From f112ca1168a747bfeab3749f535e38cd24f9e9b6 Mon Sep 17 00:00:00 2001 From: Shumpei Wakabayashi <42209144+shmpwk@users.noreply.github.com> Date: Tue, 20 Aug 2024 21:17:27 +0900 Subject: [PATCH] Revert "feat(lidar_transfusion): update TransFusion-L model" --- perception/lidar_transfusion/CMakeLists.txt | 52 --- perception/lidar_transfusion/README.md | 22 +- .../config/transfusion.param.yaml | 7 +- .../preprocess/pointcloud_densification.hpp | 2 +- .../preprocess/preprocess_kernel.hpp | 6 +- .../preprocess/voxel_generator.hpp | 8 +- .../include/lidar_transfusion/ros_utils.hpp | 68 ---- .../lidar_transfusion/transfusion_config.hpp | 13 +- .../include/lidar_transfusion/utils.hpp | 46 +++ .../preprocess/pointcloud_densification.cpp | 9 +- .../lib/preprocess/preprocess_kernel.cu | 61 ++-- .../lib/preprocess/voxel_generator.cpp | 23 +- perception/lidar_transfusion/package.xml | 1 - .../schema/transfusion.schema.json | 6 - .../src/lidar_transfusion_node.cpp | 5 +- .../test/test_detection_class_remapper.cpp | 92 ------ .../lidar_transfusion/test/test_nms.cpp | 121 ------- .../test/test_postprocess_kernel.cpp | 299 ------------------ .../test/test_postprocess_kernel.hpp | 48 --- .../test/test_preprocess_kernel.cpp | 265 ---------------- .../test/test_preprocess_kernel.hpp | 50 --- .../lidar_transfusion/test/test_ros_utils.cpp | 104 ------ .../test/test_voxel_generator.cpp | 284 ----------------- .../test/test_voxel_generator.hpp | 65 ---- 24 files changed, 115 insertions(+), 1542 deletions(-) delete mode 100644 perception/lidar_transfusion/test/test_detection_class_remapper.cpp delete mode 100644 perception/lidar_transfusion/test/test_nms.cpp delete mode 100644 perception/lidar_transfusion/test/test_postprocess_kernel.cpp delete mode 100644 perception/lidar_transfusion/test/test_postprocess_kernel.hpp delete mode 100644 perception/lidar_transfusion/test/test_preprocess_kernel.cpp delete mode 100644 perception/lidar_transfusion/test/test_preprocess_kernel.hpp delete mode 100644 perception/lidar_transfusion/test/test_ros_utils.cpp delete mode 100644 perception/lidar_transfusion/test/test_voxel_generator.cpp delete mode 100644 perception/lidar_transfusion/test/test_voxel_generator.hpp diff --git a/perception/lidar_transfusion/CMakeLists.txt b/perception/lidar_transfusion/CMakeLists.txt index 677a835e5b04e..c0e2d85f27e62 100644 --- a/perception/lidar_transfusion/CMakeLists.txt +++ b/perception/lidar_transfusion/CMakeLists.txt @@ -137,58 +137,6 @@ if(TRT_AVAIL AND CUDA_AVAIL AND CUDNN_AVAIL) if(BUILD_TESTING) find_package(ament_lint_auto REQUIRED) ament_lint_auto_find_test_dependencies() - - find_package(ament_cmake_gtest REQUIRED) - ament_auto_add_gtest(test_detection_class_remapper - test/test_detection_class_remapper.cpp - ) - ament_auto_add_gtest(test_ros_utils - test/test_ros_utils.cpp - ) - ament_auto_add_gtest(test_nms - test/test_nms.cpp - ) - - # Temporary disabled, tracked by: - # https://github.com/autowarefoundation/autoware.universe/issues/7724 - # ament_auto_add_gtest(test_voxel_generator - # test/test_voxel_generator.cpp - # ) - - # # preprocess kernel test - # add_executable(test_preprocess_kernel - # test/test_preprocess_kernel.cpp - # ) - # target_include_directories(test_preprocess_kernel PUBLIC - # ${test_preprocess_kernel_SOURCE_DIR} - # ) - # target_link_libraries(test_preprocess_kernel - # transfusion_cuda_lib - # gtest - # gtest_main - # ) - # ament_add_test(test_preprocess_kernel - # GENERATE_RESULT_FOR_RETURN_CODE_ZERO - # COMMAND "$" - # ) - - # # postprocess kernel test - # add_executable(test_postprocess_kernel - # test/test_postprocess_kernel.cpp - # ) - # target_include_directories(test_postprocess_kernel PUBLIC - # ${test_postprocess_kernel_SOURCE_DIR} - # ) - # target_link_libraries(test_postprocess_kernel - # transfusion_cuda_lib - # gtest - # gtest_main - # ) - # ament_add_test(test_postprocess_kernel - # GENERATE_RESULT_FOR_RETURN_CODE_ZERO - # COMMAND "$" - # ) - endif() ament_auto_package( diff --git a/perception/lidar_transfusion/README.md b/perception/lidar_transfusion/README.md index 6745cc1f7d219..7974714720c32 100644 --- a/perception/lidar_transfusion/README.md +++ b/perception/lidar_transfusion/README.md @@ -59,31 +59,13 @@ ros2 launch lidar_transfusion lidar_transfusion.launch.xml log_level:=debug ## Assumptions / Known limits -This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has following format: - -```python -[ - sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1), - sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1), - sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1), - sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1) -] -``` - -This input may consist of other fields as well - shown format is required minimum. -For debug purposes, you can validate your pointcloud topic using simple command: - -```bash -ros2 topic echo --field fields -``` - ## Trained Models You can download the onnx format of trained models by clicking on the links below. -- TransFusion: [transfusion.onnx](https://awf.ml.dev.web.auto/perception/models/transfusion/t4xx1_90m/v2/transfusion.onnx) +- TransFusion: [transfusion.onnx](https://awf.ml.dev.web.auto/perception/models/transfusion/v1/transfusion.onnx) -The model was trained in TIER IV's internal database (~11k lidar frames) for 50 epochs. +The model was trained in TIER IV's internal database (~11k lidar frames) for 20 epochs. ### Changelog diff --git a/perception/lidar_transfusion/config/transfusion.param.yaml b/perception/lidar_transfusion/config/transfusion.param.yaml index 2c6680fe50af1..feabe359caf1f 100644 --- a/perception/lidar_transfusion/config/transfusion.param.yaml +++ b/perception/lidar_transfusion/config/transfusion.param.yaml @@ -4,9 +4,8 @@ class_names: ["CAR", "TRUCK", "BUS", "BICYCLE", "PEDESTRIAN"] trt_precision: fp16 voxels_num: [5000, 30000, 60000] # [min, opt, max] - point_cloud_range: [-92.16, -92.16, -3.0, 92.16, 92.16, 7.0] # [x_min, y_min, z_min, x_max, y_max, z_max] - voxel_size: [0.24, 0.24, 10.0] # [x, y, z] - num_proposals: 500 + point_cloud_range: [-76.8, -76.8, -3.0, 76.8, 76.8, 5.0] # [x_min, y_min, z_min, x_max, y_max, z_max] + voxel_size: [0.3, 0.3, 8.0] # [x, y, z] onnx_path: "$(var model_path)/transfusion.onnx" engine_path: "$(var model_path)/transfusion.engine" # pre-process params @@ -18,4 +17,4 @@ iou_nms_search_distance_2d: 10.0 iou_nms_threshold: 0.1 yaw_norm_thresholds: [0.3, 0.3, 0.3, 0.3, 0.0] # refers to the class_names - score_threshold: 0.1 + score_threshold: 0.2 diff --git a/perception/lidar_transfusion/include/lidar_transfusion/preprocess/pointcloud_densification.hpp b/perception/lidar_transfusion/include/lidar_transfusion/preprocess/pointcloud_densification.hpp index 6ac0a6544389f..25095f4dc9c0b 100644 --- a/perception/lidar_transfusion/include/lidar_transfusion/preprocess/pointcloud_densification.hpp +++ b/perception/lidar_transfusion/include/lidar_transfusion/preprocess/pointcloud_densification.hpp @@ -51,7 +51,7 @@ class DensificationParam struct PointCloudWithTransform { - cuda::unique_ptr data_d{nullptr}; + cuda::unique_ptr points_d{nullptr}; std_msgs::msg::Header header; size_t num_points{0}; Eigen::Affine3f affine_past2world; diff --git a/perception/lidar_transfusion/include/lidar_transfusion/preprocess/preprocess_kernel.hpp b/perception/lidar_transfusion/include/lidar_transfusion/preprocess/preprocess_kernel.hpp index 592f09c2d288a..c571990d84b51 100644 --- a/perception/lidar_transfusion/include/lidar_transfusion/preprocess/preprocess_kernel.hpp +++ b/perception/lidar_transfusion/include/lidar_transfusion/preprocess/preprocess_kernel.hpp @@ -56,8 +56,12 @@ class PreprocessCuda unsigned int * mask, float * voxels, unsigned int * pillar_num, float * voxel_features, unsigned int * voxel_num, unsigned int * voxel_idxs); + // cudaError_t generateVoxelsInput_launch( + // uint8_t * cloud_data, CloudInfo & cloud_info, unsigned int points_agg, unsigned int + // points_size, float time_lag, float * affine_transform, float * points); + cudaError_t generateSweepPoints_launch( - const uint8_t * input_data, size_t points_size, int input_point_step, float time_lag, + const float * input_points, size_t points_size, int input_point_step, float time_lag, const float * transform, float * output_points); private: diff --git a/perception/lidar_transfusion/include/lidar_transfusion/preprocess/voxel_generator.hpp b/perception/lidar_transfusion/include/lidar_transfusion/preprocess/voxel_generator.hpp index f0d253ee28755..3e3660e238473 100644 --- a/perception/lidar_transfusion/include/lidar_transfusion/preprocess/voxel_generator.hpp +++ b/perception/lidar_transfusion/include/lidar_transfusion/preprocess/voxel_generator.hpp @@ -18,8 +18,8 @@ #include "lidar_transfusion/cuda_utils.hpp" #include "lidar_transfusion/preprocess/pointcloud_densification.hpp" #include "lidar_transfusion/preprocess/preprocess_kernel.hpp" -#include "lidar_transfusion/ros_utils.hpp" #include "lidar_transfusion/transfusion_config.hpp" +#include "lidar_transfusion/utils.hpp" #ifdef ROS_DISTRO_GALACTIC #include @@ -27,8 +27,6 @@ #include #endif -#include - #include #include @@ -38,8 +36,8 @@ namespace lidar_transfusion { -constexpr