-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathdemo_multithread.py
325 lines (257 loc) · 11.9 KB
/
demo_multithread.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import caffe
import argparse
import os
import cv2
import numpy as np
import time
import matplotlib.pyplot as plt
import threading
import Queue
from mpl_toolkits.mplot3d import Axes3D
import utils
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='gpu')
parser.add_argument('--model_dir', default='/media/tim_ho/HDD1/Projects/VNect-tensorflow/models')
parser.add_argument('--input_size', default=368)
parser.add_argument('--num_of_joints', default=21)
parser.add_argument('--pool_scale', default=8)
parser.add_argument('--plot_2d', default=False)
parser.add_argument('--plot_3d', default=True)
args = parser.parse_args()
joint_color_code = [[139, 53, 255],
[0, 56, 255],
[43, 140, 237],
[37, 168, 36],
[147, 147, 0],
[70, 17, 145]]
# Limb parents of each joint
limb_parents = [1, 15, 1, 2, 3, 1, 5, 6, 14, 8, 9, 14, 11, 12, 14, 14, 1, 4, 7, 10, 13]
# Input scales
scales = [1.0, 0.7]
# Global vars for threads
# joints_2d = np.zeros(shape=(args.num_of_joints, 2), dtype=np.int32)
# joints_3d = np.zeros(shape=(args.num_of_joints, 3), dtype=np.float32)
# cam_img = np.zeros(shape=(args.input_size, args.input_size, 3), dtype=np.uint8)
# hm_size = args.input_size // args.pool_scale
# hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
# x_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
# y_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
# z_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
# Create queue between threads
cam_model_q = Queue.Queue(1)
model_post_q = Queue.Queue(1)
post_render_q = Queue.Queue(1)
def camera_reader():
cam = cv2.VideoCapture(0)
while True:
t1 = time.time()
cam_img = utils.read_square_image('', cam, args.input_size, 'WEBCAM')
if not cam_model_q.full():
cam_model_q.put(cam_img)
# print('cam put')
print('Cam FPS', 1/(time.time()-t1))
def forward():
# global hm_avg, x_hm_avg, y_hm_avg, z_hm_avg
cam_img = np.zeros(shape=(args.input_size, args.input_size, 3), dtype=np.uint8)
joints_2d = np.zeros(shape=(args.num_of_joints, 2), dtype=np.int32)
joints_3d = np.zeros(shape=(args.num_of_joints, 3), dtype=np.float32)
if args.device == 'cpu':
caffe.set_mode_cpu()
elif args.device == 'gpu':
caffe.set_mode_gpu()
caffe.set_device(1)
else:
raise ValueError('No such device')
model_prototxt_path = os.path.join(args.model_dir, 'vnect_net.prototxt')
model_weight_path = os.path.join(args.model_dir, 'vnect_model.caffemodel')
# Load model
model = caffe.Net(model_prototxt_path,
model_weight_path,
caffe.TEST)
# Show network structure and shape
print('##################################################')
print('################Network Structures################')
print('##################################################')
for layer_name in model.params.keys():
print(layer_name, model.params[layer_name][0].data.shape)
print('')
print('##################################################')
print('##################################################')
print('##################################################')
print('\n\n\n\n')
print('##################################################')
print('################Input Output Blobs################')
print('##################################################')
for i in model.blobs.keys():
print(i, model.blobs[i].data.shape)
print('##################################################')
print('##################################################')
print('##################################################')
# cam = cv2.VideoCapture(0)
is_tracking = False
# for img_name in os.listdir('test_imgs'):
while True:
# if not is_tracking:
img_path = 'test_imgs/{}'.format('dance.jpg')
t1 = time.time()
input_batch = []
if not cam_model_q.empty():
cam_img = cam_model_q.get()
# print('forward get')
# cam_img = utils.read_square_image('', cam, args.input_size, 'WEBCAM')
# cam_img = utils.read_square_image(img_path, '', args.input_size, 'IMAGE')
# cv2.imshow('', cam_img)
# cv2.waitKey(0)
orig_size_input = cam_img.astype(np.float32)
for scale in scales:
resized_img = utils.resize_pad_img(orig_size_input, scale, args.input_size)
input_batch.append(resized_img)
input_batch = np.asarray(input_batch, dtype=np.float32)
input_batch = np.transpose(input_batch, (0, 3, 1, 2))
input_batch /= 255.0
input_batch -= 0.4
model.blobs['data'].data[...] = input_batch
# Forward
model.forward()
# Get output data
x_hm = model.blobs['x_heatmap'].data
y_hm = model.blobs['y_heatmap'].data
z_hm = model.blobs['z_heatmap'].data
hm = model.blobs['heatmap'].data
# Trans coordinates
x_hm = x_hm.transpose([0, 2, 3, 1])
y_hm = y_hm.transpose([0, 2, 3, 1])
z_hm = z_hm.transpose([0, 2, 3, 1])
hm = hm.transpose([0, 2, 3, 1])
# Average scale outputs
hm_size = args.input_size // args.pool_scale
hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
x_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
y_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
z_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
