_test_3 for the test case
cnn.lengths:x_test_3
}
predicted = sess.run(cnn.score, feed_dict)
for index,s in enumerate(predicted):
line = testList[sum1+index]
term=line[0]
queryList.append((term, predicted[index]))
sum1+=i
queryList= sorted(queryList, key=lambda x: x[1])
queryList.reverse()
query_sort = [int(x[0]) for x in queryList]
r = []
for j in query_sort:
r.append(j)
ndcg3.append(ndcg_at_k(r, 3))
ndcg5.append(ndcg_at_k(r, 5))
ndcg10.append(ndcg_at_k(r, 10))
ndcg20.append(ndcg_at_k(r, 20))
return sum(ndcg3) * 1.0 / len(ndcg3),sum(ndcg5) * 1.0 / len(ndcg5),sum(ndcg10) * 1.0 / len(ndcg10),sum(ndcg20) * 1.0 / len(ndcg20)
@log_time_delta
def dev_step2(sess, cnn, testList):
ndcg3=[]
ndcg5=[]
ndcg10=[]
ndcg20=[]
sum1=0
for i in number:
queryList=[]
x_test_1, x_test_2, x_test_3 = data_helper.load_val_batch(testList, vocab,sum1,i)
feed_dict = {
cnn.input_x_1: x_test_1,
cnn.input_x_2: x_test_2,# x_test_2 equals x_test_3 for the test case
cnn.lengths:x_test_3
}
predicted = sess.run(cnn.score, feed_dict)
for index,s in enumerate(predicted):
line = testList[sum1+index]
term=line[0]
queryList.append((term, predicted[index]))
sum1+=i
queryList= sorted(queryList, key=lambda x: x[1])
queryList.reverse()
query_sort = [int(x[0]) for x in queryList]
r = []
for j in query_sort:
r.append(j)
ndcg3.append(ndcg_at_k(r, 3))
ndcg5.append(ndcg_at_k(r, 5))
ndcg10.append(ndcg_at_k(r, 10))
ndcg20.append(ndcg_at_k(r, 20))
return sum(ndcg3) * 1.0 / len(ndcg3),sum(ndcg5) * 1.0 / len(ndcg5),sum(ndcg10) * 1.0 / len(ndcg10),sum(ndcg20) * 1.0 / len(ndcg20)
@log_time_delta
def evaluation(sess, model, log, num_epochs=0):
current_step = tf.train.global_step(sess, model.global_step)
if isinstance(model, Discriminator.Discriminator):
model_type = "Dis"
else:
model_type = "Gen"
now=time.time()
local_time=time.localtime(now)
this=str(time.strftime('%Y-%m-%d %H:%M:%S',local_time))
ndcg3,ndcg5,ndcg10,ndcg20 = dev_step(sess, model, test1List)
line = this+" type: %s test1: %d epoch: ndcg3 %f ndcg5 %f ndcg10 %f ndcg20 %f" % (model_type,current_step,ndcg3,ndcg5,ndcg10,ndcg20)
print(line)
#print(model.save_model(sess, ndcg3))
log.write(line + "\n")
log.flush()
def evaluation2(sess, model, log, num_epochs=0):
current_step = tf.train.global_step(sess, model.global_step)
if isinstance(model, Discriminator.Discriminator):
model_type = "Dis"
else:
model_type = "Gen"
now=time.time()
local_time=time.localtime(now)
this=str(time.strftime('%Y-%m-%d %H:%M:%S',local_time))
ndcg3,ndcg5,ndcg10,ndcg20 = dev_step2(sess, model, test2List)
line = this+" type: %s traintest1: %d epoch: ndcg3 %f ndcg5 %f ndcg10 %f ndcg20 %f" % (model_type,current_step,ndcg3,ndcg5,ndcg10,ndcg20)
print(line)
#print(model.save_model(sess, ndcg3))
log.write(line + "\n")
log.flush()
def main():
with tf.Graph().as_default():
with tf.device("/gpu:0"):
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default() ,open(precision,"w") as log,open(precision1,'w') as log1:
param= None
loss_type = "point"
discriminator = Discriminator.Discriminator(
sequence_length=FLAGS.max_sequence_length,
batch_size=FLAGS.batch_size,
vocab_size=len(vocab),
embedding_size=FLAGS.embedding_dim,
l2_reg_lambda=FLAGS.l2_reg_lambda,
embeddings=embeddings,
hidden_size=FLAGS.hidden_size,
paras=None,
loss_type=loss_type)
# saver = tf.train.Saver()
# merged = tf.summary.merge_all()
# train_writer = tf.summary.FileWriter('tensorboard_train',sess.graph)
# test_writer = tf.summary.FileWriter('tensorboard_test')
sess.run(tf.global_variables_initializer())
for i in range(FLAGS.num_epochs):
samples=generate_uniform()
for batch in data_helper.batch_iter(samples,batch_size=FLAGS.batch_size,
num_epochs=1,shuffle=True):
# try:
pred_data=[]
pred_data.extend(batch[:,1])
pred_data.extend(batch[:,2])
pred_data = np.asarray(pred_data)
pred_data_label=[]
pred_data_label = [1.0] * len(batch[:,1])
pred_data_label.extend([0.0] * len(batch[:,2]))
pred_data_label = np.asarray(pred_data_label)
q = []
q.extend(batch[:,0])
q.extend(batch[:,0])
q = np.asarray(q)
lengths=[]
lengths.extend(batch[:,3])
lengths.extend(batch[:,3])
lengths=np.asarray(lengths)
feed_dict = {
discriminator.input_x_1: q,
discriminator.input_x_2: pred_data,
discriminator.label: pred_data_label,
discriminator.lengths:lengths
}
_, accuracy,step, current_loss,score = sess.run(
[discriminator.train_op,discriminator.accuracy,
discriminator.global_step,
discriminator.loss,discriminator.score],
feed_dict)
# train_writer.add_summary(summary, i)
time_str = datetime.datetime.now().isoformat()
# summary_test,accuracy_test = test(sess, discriminator, test1List,merged)
# print("test_epoch:"+str(i)+" accuracy:"+str(accuracy_test))
# test_writer.add_summary(summary_test,i)
if(i%3==0):
evaluation2(sess,discriminator,log1,i)
evaluation(sess,discriminator,log,i)
if __name__ == '__main__':
try:
main()
except Exception as e:
exstr=traceback.format_exc()
print(repr(e))
with open('error.txt', 'w') as f:
f.write(exstr)
else:
print('c')