size_t AFF_MAT_SIZE = 16; // 4x4 matrix -constexpr size_t MAX_CLOUD_STEP_SIZE = sizeof(autoware_point_types::PointXYZIRCAEDT); +constexpr size_t AFF_MAT_SIZE = 16; // 4x4 matrix +constexpr size_t MAX_CLOUD_STEP_SIZE = 35; // PointXYZIRCADT class VoxelGenerator { diff --git a/perception/lidar_transfusion/include/lidar_transfusion/ros_utils.hpp b/perception/lidar_transfusion/include/lidar_transfusion/ros_utils.hpp index cbfc4e87b1610..f013a02404a29 100644 --- a/perception/lidar_transfusion/include/lidar_transfusion/ros_utils.hpp +++ b/perception/lidar_transfusion/include/lidar_transfusion/ros_utils.hpp @@ -17,84 +17,16 @@ #include "lidar_transfusion/utils.hpp" -#include - #include #include #include #include -#include -#include #include #include -#define CHECK_OFFSET(offset, structure, field) \ - static_assert( \ - offsetof(structure, field) == offset, \ - "Offset of " #field " in " #structure " does not match expected offset.") -#define CHECK_TYPE(type, structure, field) \ - static_assert( \ - std::is_same::value, \ - "Type of " #field " in " #structure " does not match expected type.") -#define CHECK_FIELD(offset, type, structure, field) \ - CHECK_OFFSET(offset, structure, field); \ - CHECK_TYPE(type, structure, field) - namespace lidar_transfusion { -using sensor_msgs::msg::PointField; - -CHECK_FIELD(0, float, autoware_point_types::PointXYZIRCAEDT, x); -CHECK_FIELD(4, float, autoware_point_types::PointXYZIRCAEDT, y); -CHECK_FIELD(8, float, autoware_point_types::PointXYZIRCAEDT, z); -CHECK_FIELD(12, uint8_t, autoware_point_types::PointXYZIRCAEDT, intensity); - -struct CloudInfo -{ - uint32_t x_offset{0}; - uint32_t y_offset{sizeof(float)}; - uint32_t z_offset{sizeof(float) * 2}; - uint32_t intensity_offset{sizeof(float) * 3}; - uint8_t x_datatype{PointField::FLOAT32}; - uint8_t y_datatype{PointField::FLOAT32}; - uint8_t z_datatype{PointField::FLOAT32}; - uint8_t intensity_datatype{PointField::UINT8}; - uint8_t x_count{1}; - uint8_t y_count{1}; - uint8_t z_count{1}; - uint8_t intensity_count{1}; - uint32_t point_step{sizeof(autoware_point_types::PointXYZIRCAEDT)}; - bool is_bigendian{false}; - - bool operator!=(const CloudInfo & rhs) const - { - return x_offset != rhs.x_offset || y_offset != rhs.y_offset || z_offset != rhs.z_offset || - intensity_offset != rhs.intensity_offset || x_datatype != rhs.x_datatype || - y_datatype != rhs.y_datatype || z_datatype != rhs.z_datatype || - intensity_datatype != rhs.intensity_datatype || x_count != rhs.x_count || - y_count != rhs.y_count || z_count != rhs.z_count || - intensity_count != rhs.intensity_count || is_bigendian != rhs.is_bigendian; - } - - friend std::ostream & operator<<(std::ostream & os, const CloudInfo & info) - { - os << "x_offset: " << static_cast(info.x_offset) << std::endl; - os << "y_offset: " << static_cast(info.y_offset) << std::endl; - os << "z_offset: " << static_cast(info.z_offset) << std::endl; - os << "intensity_offset: " << static_cast(info.intensity_offset) << std::endl; - os << "x_datatype: " << static_cast(info.x_datatype) << std::endl; - os << "y_datatype: " << static_cast(info.y_datatype) << std::endl; - os << "z_datatype: " << static_cast(info.z_datatype) << std::endl; - os << "intensity_datatype: " << static_cast(info.intensity_datatype) << std::endl; - os << "x_count: " << static_cast(info.x_count) << std::endl; - os << "y_count: " << static_cast(info.y_count) << std::endl; - os << "z_count: " << static_cast(info.z_count) << std::endl; - os << "intensity_count: " << static_cast(info.intensity_count) << std::endl; - os << "is_bigendian: " << static_cast(info.is_bigendian) << std::endl; - return os; - } -}; void box3DToDetectedObject( const Box3D & box3d, const std::vector & class_names, diff --git a/perception/lidar_transfusion/include/lidar_transfusion/transfusion_config.hpp b/perception/lidar_transfusion/include/lidar_transfusion/transfusion_config.hpp index 0ad3ab2231f50..31976de56a9da 100644 --- a/perception/lidar_transfusion/include/lidar_transfusion/transfusion_config.hpp +++ b/perception/lidar_transfusion/include/lidar_transfusion/transfusion_config.hpp @@ -26,9 +26,8 @@ class TransfusionConfig public: TransfusionConfig( const std::vector & voxels_num, const std::vector & point_cloud_range, - const std::vector & voxel_size, const int num_proposals, - const float circle_nms_dist_threshold, const std::vector & yaw_norm_thresholds, - const float score_threshold) + const std::vector & voxel_size, const float circle_nms_dist_threshold, + const std::vector & yaw_norm_thresholds, const float score_threshold) { if (voxels_num.size() == 3) { max_voxels_ = voxels_num[2]; @@ -62,9 +61,6 @@ class TransfusionConfig voxel_y_size_ = static_cast(voxel_size[1]); voxel_z_size_ = static_cast(voxel_size[2]); } - if (num_proposals > 0) { - num_proposals_ = num_proposals; - } if (score_threshold > 0.0) { score_threshold_ = score_threshold; } @@ -80,9 +76,6 @@ class TransfusionConfig grid_x_size_ = static_cast((max_x_range_ - min_x_range_) / voxel_x_size_); grid_y_size_ = static_cast((max_y_range_ - min_y_range_) / voxel_y_size_); grid_z_size_ = static_cast((max_z_range_ - min_z_range_) / voxel_z_size_); - - feature_x_size_ = grid_x_size_ / out_size_factor_; - feature_y_size_ = grid_y_size_ / out_size_factor_; } ///// INPUT PARAMETERS ///// @@ -114,7 +107,7 @@ class TransfusionConfig const std::size_t out_size_factor_{4}; const std::size_t max_num_points_per_pillar_{points_per_voxel_}; const std::size_t num_point_values_{4}; - std::size_t num_proposals_{200}; + const std::size_t num_proposals_{200}; // the number of feature maps for pillar scatter const std::size_t num_feature_scatter_{pillar_feature_size_}; // the score threshold for classification diff --git a/perception/lidar_transfusion/include/lidar_transfusion/utils.hpp b/perception/lidar_transfusion/include/lidar_transfusion/utils.hpp index cc40e55851738..e73fe7f055953 100644 --- a/perception/lidar_transfusion/include/lidar_transfusion/utils.hpp +++ b/perception/lidar_transfusion/include/lidar_transfusion/utils.hpp @@ -36,6 +36,52 @@ struct Box3D float yaw; }; +struct CloudInfo +{ + uint32_t x_offset; + uint32_t y_offset; + uint32_t z_offset; + uint32_t intensity_offset; + uint8_t x_datatype; + uint8_t y_datatype; + uint8_t z_datatype; + uint8_t intensity_datatype; + uint8_t x_count; + uint8_t y_count; + uint8_t z_count; + uint8_t intensity_count; + uint32_t point_step; + bool is_bigendian; + + CloudInfo() + : x_offset(0), + y_offset(4), + z_offset(8), + intensity_offset(12), + x_datatype(7), + y_datatype(7), + z_datatype(7), + intensity_datatype(7), + x_count(1), + y_count(1), + z_count(1), + intensity_count(1), + point_step(16), + is_bigendian(false) + { + } + + bool operator!=(const CloudInfo & rhs) const + { + return x_offset != rhs.x_offset || y_offset != rhs.y_offset || z_offset != rhs.z_offset || + intensity_offset != rhs.intensity_offset || x_datatype != rhs.x_datatype || + y_datatype != rhs.y_datatype || z_datatype != rhs.z_datatype || + intensity_datatype != rhs.intensity_datatype || x_count != rhs.x_count || + y_count != rhs.y_count || z_count != rhs.z_count || + intensity_count != rhs.intensity_count || is_bigendian != rhs.is_bigendian; + } +}; + enum NetworkIO { voxels = 0, num_points, coors, cls_score, dir_pred, bbox_pred, ENUM_SIZE }; // cspell: ignore divup diff --git a/perception/lidar_transfusion/lib/preprocess/pointcloud_densification.cpp b/perception/lidar_transfusion/lib/preprocess/pointcloud_densification.cpp index c13423f2d24d8..774b3a05d71c1 100644 --- a/perception/lidar_transfusion/lib/preprocess/pointcloud_densification.cpp +++ b/perception/lidar_transfusion/lib/preprocess/pointcloud_densification.cpp @@ -93,15 +93,16 @@ void PointCloudDensification::enqueue( affine_world2current_ = affine_world2current; current_timestamp_ = rclcpp::Time(msg.header.stamp).seconds(); - auto data_d = cuda::make_unique( - sizeof(uint8_t) * msg.width * msg.height * msg.point_step / sizeof(uint8_t)); + assert(sizeof(uint8_t) * msg.width * msg.height * msg.point_step % sizeof(float) == 1); + auto points_d = cuda::make_unique( + sizeof(uint8_t) * msg.width * msg.height * msg.point_step / sizeof(float)); CHECK_CUDA_ERROR(cudaMemcpyAsync( - data_d.get(), msg.data.data(), sizeof(uint8_t) * msg.width * msg.height * msg.point_step, + points_d.get(), msg.data.data(), sizeof(uint8_t) * msg.width * msg.height * msg.point_step, cudaMemcpyHostToDevice, stream_)); PointCloudWithTransform pointcloud = { - std::move(data_d), msg.header, msg.width * msg.height, affine_world2current.inverse()}; + std::move(points_d), msg.header, msg.width * msg.height, affine_world2current.inverse()}; pointcloud_cache_.push_front(std::move(pointcloud)); } diff --git a/perception/lidar_transfusion/lib/preprocess/preprocess_kernel.cu b/perception/lidar_transfusion/lib/preprocess/preprocess_kernel.cu index 48bb4eb9332a8..b8f9ae998fd4f 100644 --- a/perception/lidar_transfusion/lib/preprocess/preprocess_kernel.cu +++ b/perception/lidar_transfusion/lib/preprocess/preprocess_kernel.cu @@ -31,8 +31,6 @@ #include "lidar_transfusion/cuda_utils.hpp" #include "lidar_transfusion/preprocess/preprocess_kernel.hpp" -#include - namespace lidar_transfusion { @@ -101,12 +99,9 @@ __global__ void generateVoxels_random_kernel( cudaError_t PreprocessCuda::generateVoxels_random_launch( float * points, unsigned int points_size, unsigned int * mask, float * voxels) { - if (points_size == 0) { - return cudaGetLastError(); - } - dim3 blocks(divup(points_size, config_.threads_for_voxel_)); - dim3 threads(config_.threads_for_voxel_); - + int threadNum = config_.threads_for_voxel_; + dim3 blocks((points_size + threadNum - 1) / threadNum); + dim3 threads(threadNum); generateVoxels_random_kernel<<>>( points, points_size, config_.min_x_range_, config_.max_x_range_, config_.min_y_range_, config_.max_y_range_, config_.min_z_range_, config_.max_z_range_, config_.voxel_x_size_, @@ -170,48 +165,40 @@ cudaError_t PreprocessCuda::generateBaseFeatures_launch( } __global__ void generateSweepPoints_kernel( - const uint8_t * input_data, size_t points_size, int input_point_step, float time_lag, + const float * input_points, size_t points_size, int input_point_step, float time_lag, const float * transform_array, int num_features, float * output_points) { int point_idx = blockIdx.x * blockDim.x + threadIdx.x; if (point_idx >= points_size) return; - union { - uint32_t raw{0}; - float value; - } input_x, input_y, input_z; - -#pragma unroll - for (int i = 0; i < 4; i++) { // 4 bytes for float32 - input_x.raw |= input_data[point_idx * input_point_step + i] << i * 8; - input_y.raw |= input_data[point_idx * input_point_step + i + 4] << i * 8; - input_z.raw |= input_data[point_idx * input_point_step + i + 8] << i * 8; - } - - float input_intensity = static_cast(input_data[point_idx * input_point_step + 12]); - - output_points[point_idx * num_features] = - transform_array[0] * input_x.value + transform_array[4] * input_y.value + - transform_array[8] * input_z.value + transform_array[12]; - output_points[point_idx * num_features + 1] = - transform_array[1] * input_x.value + transform_array[5] * input_y.value + - transform_array[9] * input_z.value + transform_array[13]; - output_points[point_idx * num_features + 2] = - transform_array[2] * input_x.value + transform_array[6] * input_y.value + - transform_array[10] * input_z.value + transform_array[14]; - output_points[point_idx * num_features + 3] = input_intensity; + const float input_x = input_points[point_idx * input_point_step + 0]; + const float input_y = input_points[point_idx * input_point_step + 1]; + const float input_z = input_points[point_idx * input_point_step + 2]; + const float intensity = input_points[point_idx * input_point_step + 3]; + + output_points[point_idx * num_features] = transform_array[0] * input_x + + transform_array[4] * input_y + + transform_array[8] * input_z + transform_array[12]; + output_points[point_idx * num_features + 1] = transform_array[1] * input_x + + transform_array[5] * input_y + + transform_array[9] * input_z + transform_array[13]; + output_points[point_idx * num_features + 2] = transform_array[2] * input_x + + transform_array[6] * input_y + + transform_array[10] * input_z + transform_array[14]; + output_points[point_idx * num_features + 3] = intensity; output_points[point_idx * num_features + 4] = time_lag; } cudaError_t PreprocessCuda::generateSweepPoints_launch( - const uint8_t * input_data, size_t points_size, int input_point_step, float time_lag, + const float * input_points, size_t points_size, int input_point_step, float time_lag, const float * transform_array, float * output_points) { - dim3 blocks(divup(points_size, config_.threads_for_voxel_)); - dim3 threads(config_.threads_for_voxel_); + int threadNum = config_.threads_for_voxel_; + dim3 blocks((points_size + threadNum - 1) / threadNum); + dim3 threads(threadNum); generateSweepPoints_kernel<<>>( - input_data, points_size, input_point_step, time_lag, transform_array, + input_points, points_size, input_point_step, time_lag, transform_array, config_.num_point_feature_size_, output_points); cudaError_t err = cudaGetLastError(); diff --git a/perception/lidar_transfusion/lib/preprocess/voxel_generator.cpp b/perception/lidar_transfusion/lib/preprocess/voxel_generator.cpp index cb8bac984aef3..7072e8491af66 100644 --- a/perception/lidar_transfusion/lib/preprocess/voxel_generator.cpp +++ b/perception/lidar_transfusion/lib/preprocess/voxel_generator.cpp @@ -23,6 +23,25 @@ namespace lidar_transfusion { +std::ostream & operator<<(std::ostream & os, const CloudInfo & info) +{ + os << "x_offset: " << static_cast(info.x_offset) << std::endl; + os << "y_offset: " << static_cast(info.y_offset) << std::endl; + os << "z_offset: " << static_cast(info.z_offset) << std::endl; + os << "intensity_offset: " << static_cast(info.intensity_offset) << std::endl; + os << "x_datatype: " << static_cast(info.x_datatype) << std::endl; + os << "y_datatype: " << static_cast(info.y_datatype) << std::endl; + os << "z_datatype: " << static_cast(info.z_datatype) << std::endl; + os << "intensity_datatype: " << static_cast(info.intensity_datatype) << std::endl; + os << "x_count: " << static_cast(info.x_count) << std::endl; + os << "y_count: " << static_cast(info.y_count) << std::endl; + os << "z_count: " << static_cast(info.z_count) << std::endl; + os << "intensity_count: " << static_cast(info.intensity_count) << std::endl; + os << "point_step: " << static_cast(info.point_step) << std::endl; + os << "is_bigendian: " << static_cast(info.is_bigendian) << std::endl; + return os; +} + VoxelGenerator::VoxelGenerator( const DensificationParam & densification_param, const TransfusionConfig & config, cudaStream_t & stream) @@ -87,8 +106,8 @@ std::size_t VoxelGenerator::generateSweepPoints( CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_)); pre_ptr_->generateSweepPoints_launch( - pc_cache_iter->data_d.get(), sweep_num_points, cloud_info_.point_step, time_lag, - affine_past2current_d_.get(), points_d.get() + shift); + pc_cache_iter->points_d.get(), sweep_num_points, cloud_info_.point_step / sizeof(float), + time_lag, affine_past2current_d_.get(), points_d.get() + shift); point_counter += sweep_num_points; } diff --git a/perception/lidar_transfusion/package.xml b/perception/lidar_transfusion/package.xml index 3b495025b1c34..ffbe091b998e5 100644 --- a/perception/lidar_transfusion/package.xml +++ b/perception/lidar_transfusion/package.xml @@ -13,7 +13,6 @@ autoware_cmake autoware_perception_msgs - autoware_point_types autoware_universe_utils launch_ros object_recognition_utils diff --git a/perception/lidar_transfusion/schema/transfusion.schema.json b/perception/lidar_transfusion/schema/transfusion.schema.json index 7debc0edda6fb..41d8d887236a8 100644 --- a/perception/lidar_transfusion/schema/transfusion.schema.json +++ b/perception/lidar_transfusion/schema/transfusion.schema.json @@ -61,12 +61,6 @@ "default": "$(var model_path)/transfusion.engine", "pattern": "\\.engine$" }, - "num_proposals": { - "type": "integer", - "description": "Number of proposals at TransHead.", - "default": 500, - "minimum": 1 - }, "down_sample_factor": { "type": "integer", "description": "A scale factor of downsampling points", diff --git a/perception/lidar_transfusion/src/lidar_transfusion_node.cpp b/perception/lidar_transfusion/src/lidar_transfusion_node.cpp index 7f5833e60d6d0..e3ea6b3780de8 100644 --- a/perception/lidar_transfusion/src/lidar_transfusion_node.cpp +++ b/perception/lidar_transfusion/src/lidar_transfusion_node.cpp @@ -31,7 +31,6 @@ LidarTransfusionNode::LidarTransfusionNode(const rclcpp::NodeOptions & options) const auto point_cloud_range = this->declare_parameter>("point_cloud_range", descriptor); const auto voxel_size = this->declare_parameter>("voxel_size", descriptor); - const int num_proposals = (this->declare_parameter("num_proposals", descriptor)); const std::string onnx_path = this->declare_parameter("onnx_path", descriptor); const std::string engine_path = this->declare_parameter("engine_path", descriptor); @@ -74,8 +73,8 @@ LidarTransfusionNode::LidarTransfusionNode(const rclcpp::NodeOptions & options) DensificationParam densification_param( densification_world_frame_id, densification_num_past_frames); TransfusionConfig config( - voxels_num, point_cloud_range, voxel_size, num_proposals, circle_nms_dist_threshold, - yaw_norm_thresholds, score_threshold); + voxels_num, point_cloud_range, voxel_size, circle_nms_dist_threshold, yaw_norm_thresholds, + score_threshold); const auto allow_remapping_by_area_matrix = this->declare_parameter>("allow_remapping_by_area_matrix", descriptor); diff --git a/perception/lidar_transfusion/test/test_detection_class_remapper.cpp b/perception/lidar_transfusion/test/test_detection_class_remapper.cpp deleted file mode 100644 index 6e7f896e44d2c..0000000000000 --- a/perception/lidar_transfusion/test/test_detection_class_remapper.cpp +++ /dev/null @@ -1,92 +0,0 @@ -// Copyright 2024 TIER IV, Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include - -#include - -TEST(DetectionClassRemapperTest, MapClasses) -{ - lidar_transfusion::DetectionClassRemapper remapper; - - // Set up the parameters for the remapper - // Labels: CAR, TRUCK, TRAILER - std::vector allow_remapping_by_area_matrix = { - 0, 0, 0, // CAR cannot be remapped - 0, 0, 1, // TRUCK can be remapped to TRAILER - 0, 