for i in range(len(scales)):
rescale = 1.0 / scales[i]
scaled_hm = cv2.resize(hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR)
scaled_x_hm = cv2.resize(x_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR)
scaled_y_hm = cv2.resize(y_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR)
scaled_z_hm = cv2.resize(z_hm[i, :, :, :], (0, 0), fx=rescale, fy=rescale, interpolation=cv2.INTER_LINEAR)
mid = [scaled_hm.shape[0] // 2, scaled_hm.shape[1] // 2]
hm_avg += scaled_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2,
mid[1] - hm_size // 2: mid[1] + hm_size // 2, :]
x_hm_avg += scaled_x_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2,
mid[1] - hm_size // 2: mid[1] + hm_size // 2, :]
y_hm_avg += scaled_y_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2,
mid[1] - hm_size // 2: mid[1] + hm_size // 2, :]
z_hm_avg += scaled_z_hm[mid[0] - hm_size // 2: mid[0] + hm_size // 2,
mid[1] - hm_size // 2: mid[1] + hm_size // 2, :]
hm_avg /= len(scales)
x_hm_avg /= len(scales)
y_hm_avg /= len(scales)
z_hm_avg /= len(scales)
t2 = time.time()
# Get 2d joints
joints_2d = utils.extract_2d_joint_from_heatmap(hm_avg, args.input_size, joints_2d)
# Get 3d joints
joints_3d = utils.extract_3d_joints_from_heatmap(joints_2d, x_hm_avg, y_hm_avg, z_hm_avg, args.input_size,
joints_3d)
print('Post FPS', 1/(time.time()-t2))
if not model_post_q.full():
# model_post_q.put([hm_avg, x_hm_avg, y_hm_avg, z_hm_avg, cam_img])
model_post_q.put([joints_2d, joints_3d, cam_img])
# print('forward put')
print('Forward FPS', 1 / (time.time() - t1))
# Get 2d joints
# joints_2d = utils.extract_2d_joint_from_heatmap(hm_avg, args.input_size, joints_2d)
# Get 3d joints
# joints_3d = utils.extract_3d_joints_from_heatmap(joints_2d, x_hm_avg, y_hm_avg, z_hm_avg, args.input_size,
# joints_3d)
# plt.show(block=False)
def post_process():
# global joints_2d, joints_3d
joints_2d = np.zeros(shape=(args.num_of_joints, 2), dtype=np.int32)
joints_3d = np.zeros(shape=(args.num_of_joints, 3), dtype=np.float32)
hm_size = args.input_size // args.pool_scale
hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
x_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
y_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
z_hm_avg = np.zeros(shape=(hm_size, hm_size, args.num_of_joints))
cam_img = np.zeros(shape=(args.input_size, args.input_size, 3), dtype=np.uint8)
while True:
if not model_post_q.empty():
[hm_avg, x_hm_avg, y_hm_avg, z_hm_avg, cam_img] = model_post_q.get(False)
# print('post get')
t1 = time.time()
# Get 2d joints
joints_2d = utils.extract_2d_joint_from_heatmap(hm_avg, args.input_size, joints_2d)
# Get 3d joints
if args.plot_3d:
joints_3d = utils.extract_3d_joints_from_heatmap(joints_2d, x_hm_avg, y_hm_avg, z_hm_avg, args.input_size,
joints_3d)
print('Post FPS', 1/(time.time()-t1))
if not post_render_q.full():
post_render_q.put([joints_2d, joints_3d, cam_img])
# print('post put')
def render_plt():
joints_2d = np.zeros(shape=(args.num_of_joints, 2), dtype=np.int32)
joints_3d = np.zeros(shape=(args.num_of_joints, 3), dtype=np.float32)
cam_img = np.zeros(shape=(args.input_size, args.input_size, 3), dtype=np.uint8)
if args.plot_3d and args.plot_2d:
plt.ion()
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(121, projection='3d')
ax2 = fig.add_subplot(122)
plt.show()
elif args.plot_3d:
plt.ion()
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='3d')
while True:
if model_post_q.qsize() != 0:
[joints_2d, joints_3d, cam_img] = model_post_q.get(False)
else:
print('render old')
t1 = time.time()
# Plot 2d location heatmap
if args.plot_2d:
joint_map = np.zeros(shape=(args.input_size, args.input_size, 3))
for joint_num in range(joints_2d.shape[0]):
cv2.circle(joint_map, center=(joints_2d[joint_num][1], joints_2d[joint_num][0]), radius=3,
color=(255, 0, 0), thickness=-1)
# Plot 2d limbs
limb_img = utils.draw_limbs_2d(cam_img, joints_2d, limb_parents)
# Plot 3d limbs
if args.plot_3d:
ax.clear()
ax.view_init(azim=0, elev=90)
ax.set_xlim(-700, 700)
ax.set_ylim(-800, 800)
ax.set_zlim(-700, 700)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
utils.draw_limbs_3d(joints_3d, limb_parents, ax)
# draw heatmap
# hm_img = utils.draw_predicted_heatmap(hm_avg*200, args.input_size)
# cv2.imshow('hm', hm_img.astype(np.uint8))
# cv2.waitKey(0)
if args.plot_2d and args.plot_3d:
concat_img = np.concatenate((limb_img, joint_map), axis=1)
ax2.imshow(concat_img[..., ::-1].astype(np.uint8))
plt.pause(1e-10)
elif args.plot_3d:
plt.pause(1e-10)
else:
concat_img = np.concatenate((limb_img, joint_map), axis=1)
cv2.imshow('2d', concat_img.astype(np.uint8))
cv2.waitKey(1)
# ax2.imshow(concat_img.astype(np.uint8))
print('Render FPS', 1 / (time.time() - t1))
if __name__ == '__main__':
t1 = threading.Thread(target=camera_reader, name='cam_thread')
t2 = threading.Thread(target=forward, name='model_thread')
# t3 = threading.Thread(target=post_process, name='post_process_thread')
t4 = threading.Thread(target=render_plt, name='render_thread')
t1.start()
t2.start()
# t3.start()
t4.start()