-
Notifications
You must be signed in to change notification settings - Fork 1
/
fine_tune.py
127 lines (110 loc) · 4.69 KB
/
fine_tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import time
import logging
import pickle
import os
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoModelForCausalLM
from accelerate import Accelerator
class TokenizedDataset(Dataset):
def __init__(self, tokenized_data):
self.tokenized_data = tokenized_data
def __len__(self):
return len(self.tokenized_data)
def __getitem__(self, idx):
return torch.tensor(self.tokenized_data[idx])
def fine_tune(
pretrained_model_file_path="zephyr-7b-beta",
lr=5e-5,
gradient_clip=1.0,
num_epochs=3,
out_dir=None,
):
"""
Fine-tune a pretrained model on a dataset using pytorch.
"""
if out_dir is None:
raise ValueError("out_dir must be specified.")
if not os.path.exists(out_dir):
os.makedirs(out_dir)
logging.basicConfig(
filename=os.path.join(out_dir, "fine_tune.log"),
filemode="w",
encoding="utf-8",
level=logging.INFO,
)
start_time = time.time()
logging.info(f"start of log. initial time: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))}")
logging.info(f"pretrained_model_file_path: {pretrained_model_file_path}")
logging.info(f"lr: {lr}")
logging.info(f"gradient_clip: {gradient_clip}")
logging.info(f"out_dir: {out_dir}")
logging.info(f"num_epochs: {num_epochs}")
logging.info("load tokenized dataset")
with open(os.path.join(out_dir, 'tokenized_dataset.pkl'), "rb") as file:
dataset = TokenizedDataset(pickle.load(file))
logging.info("initialize dataloader")
batch_size = 4
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
del dataset # free memory
logging.info("initialize model")
model = AutoModelForCausalLM.from_pretrained(pretrained_model_file_path, torch_dtype=torch.bfloat16)
logging.info(f"model dtype: {model.dtype}")
logging.info("initialize optimizer")
# optimizer = AdamW(model.parameters(), lr=lr)
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
last_save_time = start_time
save_id = 0
loss_history = []
accelerator = Accelerator()
dataloader, model, optimizer = accelerator.prepare(dataloader, model, optimizer)
model.train() # set model to training mode
logging.info("start training loop")
for epoch in range(num_epochs):
total_loss = 0
for batch_idx, input_ids in enumerate(dataloader):
# Forward pass
with accelerator.autocast():
outputs = model(input_ids, labels=input_ids)
loss = outputs.loss
loss_history.append(loss.item())
# log stats
elapsed_time = time.time() - start_time
total_batches_processed = epoch * len(dataloader) + batch_idx + 1
estimated_total_time = elapsed_time * num_epochs * len(dataloader) / total_batches_processed
estimated_time_remaining = estimated_total_time - elapsed_time
remaining_hours, remaining_rem = divmod(estimated_time_remaining, 3600)
remaining_minutes, remaining_seconds = divmod(remaining_rem, 60)
info_string = (f"Epoch {epoch + 1}/{num_epochs}, Batch {batch_idx + 1}/{len(dataloader)}, "
f"Loss: {loss.item():.4f}, GPU Usage: {torch.cuda.memory_allocated() / 1024**3:.2f} GB, "
f"Time Remaining: {int(remaining_hours)}h {int(remaining_minutes)}m {int(remaining_seconds)}s")
logging.info(info_string)
# Backward pass and optimization
optimizer.zero_grad()
accelerator.backward(loss)
if gradient_clip:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=gradient_clip)
optimizer.step()
total_loss += loss.item()
# for every 10 hours that pass, save one temporary checkpoint
if time.time() - last_save_time > 36000:
save_id += 1
cp_dir = f"{out_dir}/cp_{save_id}"
logging.info(f"Checkpoint {save_id}")
logging.info("Saving checkpoint weights")
model.save_pretrained(cp_dir)
logging.info("Saving loss history so far")
with open(os.path.join(cp_dir, "loss_history.pkl"), "wb") as file:
pickle.dump(loss_history, file)
last_save_time = time.time()
model.save_pretrained(out_dir)
with open(os.path.join(out_dir, "loss_history.pkl"), "wb") as file:
pickle.dump(loss_history, file)
if __name__ == "__main__":
fine_tune(
pretrained_model_file_path="Yi-6B",
lr=1e-3,
gradient_clip=1.0,
num_epochs=1,
out_dir="Yi-6B_textbooks_v1"
)