1, 0 // TRAILER can be remapped to TRUCK - }; - std::vector min_area_matrix = {0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0}; - std::vector max_area_matrix = {0.0, 0.0, 0.0, 0.0, 0.0, 999.0, 0.0, 10.0, 0.0}; - - remapper.setParameters(allow_remapping_by_area_matrix, min_area_matrix, max_area_matrix); - - // Create a DetectedObjects message with some objects - autoware_perception_msgs::msg::DetectedObjects msg; - - // CAR with area 4.0, which is out of the range for remapping - autoware_perception_msgs::msg::DetectedObject obj1; - autoware_perception_msgs::msg::ObjectClassification obj1_classification; - obj1.shape.dimensions.x = 2.0; - obj1.shape.dimensions.y = 2.0; - obj1_classification.label = 0; - obj1_classification.probability = 1.0; - obj1.classification = {obj1_classification}; - msg.objects.push_back(obj1); - - // TRUCK with area 16.0, which is in the range for remapping to TRAILER - autoware_perception_msgs::msg::DetectedObject obj2; - autoware_perception_msgs::msg::ObjectClassification obj2_classification; - obj2.shape.dimensions.x = 8.0; - obj2.shape.dimensions.y = 2.0; - obj2_classification.label = 1; - obj2_classification.probability = 1.0; - obj2.classification = {obj2_classification}; - msg.objects.push_back(obj2); - - // TRAILER with area 9.0, which is in the range for remapping to TRUCK - autoware_perception_msgs::msg::DetectedObject obj3; - autoware_perception_msgs::msg::ObjectClassification obj3_classification; - obj3.shape.dimensions.x = 3.0; - obj3.shape.dimensions.y = 3.0; - obj3_classification.label = 2; - obj3_classification.probability = 1.0; - obj3.classification = {obj3_classification}; - msg.objects.push_back(obj3); - - // TRAILER with area 12.0, which is out of the range for remapping - autoware_perception_msgs::msg::DetectedObject obj4; - autoware_perception_msgs::msg::ObjectClassification obj4_classification; - obj4.shape.dimensions.x = 4.0; - obj4.shape.dimensions.y = 3.0; - obj4_classification.label = 2; - obj4_classification.probability = 1.0; - obj4.classification = {obj4_classification}; - msg.objects.push_back(obj4); - - // Call the mapClasses function - remapper.mapClasses(msg); - - // Check the remapped labels - EXPECT_EQ(msg.objects[0].classification[0].label, 0); - EXPECT_EQ(msg.objects[1].classification[0].label, 2); - EXPECT_EQ(msg.objects[2].classification[0].label, 1); - EXPECT_EQ(msg.objects[3].classification[0].label, 2); -} - -int main(int argc, char ** argv) -{ - testing::InitGoogleTest(&argc, argv); - return RUN_ALL_TESTS(); -} diff --git a/perception/lidar_transfusion/test/test_nms.cpp b/perception/lidar_transfusion/test/test_nms.cpp deleted file mode 100644 index b6f0ec8c31684..0000000000000 --- a/perception/lidar_transfusion/test/test_nms.cpp +++ /dev/null @@ -1,121 +0,0 @@ -// Copyright 2024 TIER IV, Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "lidar_transfusion/postprocess/non_maximum_suppression.hpp" - -#include - -TEST(NonMaximumSuppressionTest, Apply) -{ - lidar_transfusion::NonMaximumSuppression nms; - lidar_transfusion::NMSParams params; - params.search_distance_2d_ = 1.0; - params.iou_threshold_ = 0.2; - params.nms_type_ = lidar_transfusion::NMS_TYPE::IoU_BEV; - params.target_class_names_ = {"CAR"}; - nms.setParameters(params); - - std::vector input_objects(4); - - // Object 1 - autoware_perception_msgs::msg::ObjectClassification obj1_classification; - obj1_classification.label = 0; // Assuming "car" has label 0 - obj1_classification.probability = 1.0; - input_objects[0].classification = {obj1_classification}; // Assuming "car" has label 0 - input_objects[0].kinematics.pose_with_covariance.pose.position.x = 0.0; - input_objects[0].kinematics.pose_with_covariance.pose.position.y = 0.0; - input_objects[0].kinematics.pose_with_covariance.pose.orientation.x = 0.0; - input_objects[0].kinematics.pose_with_covariance.pose.orientation.y = 0.0; - input_objects[0].kinematics.pose_with_covariance.pose.orientation.z = 0.0; - input_objects[0].kinematics.pose_with_covariance.pose.orientation.w = 1.0; - input_objects[0].shape.type = autoware_perception_msgs::msg::Shape::BOUNDING_BOX; - input_objects[0].shape.dimensions.x = 4.0; - input_objects[0].shape.dimensions.y = 2.0; - - // Object 2 (overlaps with Object 1) - autoware_perception_msgs::msg::ObjectClassification obj2_classification; - obj2_classification.label = 0; // Assuming "car" has label 0 - obj2_classification.probability = 1.0; - input_objects[1].classification = {obj2_classification}; // Assuming "car" has label 0 - input_objects[1].kinematics.pose_with_covariance.pose.position.x = 0.5; - input_objects[1].kinematics.pose_with_covariance.pose.position.y = 0.5; - input_objects[1].kinematics.pose_with_covariance.pose.orientation.x = 0.0; - input_objects[1].kinematics.pose_with_covariance.pose.orientation.y = 0.0; - input_objects[1].kinematics.pose_with_covariance.pose.orientation.z = 0.0; - input_objects[1].kinematics.pose_with_covariance.pose.orientation.w = 1.0; - input_objects[1].shape.type = autoware_perception_msgs::msg::Shape::BOUNDING_BOX; - input_objects[1].shape.dimensions.x = 4.0; - input_objects[1].shape.dimensions.y = 2.0; - - // Object 3 - autoware_perception_msgs::msg::ObjectClassification obj3_classification; - obj3_classification.label = 0; // Assuming "car" has label 0 - obj3_classification.probability = 1.0; - input_objects[2].classification = {obj3_classification}; // Assuming "car" has label 0 - input_objects[2].kinematics.pose_with_covariance.pose.position.x = 5.0; - input_objects[2].kinematics.pose_with_covariance.pose.position.y = 5.0; - input_objects[2].kinematics.pose_with_covariance.pose.orientation.x = 0.0; - input_objects[2].kinematics.pose_with_covariance.pose.orientation.y = 0.0; - input_objects[2].kinematics.pose_with_covariance.pose.orientation.z = 0.0; - input_objects[2].kinematics.pose_with_covariance.pose.orientation.w = 1.0; - input_objects[2].shape.type = autoware_perception_msgs::msg::Shape::BOUNDING_BOX; - input_objects[2].shape.dimensions.x = 4.0; - input_objects[2].shape.dimensions.y = 2.0; - - // Object 4 (different class) - autoware_perception_msgs::msg::ObjectClassification obj4_classification; - obj4_classification.label = 1; // Assuming "pedestrian" has label 1 - obj4_classification.probability = 1.0; - input_objects[3].classification = {obj4_classification}; // Assuming "pedestrian" has label 1 - input_objects[3].kinematics.pose_with_covariance.pose.position.x = 0.0; - input_objects[3].kinematics.pose_with_covariance.pose.position.y = 0.0; - input_objects[3].kinematics.pose_with_covariance.pose.orientation.x = 0.0; - input_objects[3].kinematics.pose_with_covariance.pose.orientation.y = 0.0; - input_objects[3].kinematics.pose_with_covariance.pose.orientation.z = 0.0; - input_objects[3].kinematics.pose_with_covariance.pose.orientation.w = 1.0; - input_objects[3].shape.type = autoware_perception_msgs::msg::Shape::BOUNDING_BOX; - input_objects[3].shape.dimensions.x = 0.5; - input_objects[3].shape.dimensions.y = 0.5; - - std::vector output_objects = nms.apply(input_objects); - - // Assert the expected number of output objects - EXPECT_EQ(output_objects.size(), 3); - - // Assert that input_objects[2] is included in the output_objects - bool is_input_object_2_included = false; - for (const auto & output_object : output_objects) { - if (output_object == input_objects[2]) { - is_input_object_2_included = true; - break; - } - } - EXPECT_TRUE(is_input_object_2_included); - - // Assert that input_objects[3] is included in the output_objects - bool is_input_object_3_included = false; - for (const auto & output_object : output_objects) { - if (output_object == input_objects[3]) { - is_input_object_3_included = true; - break; - } - } - EXPECT_TRUE(is_input_object_3_included); -} - -int main(int argc, char ** argv) -{ - testing::InitGoogleTest(&argc, argv); - return RUN_ALL_TESTS(); -} diff --git a/perception/lidar_transfusion/test/test_postprocess_kernel.cpp b/perception/lidar_transfusion/test/test_postprocess_kernel.cpp deleted file mode 100644 index 1e01db5a8b3d7..0000000000000 --- a/perception/lidar_transfusion/test/test_postprocess_kernel.cpp +++ /dev/null @@ -1,299 +0,0 @@ -// Copyright 2024 TIER IV, Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "test_postprocess_kernel.hpp" - -#include - -#include -#include - -namespace lidar_transfusion -{ - -void PostprocessKernelTest::SetUp() -{ - cudaStreamCreate(&stream_); - - auto voxels_num = std::vector{1, 3, 5}; - auto point_cloud_range = std::vector{-76.8, -76.8, -3.0, 76.8, 76.8, 5.0}; - auto voxel_size = std::vector{0.3, 0.3, 8.0}; - auto score_threshold = 0.2f; - auto circle_nms_dist_threshold = 0.5f; - auto yaw_norm_thresholds = std::vector{0.5, 0.5, 0.5}; - config_ptr_ = std::make_unique( - voxels_num, point_cloud_range, voxel_size, circle_nms_dist_threshold, yaw_norm_thresholds, - score_threshold); - post_ptr_ = std::make_unique(*config_ptr_, stream_); - - cls_size_ = config_ptr_->num_proposals_ * config_ptr_->num_classes_; - box_size_ = config_ptr_->num_proposals_ * config_ptr_->num_box_values_; - dir_cls_size_ = config_ptr_->num_proposals_ * 2; // x, y - - cls_output_d_ = cuda::make_unique(cls_size_); - box_output_d_ = cuda::make_unique(box_size_); - dir_cls_output_d_ = cuda::make_unique(dir_cls_size_); - - cuda::clear_async(cls_output_d_.get(), cls_size_, stream_); - cuda::clear_async(box_output_d_.get(), box_size_, stream_); - cuda::clear_async(dir_cls_output_d_.get(), dir_cls_size_, stream_); - CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_)); -} - -void PostprocessKernelTest::TearDown() -{ -} - -TEST_F(PostprocessKernelTest, EmptyTensorTest) -{ - std::vector det_boxes3d; - - CHECK_CUDA_ERROR(post_ptr_->generateDetectedBoxes3D_launch( - cls_output_d_.get(), box_output_d_.get(), dir_cls_output_d_.get(), det_boxes3d, stream_)); - - EXPECT_EQ(0, det_boxes3d.size()); -} - -TEST_F(PostprocessKernelTest, SingleDetectionTest) -{ - cuda::clear_async(cls_output_d_.get(), cls_size_, stream_); - cuda::clear_async(box_output_d_.get(), box_size_, stream_); - cuda::clear_async(dir_cls_output_d_.get(), dir_cls_size_, stream_); - CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_)); - - std::vector det_boxes3d; - unsigned int det_idx = 42; - unsigned int cls_idx = 2; - - constexpr float detection_score = 1.f; - constexpr float detection_x = 50.f; - constexpr float detection_y = -38.4f; - constexpr float detection_z = 1.0; - const float detection_raw_x = (detection_x - config_ptr_->min_x_range_) / - (config_ptr_->num_point_values_ * config_ptr_->voxel_x_size_); - const float detection_raw_y = (detection_y - config_ptr_->min_y_range_) / - (config_ptr_->num_point_values_ * config_ptr_->voxel_y_size_); - const float detection_raw_z = detection_z; - - constexpr float detection_w = 3.2f; - constexpr float detection_l = 9.3f; - constexpr float detection_h = 1.7f; - constexpr float detection_log_w = std::log(detection_w); - constexpr float detection_log_l = std::log(detection_l); - constexpr float detection_log_h = std::log(detection_h); - - constexpr float detection_yaw = M_PI_4; - constexpr float detection_yaw_sin = std::sin(detection_yaw); - constexpr float detection_yaw_cos = std::cos(detection_yaw); - - // Set the values in the cuda tensor - cudaMemcpy( - &cls_output_d_[cls_idx * config_ptr_->num_proposals_ + det_idx], &detection_score, - 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &dir_cls_output_d_[det_idx], &detection_yaw_sin, 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &dir_cls_output_d_[det_idx + config_ptr_->num_proposals_], &detection_yaw_cos, - 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy(&box_output_d_[det_idx], &detection_raw_x, 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + config_ptr_->num_proposals_], &detection_raw_y, 1 * sizeof(float), - cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + 2 * config_ptr_->num_proposals_], &detection_raw_z, 1 * sizeof(float), - cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + 3 * config_ptr_->num_proposals_], &detection_log_w, 1 * sizeof(float), - cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + 4 * config_ptr_->num_proposals_], &detection_log_l, 1 * sizeof(float), - cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + 5 * config_ptr_->num_proposals_], &detection_log_h, 1 * sizeof(float), - cudaMemcpyHostToDevice); - - auto code1 = cudaGetLastError(); - ASSERT_EQ(cudaSuccess, code1); - - // Extract the boxes - auto code2 = post_ptr_->generateDetectedBoxes3D_launch( - cls_output_d_.get(), box_output_d_.get(), dir_cls_output_d_.get(), det_boxes3d, stream_); - CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_)); - - ASSERT_EQ(cudaSuccess, code2); - ASSERT_EQ(1, det_boxes3d.size()); - - const auto det_box3d = det_boxes3d[0]; - EXPECT_EQ(cls_idx, det_box3d.label); - EXPECT_EQ(detection_score, det_box3d.score); - EXPECT_EQ(detection_x, det_box3d.x); - EXPECT_EQ(detection_y, det_box3d.y); - EXPECT_EQ(detection_z, det_box3d.z); - EXPECT_NEAR(detection_w, det_box3d.width, 1e-6); - EXPECT_NEAR(detection_l, det_box3d.length, 1e-6); - EXPECT_NEAR(detection_h, det_box3d.height, 1e-6); - EXPECT_EQ(detection_yaw, det_box3d.yaw); -} - -TEST_F(PostprocessKernelTest, InvalidYawTest) -{ - cuda::clear_async(cls_output_d_.get(), cls_size_, stream_); - cuda::clear_async(box_output_d_.get(), box_size_, stream_); - cuda::clear_async(dir_cls_output_d_.get(), dir_cls_size_, stream_); - CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_)); - - std::vector det_boxes3d; - unsigned int det_idx = 42; - unsigned int cls_idx = 2; - - constexpr float detection_score = 1.f; - constexpr float detection_x = 50.f; - constexpr float detection_y = -38.4f; - constexpr float detection_z = 1.0; - const float detection_raw_x = (detection_x - config_ptr_->min_x_range_) / - (config_ptr_->num_point_values_ * config_ptr_->voxel_x_size_); - const float detection_raw_y = (detection_y - config_ptr_->min_y_range_) / - (config_ptr_->num_point_values_ * config_ptr_->voxel_y_size_); - const float detection_raw_z = detection_z; - - constexpr float detection_w = 3.2f; - constexpr float detection_l = 9.3f; - constexpr float detection_h = 1.7f; - constexpr float detection_log_w = std::log(detection_w); - constexpr float detection_log_l = std::log(detection_l); - constexpr float detection_log_h = std::log(detection_h); - - constexpr float detection_yaw_sin = 0.f; - constexpr float detection_yaw_cos = 0.2f; - - // Set the values in the cuda tensor - cudaMemcpy( - &cls_output_d_[cls_idx * config_ptr_->num_proposals_ + det_idx], &detection_score, - 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &dir_cls_output_d_[det_idx], &detection_yaw_sin, 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &dir_cls_output_d_[det_idx + config_ptr_->num_proposals_], &detection_yaw_cos, - 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy(&box_output_d_[det_idx], &detection_raw_x, 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + config_ptr_->num_proposals_], &detection_raw_y, 1 * sizeof(float), - cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + 2 * config_ptr_->num_proposals_], &detection_raw_z, 1 * sizeof(float), - cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + 3 * config_ptr_->num_proposals_], &detection_log_w, 1 * sizeof(float), - cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + 4 * config_ptr_->num_proposals_], &detection_log_l, 1 * sizeof(float), - cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + 5 * config_ptr_->num_proposals_], &detection_log_h, 1 * sizeof(float), - cudaMemcpyHostToDevice); - - auto code1 = cudaGetLastError(); - ASSERT_EQ(cudaSuccess, code1); - - // Extract the boxes - auto code2 = post_ptr_->generateDetectedBoxes3D_launch( - cls_output_d_.get(), box_output_d_.get(), dir_cls_output_d_.get(), det_boxes3d, stream_); - CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_)); - - ASSERT_EQ(cudaSuccess, code2); - EXPECT_EQ(0, det_boxes3d.size()); -} - -TEST_F(PostprocessKernelTest, CircleNMSTest) -{ - cuda::clear_async(cls_output_d_.get(), cls_size_, stream_); - cuda::clear_async(box_output_d_.get(), box_size_, stream_); - cuda::clear_async(dir_cls_output_d_.get(), dir_cls_size_, stream_); - CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_)); - - std::vector det_boxes3d; - unsigned int det_idx = 42; - unsigned int det_num = 2; - unsigned int cls_idx = 2; - - constexpr float detection_score = 1.f; - constexpr float detection_x = 50.f; - constexpr float detection_y = -38.4f; - constexpr float detection_z = 1.0; - const float detection_raw_x = (detection_x - config_ptr_->min_x_range_) / - (config_ptr_->num_point_values_ * config_ptr_->voxel_x_size_); - const float detection_raw_y = (detection_y - config_ptr_->min_y_range_) / - (config_ptr_->num_point_values_ * config_ptr_->voxel_y_size_); - const float detection_raw_z = detection_z; - - constexpr float detection_w = 3.2f; - constexpr float detection_l = 9.3f; - constexpr float detection_h = 1.7f; - constexpr float detection_log_w = std::log(detection_w); - constexpr float detection_log_l = std::log(detection_l); - constexpr float detection_log_h = std::log(detection_h); - - constexpr float detection_yaw = M_PI_4; - constexpr float detection_yaw_sin = std::sin(detection_yaw); - constexpr float detection_yaw_cos = std::cos(detection_yaw); - - // Set the values in the cuda tensor for 2 detections - for (std::size_t i = 0; i < det_num; ++i) { - cudaMemcpy( - &cls_output_d_[cls_idx * config_ptr_->num_proposals_ + det_idx + i], &detection_score, - 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &dir_cls_output_d_[det_idx + i], &detection_yaw_sin, 1 * sizeof(float), - cudaMemcpyHostToDevice); - cudaMemcpy( - &dir_cls_output_d_[det_idx + i + config_ptr_->num_proposals_], &detection_yaw_cos, - 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + i], &detection_raw_x, 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + i + config_ptr_->num_proposals_], &detection_raw_y, - 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + i + 2 * config_ptr_->num_proposals_], &detection_raw_z, - 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + i + 3 * config_ptr_->num_proposals_], &detection_log_w, - 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + i + 4 * config_ptr_->num_proposals_], &detection_log_l, - 1 * sizeof(float), cudaMemcpyHostToDevice); - cudaMemcpy( - &box_output_d_[det_idx + i + 5 * config_ptr_->num_proposals_], &detection_log_h, - 1 * sizeof(float), cudaMemcpyHostToDevice); - } - - auto code1 = cudaGetLastError(); - ASSERT_EQ(cudaSuccess, code1); - - // Extract the boxes - auto code2 = post_ptr_->generateDetectedBoxes3D_launch( - cls_output_d_.get(), box_output_d_.get(), dir_cls_output_d_.get(), det_boxes3d, stream_); - CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_)); - - ASSERT_EQ(cudaSuccess, code2); - EXPECT_EQ(1, det_boxes3d.size()); -} - -} // namespace lidar_transfusion - -int main(int argc, char ** argv) -{ - testing::InitGoogleTest(&argc, argv); - return RUN_ALL_TESTS(); -} diff --git a/perception/lidar_transfusion/test/test_postprocess_kernel.hpp b/perception/lidar_transfusion/test/test_postprocess_kernel.hpp deleted file mode 100644 index 60fa7882ecc11..0000000000000 --- a/perception/lidar_transfusion/test/test_postprocess_kernel.hpp +++ /dev/null @@ -1,48 +0,0 @@ -// Copyright 2024 TIER IV, Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#ifndef TEST_POSTPROCESS_KERNEL_HPP_ -#define TEST_POSTPROCESS_KERNEL_HPP_ - -#include -#include - -#include - -#include - -namespace lidar_transfusion -{ - -class PostprocessKernelTest : public testing::Test -{ -public: - void SetUp() override; - void TearDown() override; - - std::unique_ptr post_ptr_{nullptr}; - std::unique_ptr config_ptr_{}; - cudaStream_t stream_{}; - - unsigned int cls_size_{0}; - unsigned int box_size_{0}; - unsigned int dir_cls_size_{0}; - cuda::unique_ptr cls_output_d_{nullptr}; - cuda::unique_ptr box_output_d_{nullptr}; - cuda::unique_ptr dir_cls_output_d_{nullptr}; -}; - -} // namespace lidar_transfusion - -#endif // TEST_POSTPROCESS_KERNEL_HPP_ diff --git a/perception/lidar_transfusion/test/test_preprocess_kernel.cpp b/perception/lidar_transfusion/test/test_preprocess_kernel.cpp deleted file mode 100644 index c1c2a824f0f53..0000000000000 --- a/perception/lidar_transfusion/test/test_preprocess_kernel.cpp +++ /dev/null @@ -1,265 +0,0 @@ -// Copyright 2024 TIER IV, Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "test_preprocess_kernel.hpp" - -#include "lidar_transfusion/cuda_utils.hpp" - -#include - -#include -#include -#include - -#include -#include - -namespace lidar_transfusion -{ - -void PreprocessKernelTest::SetUp() -{ - cudaStreamCreate(&stream_); - - auto voxels_num = std::vector{1, 3, 5}; - auto point_cloud_range = std::vector{-76.8, -76.8, -3.0, 76.8, 76.8, 5.0}; - auto voxel_size = std::vector{0.3, 0.3, 8.0}; - auto score_threshold = 0.2f; - auto circle_nms_dist_threshold = 0.5f; - auto yaw_norm_thresholds = std::vector{0.5, 0.5, 0.5}; - config_ptr_ = std::make_unique( - voxels_num, point_cloud_range, voxel_size, circle_nms_dist_threshold, yaw_norm_thresholds, - score_threshold); - pre_ptr_ = std::make_unique(*config_ptr_, stream_); - - voxel_features_size_ = config_ptr_->max_voxels_ * config_ptr_->max_num_points_per_pillar_ * - config_ptr_->num_point_feature_size_; - voxel_num_size_ = config_ptr_->max_voxels_; - voxel_idxs_size_ = config_ptr_->max_voxels_ * config_ptr_->num_point_values_; - - params_input_d_ = cuda::make_unique(); - voxel_features_d_ = cuda::make_unique(voxel_features_size_); - voxel_num_d_ = cuda::make_unique(voxel_num_size_); - voxel_idxs_d_ = cuda::make_unique(voxel_idxs_size_); - points_d_ = - cuda::make_unique(config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_); - - cuda::clear_async(voxel_features_d_.get(), voxel_features_size_, stream_); - cuda::clear_async(voxel_num_d_.get(), voxel_num_size_, stream_); - cuda::clear_async(voxel_idxs_d_.get(), voxel_idxs_size_, stream_); - cuda::clear_async(params_input_d_.get(), 1, stream_); - cuda::clear_async( - points_d_.get(), config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_, stream_); - CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_)); -} - -void PreprocessKernelTest::TearDown() -{ -} - -TEST_F(PreprocessKernelTest, EmptyVoxelTest) -{ - std::vector points{}; - std::size_t count = 0; - - pre_ptr_->generateVoxels( - points_d_.get(), count, params_input_d_.get(), voxel_features_d_.get(), voxel_num_d_.get(), - voxel_idxs_d_.get()); - unsigned int params_input; - auto code1 = cudaStreamSynchronize(stream_); - - auto code2 = cudaMemcpyAsync( - ¶ms_input, params_input_d_.get(), sizeof(unsigned int), cudaMemcpyDeviceToHost, stream_); - CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_)); - - auto code3 = cudaMemcpy( - points_d_.get(), points.data(), count * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyHostToDevice); - - ASSERT_EQ(cudaSuccess, code1); - ASSERT_EQ(cudaSuccess, code2); - ASSERT_EQ(cudaSuccess, code3); - - EXPECT_EQ(0, params_input); -} - -TEST_F(PreprocessKernelTest, BasicTest) -{ - cuda::clear_async(voxel_features_d_.get(), voxel_features_size_, stream_); - cuda::clear_async(voxel_num_d_.get(), voxel_num_size_, stream_); - cuda::clear_async(voxel_idxs_d_.get(), voxel_idxs_size_, stream_); - cuda::clear_async(params_input_d_.get(), 1, stream_); - cuda::clear_async( - points_d_.get(), config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_, stream_); - cudaStreamSynchronize(stream_); - - std::vector point1{25.f, -61.1f, 1.8f, 42.0, 0.1f}; - std::vector point2{-31.6f, 1.1f, 2.8f, 77.0, 0.1f}; - std::vector point3{42.6f, 15.1f, -0.1f, 3.0, 0.1f}; - - std::vector points; - points.reserve(point1.size() + point2.size() + point3.size()); - points.insert(points.end(), point1.begin(), point1.end()); - points.insert(points.end(), point2.begin(), point2.end()); - points.insert(points.end(), point3.begin(), point3.end()); - std::size_t count = 3; - - CHECK_CUDA_ERROR(cudaMemcpy( - points_d_.get(), points.data(), count * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyHostToDevice)); - - // Compute the total amount of voxels filled - pre_ptr_->generateVoxels( - points_d_.get(), count, params_input_d_.get(), voxel_features_d_.get(), voxel_num_d_.get(), - voxel_idxs_d_.get()); - - unsigned int params_input; - CHECK_CUDA_ERROR( - cudaMemcpy(¶ms_input, params_input_d_.get(), sizeof(unsigned int), cudaMemcpyDeviceToHost)); - CHECK_CUDA_ERROR(cudaMemcpy( - points_d_.get(), points.data(), count * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyHostToDevice)); - - ASSERT_EQ(count, params_input); - - // Check if voxels were filled - unsigned int voxel_num; - - for (std::size_t i = 0; i < count; ++i) { - CHECK_CUDA_ERROR( - cudaMemcpy(&voxel_num, voxel_num_d_.get() + i, sizeof(unsigned int), cudaMemcpyDeviceToHost)); - EXPECT_EQ(1, voxel_num); - } - - // Check grid indices - thrust::host_vector voxel_idxs(config_ptr_->num_point_values_ * count, 0); - unsigned int voxel_idx_gt; - unsigned int voxel_idy_gt; - CHECK_CUDA_ERROR(cudaMemcpy( - voxel_idxs.data(), voxel_idxs_d_.get(), - config_ptr_->num_point_values_ * count * sizeof(unsigned int), cudaMemcpyDeviceToHost)); - - for (std::size_t i = 0; i < count; ++i) { - voxel_idx_gt = std::floor( - (points[config_ptr_->num_point_feature_size_ * i + 0] - config_ptr_->min_x_range_) / - config_ptr_->voxel_x_size_); - voxel_idy_gt = std::floor( - (points[config_ptr_->num_point_feature_size_ * i + 1] - config_ptr_->min_y_range_) / - config_ptr_->voxel_y_size_); - - EXPECT_EQ( - voxel_idx_gt, - voxel_idxs[config_ptr_->num_point_values_ * i + 3]); // {0, 0, voxel_idy, VOXEL_IDX} - EXPECT_EQ( - voxel_idy_gt, - voxel_idxs[config_ptr_->num_point_values_ * i + 2]); // {0, 0, VOXEL_IDY, voxel_idx} - } - - // Check voxel features - thrust::host_vector voxel_features( - count * config_ptr_->max_num_points_per_pillar_ * config_ptr_->num_point_feature_size_, 0.f); - CHECK_CUDA_ERROR(cudaMemcpy( - voxel_features.data(), voxel_features_d_.get(), - count * config_ptr_->max_num_points_per_pillar_ * config_ptr_->num_point_feature_size_ * - sizeof(float), - cudaMemcpyDeviceToHost)); - - for (std::size_t i = 0; i < count; ++i) { - for (std::size_t j = 0; j < config_ptr_->num_point_feature_size_; ++j) { - EXPECT_EQ( - points[config_ptr_->num_point_feature_size_ * i + j], - voxel_features - [i * config_ptr_->max_num_points_per_pillar_ * config_ptr_->num_point_feature_size_ + j]); - } - } -} - -TEST_F(PreprocessKernelTest, OutOfRangeTest) -{ - cuda::clear_async(voxel_features_d_.get(), voxel_features_size_, stream_); - cuda::clear_async(voxel_num_d_.get(), voxel_num_size_, stream_); - cuda::clear_async(voxel_idxs_d_.get(), voxel_idxs_size_, stream_); - cuda::clear_async(params_input_d_.get(), 1, stream_); - cuda::clear_async( - points_d_.get(), config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_, stream_); - cudaStreamSynchronize(stream_); - - std::vector points{25.f, config_ptr_->max_y_range_ + 0.1f, 2.1f, 55.f, 0.1f}; - std::size_t count = 0; - - CHECK_CUDA_ERROR(cudaMemcpy( - points_d_.get(), points.data(), count * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyHostToDevice)); - - pre_ptr_->generateVoxels( - points_d_.get(), count, params_input_d_.get(), voxel_features_d_.get(), voxel_num_d_.get(), - voxel_idxs_d_.get()); - - unsigned int params_input; - CHECK_CUDA_ERROR( - cudaMemcpy(¶ms_input, params_input_d_.get(), sizeof(unsigned int), cudaMemcpyDeviceToHost)); - CHECK_CUDA_ERROR(cudaMemcpy( - points_d_.get(), points.data(), count * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyHostToDevice)); - - EXPECT_EQ(count, params_input); -} - -TEST_F(PreprocessKernelTest, VoxelOverflowTest) -{ - cuda::clear_async(voxel_features_d_.get(), voxel_features_size_, stream_); - cuda::clear_async(voxel_num_d_.get(), voxel_num_size_, stream_); - cuda::clear_async(voxel_idxs_d_.get(), voxel_idxs_size_, stream_); - cuda::clear_async(params_input_d_.get(), 1, stream_); - cuda::clear_async( - points_d_.get(), config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_, stream_); - cudaStreamSynchronize(stream_); - - std::vector point{config_ptr_->min_x_range_, -61.1f, 1.8f, 42.f, 0.1f}; - std::size_t count = config_ptr_->max_voxels_ + 1; - std::vector points{}; - points.reserve(count * config_ptr_->num_point_feature_size_); - - for (std::size_t i = 0; i < count; ++i) { - points.insert(points.end(), point.begin(), point.end()); - point[0] += config_ptr_->voxel_x_size_; - } - - CHECK_CUDA_ERROR(cudaMemcpy( - points_d_.get(), points.data(), count * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyHostToDevice)); - - pre_ptr_->generateVoxels( - points_d_.get(), count, params_input_d_.get(), voxel_features_d_.get(), voxel_num_d_.get(), - voxel_idxs_d_.get()); - - ASSERT_EQ(cudaSuccess, cudaGetLastError()); - - unsigned int params_input; - CHECK_CUDA_ERROR( - cudaMemcpy(¶ms_input, params_input_d_.get(), sizeof(unsigned int), cudaMemcpyDeviceToHost)); - CHECK_CUDA_ERROR(cudaMemcpy( - points_d_.get(), points.data(), count * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyHostToDevice)); - - EXPECT_EQ(config_ptr_->max_voxels_, params_input); -} - -} // namespace lidar_transfusion - -int main(int argc, char ** argv) -{ - testing::InitGoogleTest(&argc, argv); - return RUN_ALL_TESTS(); -} diff --git a/perception/lidar_transfusion/test/test_preprocess_kernel.hpp b/perception/lidar_transfusion/test/test_preprocess_kernel.hpp deleted file mode 100644 index 024fae5eae4b1..0000000000000 --- a/perception/lidar_transfusion/test/test_preprocess_kernel.hpp +++ /dev/null @@ -1,50 +0,0 @@ -// Copyright 2024 TIER IV, Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#ifndef TEST_PREPROCESS_KERNEL_HPP_ -#define TEST_PREPROCESS_KERNEL_HPP_ - -#include -#include - -#include - -#include - -namespace lidar_transfusion -{ - -class PreprocessKernelTest : public testing::Test -{ -public: - void SetUp() override; - void TearDown() override; - - std::unique_ptr pre_ptr_{nullptr}; - std::unique_ptr config_ptr_{}; - cudaStream_t stream_{}; - - unsigned int voxel_features_size_{0}; - unsigned int voxel_num_size_{0}; - unsigned int voxel_idxs_size_{0}; - cuda::unique_ptr points_d_{nullptr}; - cuda::unique_ptr params_input_d_{nullptr}; - cuda::unique_ptr voxel_features_d_{nullptr}; - cuda::unique_ptr voxel_num_d_{nullptr}; - cuda::unique_ptr voxel_idxs_d_{nullptr}; -}; - -} // namespace lidar_transfusion - -#endif // TEST_PREPROCESS_KERNEL_HPP_ diff --git a/perception/lidar_transfusion/test/test_ros_utils.cpp b/perception/lidar_transfusion/test/test_ros_utils.cpp deleted file mode 100644 index 15541e6353b42..0000000000000 --- a/perception/lidar_transfusion/test/test_ros_utils.cpp +++ /dev/null @@ -1,104 +0,0 @@ -// Copyright 2024 TIER IV, Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "lidar_transfusion/ros_utils.hpp" - -#include - -TEST(TestSuite, box3DToDetectedObject) -{ - std::vector class_names = {"CAR", "TRUCK", "BUS", "TRAILER", - "BICYCLE", "MOTORCYCLE", "PEDESTRIAN"}; - - // Test case 1: Test with valid label - { - lidar_transfusion::Box3D box3d; - box3d.label = 0; // CAR - box3d.score = 0.8f; - box3d.x = 1.0; - box3d.y = 2.0; - box3d.z = 3.0; - box3d.width = 2.0; - box3d.height = 1.5; - box3d.length = 4.0; - box3d.yaw = 0.5; - - autoware_perception_msgs::msg::DetectedObject obj; - lidar_transfusion::box3DToDetectedObject(box3d, class_names, obj); - - EXPECT_FLOAT_EQ(obj.existence_probability, 0.8f); - EXPECT_EQ( - obj.classification[0].label, autoware_perception_msgs::msg::ObjectClassification::CAR); - EXPECT_FLOAT_EQ(obj.kinematics.pose_with_covariance.pose.position.x, 1.0); - EXPECT_FLOAT_EQ(obj.kinematics.pose_with_covariance.pose.position.y, 2.0); - EXPECT_FLOAT_EQ(obj.kinematics.pose_with_covariance.pose.position.z, 3.0); - EXPECT_FLOAT_EQ(obj.shape.dimensions.x, 4.0); - EXPECT_FLOAT_EQ(obj.shape.dimensions.y, 2.0); - EXPECT_FLOAT_EQ(obj.shape.dimensions.z, 1.5); - EXPECT_FALSE(obj.kinematics.has_position_covariance); - EXPECT_FALSE(obj.kinematics.has_twist); - EXPECT_FALSE(obj.kinematics.has_twist_covariance); - } - - // Test case 2: Test with invalid label - { - lidar_transfusion::Box3D box3d; - box3d.score = 0.5f; - box3d.label = 10; // Invalid - - autoware_perception_msgs::msg::DetectedObject obj; - lidar_transfusion::box3DToDetectedObject(box3d, class_names, obj); - - EXPECT_FLOAT_EQ(obj.existence_probability, 0.5f); - EXPECT_EQ( - obj.classification[0].label, autoware_perception_msgs::msg::ObjectClassification::UNKNOWN); - EXPECT_FALSE(obj.kinematics.has_position_covariance); - EXPECT_FALSE(obj.kinematics.has_twist); - EXPECT_FALSE(obj.kinematics.has_twist_covariance); - } -} - -TEST(TestSuite, getSemanticType) -{ - EXPECT_EQ( - lidar_transfusion::getSemanticType("CAR"), - autoware_perception_msgs::msg::ObjectClassification::CAR); - EXPECT_EQ( - lidar_transfusion::getSemanticType("TRUCK"), - autoware_perception_msgs::msg::ObjectClassification::TRUCK); - EXPECT_EQ( - lidar_transfusion::getSemanticType("BUS"), - autoware_perception_msgs::msg::ObjectClassification::BUS); - EXPECT_EQ( - lidar_transfusion::getSemanticType("TRAILER"), - autoware_perception_msgs::msg::ObjectClassification::TRAILER); - EXPECT_EQ( - lidar_transfusion::getSemanticType("MOTORCYCLE"), - autoware_perception_msgs::msg::ObjectClassification::MOTORCYCLE); - EXPECT_EQ( - lidar_transfusion::getSemanticType("BICYCLE"), - autoware_perception_msgs::msg::ObjectClassification::BICYCLE); - EXPECT_EQ( - lidar_transfusion::getSemanticType("PEDESTRIAN"), - autoware_perception_msgs::msg::ObjectClassification::PEDESTRIAN); - EXPECT_EQ( - lidar_transfusion::getSemanticType("UNKNOWN"), - autoware_perception_msgs::msg::ObjectClassification::UNKNOWN); -} - -int main(int argc, char ** argv) -{ - testing::InitGoogleTest(&argc, argv); - return RUN_ALL_TESTS(); -} diff --git a/perception/lidar_transfusion/test/test_voxel_generator.cpp b/perception/lidar_transfusion/test/test_voxel_generator.cpp deleted file mode 100644 index 2673a341b3721..0000000000000 --- a/perception/lidar_transfusion/test/test_voxel_generator.cpp +++ /dev/null @@ -1,284 +0,0 @@ -// Copyright 2024 TIER IV, Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "test_voxel_generator.hpp" - -#include "gtest/gtest.h" -#include "lidar_transfusion/transfusion_config.hpp" -#include "lidar_transfusion/utils.hpp" - -#include - -#include "sensor_msgs/point_cloud2_iterator.hpp" - -namespace lidar_transfusion -{ - -void VoxelGeneratorTest::SetUp() -{ - // Setup things that should occur before every test instance should go here - node_ = std::make_shared("voxel_generator_test_node"); - - world_frame_ = "map"; - lidar_frame_ = "lidar"; - delta_pointcloud_x_ = 1.0; - points_per_pointcloud_ = 300; - - voxels_num_ = std::vector{5000, 30000, 60000}; - point_cloud_range_ = std::vector{-76.8, -76.8, -3.0, 76.8, 76.8, 5.0}; - voxel_size_ = std::vector{0.3, 0.3, 8.0}; - score_threshold_ = 0.2f; - circle_nms_dist_threshold_ = 0.5f; - yaw_norm_thresholds_ = std::vector{0.5, 0.5, 0.5}; - config_ptr_ = std::make_unique( - voxels_num_, point_cloud_range_, voxel_size_, circle_nms_dist_threshold_, yaw_norm_thresholds_, - score_threshold_); - - cloud1_ = std::make_unique(); - cloud2_ = std::make_unique(); - - // Set up the fields - point_cloud_msg_wrapper::PointCloud2Modifier< - autoware_point_types::PointXYZIRCAEDT, autoware_point_types::PointXYZIRCAEDTGenerator> - modifier{*cloud1_, lidar_frame_}; - - // Resize the cloud to hold points_per_pointcloud_ points - modifier.resize(points_per_pointcloud_); - - // Create an iterator for desired fields - sensor_msgs::PointCloud2Iterator iter_x(*cloud1_, "x"); - sensor_msgs::PointCloud2Iterator iter_y(*cloud1_, "y"); - sensor_msgs::PointCloud2Iterator iter_z(*cloud1_, "z"); - sensor_msgs::PointCloud2Iterator iter_i(*cloud1_, "intensity"); - - // Populate the point cloud - for (size_t i = 0; i < modifier.size(); ++i, ++iter_x, ++iter_y, ++iter_z) { - *iter_x = static_cast(i); - *iter_y = static_cast(i); - *iter_z = static_cast(i); - } - for (size_t i = 0; i < modifier.size(); ++i, ++iter_i) { - *iter_i = static_cast(i % 256); - } - - *cloud2_ = *cloud1_; - - // Set the stamps for the point clouds. They usually come every 100ms - cloud1_->header.stamp.sec = 1; - cloud1_->header.stamp.nanosec = 100'000'000; - cloud2_->header.stamp.sec = 1; - cloud2_->header.stamp.nanosec = 200'000'000; - - tf2_buffer_ = std::make_unique(node_->get_clock()); - tf2_buffer_->setUsingDedicatedThread(true); - - // The vehicle moves 1m/s in the x direction - const double world_origin_x = 6'371'000.0; - const double world_origin_y = 1'371'000.0; - - transform1_.header.stamp = cloud1_->header.stamp; - transform1_.header.frame_id = world_frame_; - transform1_.child_frame_id = lidar_frame_; - transform1_.transform.translation.x = world_origin_x; - transform1_.transform.translation.y = world_origin_y; - transform1_.transform.translation.z = 1.8; - transform1_.transform.rotation.x = 0.0; - transform1_.transform.rotation.y = 0.0; - transform1_.transform.rotation.z = 0.0; - transform1_.transform.rotation.w = 1.0; - - transform2_ = transform1_; - transform2_.header.stamp = cloud2_->header.stamp; - transform2_.transform.translation.x = world_origin_x + delta_pointcloud_x_; - - cudaStreamCreate(&stream_); -} - -void VoxelGeneratorTest::TearDown() -{ -} - -TEST_F(VoxelGeneratorTest, CloudInfo) -{ - CloudInfo cloud_info{}; - EXPECT_EQ(cloud1_->is_bigendian, cloud_info.is_bigendian); - EXPECT_EQ(cloud1_->fields[0].name, "x"); - EXPECT_EQ(cloud1_->fields[0].datatype, cloud_info.x_datatype); - EXPECT_EQ(cloud1_->fields[0].count, cloud_info.x_count); - EXPECT_EQ(cloud1_->fields[0].offset, cloud_info.x_offset); - EXPECT_EQ(cloud1_->fields[1].name, "y"); - EXPECT_EQ(cloud1_->fields[1].datatype, cloud_info.y_datatype); - EXPECT_EQ(cloud1_->fields[1].count, cloud_info.y_count); - EXPECT_EQ(cloud1_->fields[1].offset, cloud_info.y_offset); - EXPECT_EQ(cloud1_->fields[2].name, "z"); - EXPECT_EQ(cloud1_->fields[2].datatype, cloud_info.z_datatype); - EXPECT_EQ(cloud1_->fields[2].count, cloud_info.z_count); - EXPECT_EQ(cloud1_->fields[2].offset, cloud_info.z_offset); - EXPECT_EQ(cloud1_->fields[3].name, "intensity"); - EXPECT_EQ(cloud1_->fields[3].datatype, cloud_info.intensity_datatype); - EXPECT_EQ(cloud1_->fields[3].count, cloud_info.intensity_count); - EXPECT_EQ(cloud1_->fields[3].offset, cloud_info.intensity_offset); - EXPECT_EQ(cloud1_->width, points_per_pointcloud_); - EXPECT_EQ(cloud1_->height, 1); -} - -TEST_F(VoxelGeneratorTest, SingleFrame) -{ - const unsigned int num_past_frames = 0; // only current frame - DensificationParam param(world_frame_, num_past_frames); - VoxelGenerator voxel_generator(param, *config_ptr_, stream_); - std::vector points; - points.resize(config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_); - std::fill(points.begin(), points.end(), std::nan("")); - - auto points_d = - cuda::make_unique(config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_); - cudaMemcpy( - points_d.get(), points.data(), - points_per_pointcloud_ * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyHostToDevice); - - bool status1 = voxel_generator.enqueuePointCloud(*cloud1_, *tf2_buffer_); - std::size_t generated_points_num = voxel_generator.generateSweepPoints(*cloud1_, points_d); - - cudaMemcpy( - points.data(), points_d.get(), - points_per_pointcloud_ * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyDeviceToHost); - - EXPECT_TRUE(status1); - EXPECT_EQ(generated_points_num, points_per_pointcloud_); - - // Check valid points - for (std::size_t i = 0; i < points_per_pointcloud_; ++i) { - // There are no tf conversions - EXPECT_EQ(static_cast(i), points[i * config_ptr_->num_point_feature_size_ + 0]); - EXPECT_EQ(static_cast(i), points[i * config_ptr_->num_point_feature_size_ + 1]); - EXPECT_EQ(static_cast(i), points[i * config_ptr_->num_point_feature_size_ + 2]); - EXPECT_EQ(static_cast(i % 256), points[i * config_ptr_->num_point_feature_size_ + 3]); - EXPECT_EQ(static_cast(0), points[i * config_ptr_->num_point_feature_size_ + 4]); - } - - // Check invalid points - for (std::size_t i = points_per_pointcloud_ * config_ptr_->num_point_feature_size_; - i < points_per_pointcloud_ * config_ptr_->num_point_feature_size_ * 2; ++i) { - EXPECT_TRUE(std::isnan(points[i])); - } -} - -TEST_F(VoxelGeneratorTest, TwoFramesNoTf) -{ - const unsigned int num_past_frames = 1; - DensificationParam param(world_frame_, num_past_frames); - VoxelGenerator voxel_generator(param, *config_ptr_, stream_); - std::vector points; - points.resize(config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_); - std::fill(points.begin(), points.end(), std::nan("")); - - auto points_d = - cuda::make_unique(config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_); - cudaMemcpy( - points_d.get(), points.data(), - points_per_pointcloud_ * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyHostToDevice); - - bool status1 = voxel_generator.enqueuePointCloud(*cloud1_, *tf2_buffer_); - bool status2 = voxel_generator.enqueuePointCloud(*cloud2_, *tf2_buffer_); - std::size_t generated_points_num = voxel_generator.generateSweepPoints(*cloud1_, points_d); - - cudaMemcpy( - points.data(), points_d.get(), - points_per_pointcloud_ * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyDeviceToHost); - - EXPECT_FALSE(status1); - EXPECT_FALSE(status2); - EXPECT_EQ(0, generated_points_num); -} - -TEST_F(VoxelGeneratorTest, TwoFrames) -{ - const unsigned int num_past_frames = 1; - DensificationParam param(world_frame_, num_past_frames); - VoxelGenerator voxel_generator(param, *config_ptr_, stream_); - std::vector points; - points.resize(config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_); - std::fill(points.begin(), points.end(), std::nan("")); - - auto points_d = - cuda::make_unique(config_ptr_->cloud_capacity_ * config_ptr_->num_point_feature_size_); - cudaMemcpy( - points_d.get(), points.data(), - 2 * points_per_pointcloud_ * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyHostToDevice); - - tf2_buffer_->setTransform(transform1_, "authority1"); - tf2_buffer_->setTransform(transform2_, "authority1"); - - bool status1 = voxel_generator.enqueuePointCloud(*cloud1_, *tf2_buffer_); - bool status2 = voxel_generator.enqueuePointCloud(*cloud2_, *tf2_buffer_); - std::size_t generated_points_num = voxel_generator.generateSweepPoints(*cloud1_, points_d); - - cudaMemcpy( - points.data(), points_d.get(), - 2 * points_per_pointcloud_ * config_ptr_->num_point_feature_size_ * sizeof(float), - cudaMemcpyDeviceToHost); - - EXPECT_TRUE(status1); - EXPECT_TRUE(status2); - EXPECT_EQ(2 * points_per_pointcloud_, generated_points_num); - - // Check valid points for the latest pointcloud - for (std::size_t i = 0; i < points_per_pointcloud_; ++i) { - // There are no tf conversions - EXPECT_EQ(static_cast(i), points[i * config_ptr_->num_point_feature_size_ + 0]); - EXPECT_EQ(static_cast(i), points[i * config_ptr_->num_point_feature_size_ + 1]); - EXPECT_EQ(static_cast(i), points[i * config_ptr_->num_point_feature_size_ + 2]); - EXPECT_EQ(static_cast(i % 256), points[i * config_ptr_->num_point_feature_size_ + 3]); - EXPECT_EQ(static_cast(0), points[i * config_ptr_->num_point_feature_size_ + 4]); - } - - // Check valid points for the oldest pointcloud - for (std::size_t i = 0; i < points_per_pointcloud_; ++i) { - // There are tf conversions, so results are not numerically the same - EXPECT_NEAR( - static_cast(i) - delta_pointcloud_x_, - points[(points_per_pointcloud_ + i) * config_ptr_->num_point_feature_size_ + 0], 1e-6); - EXPECT_NEAR( - static_cast(i), - points[(points_per_pointcloud_ + i) * config_ptr_->num_point_feature_size_ + 1], 1e-6); - EXPECT_NEAR( - static_cast(i), - points[(points_per_pointcloud_ + i) * config_ptr_->num_point_feature_size_ + 2], 1e-6); - EXPECT_NEAR( - static_cast(i % 256), - points[(points_per_pointcloud_ + i) * config_ptr_->num_point_feature_size_ + 3], 1e-6); - EXPECT_NEAR( - 0.1, points[(points_per_pointcloud_ + i) * config_ptr_->num_point_feature_size_ + 4], 1e-6); - } - - // Check invalid points - for (std::size_t i = 2 * points_per_pointcloud_ * config_ptr_->num_point_feature_size_; - i < 3 * points_per_pointcloud_ * config_ptr_->num_point_feature_size_; ++i) { - EXPECT_TRUE(std::isnan(points[i])); - } -} -} // namespace lidar_transfusion - -int main(int argc, char ** argv) -{ - testing::InitGoogleTest(&argc, argv); - rclcpp::init(argc, argv); - return RUN_ALL_TESTS(); -} diff --git a/perception/lidar_transfusion/test/test_voxel_generator.hpp b/perception/lidar_transfusion/test/test_voxel_generator.hpp deleted file mode 100644 index eccbe6412d183..0000000000000 --- a/perception/lidar_transfusion/test/test_voxel_generator.hpp +++ /dev/null @@ -1,65 +0,0 @@ -// Copyright 2024 TIER IV, Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#ifndef TEST_VOXEL_GENERATOR_HPP_ -#define TEST_VOXEL_GENERATOR_HPP_ - -#include -#include - -#include - -#include - -#include -#include -#include - -namespace lidar_transfusion -{ - -class VoxelGeneratorTest : public testing::Test -{ -public: - void SetUp() override; - void TearDown() override; - - // These need to be public so that they can be accessed in the test cases - rclcpp::Node::SharedPtr node_{}; - - std::unique_ptr cloud1_{}, cloud2_{}; - geometry_msgs::msg::TransformStamped transform1_{}, transform2_{}; - - std::unique_ptr densification_param_ptr_{}; - std::unique_ptr config_ptr_{}; - - std::unique_ptr tf2_buffer_{}; - - std::string world_frame_{}; - std::string lidar_frame_{}; - double delta_pointcloud_x_{}; - std::size_t points_per_pointcloud_{}; - - std::vector voxels_num_{}; - std::vector point_cloud_range_{}; - std::vector voxel_size_{}; - float circle_nms_dist_threshold_{}; - std::vector yaw_norm_thresholds_{}; - float score_threshold_{}; - - cudaStream_t stream_{}; -}; -} // namespace lidar_transfusion - -#endif // TEST_VOXEL_GENERATOR_HPP_