This section focuses on Ruby-specific optimizations and tools that complement PostgreSQL performance tuning. For definitions of terms used in this module, refer to our Glossary.
Before starting this module, ensure you understand:
βββββββββββββββββββββββββββββββββββββββββββ¬βββββββββββ¬ββββββββββ¬βββββββββββββ¬βββββββββββββββββ
β Operation β Time β Queries β Rate β Relative Speed β
βββββββββββββββββββββββββββββββββββββββββββΌβββββββββββΌββββββββββΌβββββββββββββΌβββββββββββββββββ€
β Processing all records at once β 10.342 s β 90,001 β 2.9k/s β baseline β
β Using find_each with default batch size β 9.657 s β 90,031 β 3.1k/s β 1.1x faster β
β Using find_each with custom batch size β 9.441 s β 90,031 β 3.2k/s β 1.1x faster β
β Using update_all β 0.282 s β 1 β 106.4k/s β 36.6x faster β
βββββββββββββββββββββββββββββββββββββββββββ΄βββββββββββ΄ββββββββββ΄βββββββββββββ΄βββββββββββββββββ
Key Findings:
update_all
is dramatically faster (36.6x) but bypasses ActiveRecord callbacks- Batch processing with
find_each
offers modest improvements (1.1x) - Memory usage increases with batch size
- Query count remains high for individual updates
βββββββββββββββββββββββββββββββ¬ββββββββββ¬ββββββββββ¬βββββββββββββ¬βββββββββββββββββ
β Operation β Time β Queries β Rate β Relative Speed β
βββββββββββββββββββββββββββββββΌββββββββββΌββββββββββΌβββββββββββββΌβββββββββββββββββ€
β Individual inserts β 0.041 s β 300 β 2.4k/s β baseline β
β Bulk insert with insert_all β 0.002 s β 1 β 50.0k/s β 22.0x faster β
βββββββββββββββββββββββββββββββ΄ββββββββββ΄ββββββββββ΄βββββββββββββ΄βββββββββββββββββ
Key Findings:
- Bulk inserts are 22x faster than individual inserts
- Query reduction from 300 to 1
- Memory usage remains constant with bulk operations
- Significantly higher throughput (50k/s vs 2.4k/s)
ββββββββββββββββββββββββββββββββββββββ¬ββββββββββ¬ββββββββββ¬βββββββββββββ¬βββββββββββββββββ
β Operation β Time β Queries β Rate β Relative Speed β
ββββββββββββββββββββββββββββββββββββββΌββββββββββΌββββββββββΌβββββββββββββΌβββββββββββββββββ€
β Query without index β 0.007 s β 1 β n/a β 5.6x faster β
β Query with index β 0.003 s β 1 β n/a β 11.4x faster β
β Complex query without optimization β 0.039 s β 1 β n/a β baseline β
β Complex query with optimization β 0.032 s β 1 β n/a β 1.2x faster β
ββββββββββββββββββββββββββββββββββββββ΄ββββββββββ΄ββββββββββ΄βββββββββββββ΄βββββββββββββββββ
Key Findings:
- Proper indexing improves performance by 11.4x
- Complex query optimization yields 1.2x improvement
- Query count remains constant
- Memory usage varies with result set size
ββββββββββββββββββββββββββββββββ¬ββββββββββ¬ββββββββββ¬βββββββββββββ¬βββββββββββββββββ
β Operation β Time β Queries β Rate β Relative Speed β
ββββββββββββββββββββββββββββββββΌββββββββββΌββββββββββΌβββββββββββββΌβββββββββββββββββ€
β Individual find_or_create_by β 0.049 s β 400 β 2.0k/s β baseline β
β Bulk upsert with insert_all β 0.002 s β 1 β 47.1k/s β 29.5x faster β
β Sequel upsert β 0.002 s β 2 β 46.8k/s β 23.2x faster β
ββββββββββββββββββββββββββββββββ΄ββββββββββ΄ββββββββββ΄βββββββββββββ΄βββββββββββββββββ
Key Findings:
- Bulk upserts are ~25-30x faster than individual operations
- Both ActiveRecord and Sequel offer similar performance for bulk operations
- Query count reduction from 400 to 1-2
- Throughput improvement from 2k/s to 47k/s
Operation Type | ActiveRecord | Sequel | Raw SQL | Notes |
---|---|---|---|---|
Simple Select | 82.6 | 10,178.6 | 12,450.2 | Sequel shines in simple queries |
Complex Joins | 28.7 | 93.3 | 105.1 | AR overhead significant |
Aggregations | 220.2 | 164.0 | 245.3 | AR optimized for counts |
Bulk Inserts | 215.7 | 272.6 | 310.4 | Use specialized methods |
JSON Operations | 145.3 | 188.9 | 195.7 | Native JSON operators help |
Operation Type | ActiveRecord | Sequel | Raw SQL | Notes |
---|---|---|---|---|
Large Result Set | 125 | 45 | 30 | AR objects consume more memory |
Batch Processing | 60 | 35 | 25 | Use find_each for AR |
JSON Processing | 80 | 50 | 45 | JSONB more efficient than JSON |
Aggregations | 40 | 35 | 30 | Similar memory patterns |
- Use
update_all
for simple updates without callbacks (36x faster) - Choose appropriate batch sizes based on memory constraints
- Consider using
find_each
for memory-efficient processing - Monitor memory usage with large datasets
- Prefer bulk operations over individual operations (20-30x faster)
- Use
insert_all
/upsert_all
for multiple records - Consider Sequel for complex upsert scenarios
- Balance between ActiveRecord features and performance
- Ensure proper indexes for frequently queried columns
- Use EXPLAIN ANALYZE to understand query plans
- Optimize complex queries with appropriate SELECT clauses
- Monitor query counts and execution times
- Clear batches after processing
- Monitor memory usage during bulk operations
- Use streaming for large datasets
- Consider memory-efficient alternatives like Sequel or OccamsRecord
-
Time Metrics
- Execution time
- Time per operation
- Query execution time
-
Resource Usage
- Query count
- Memory consumption
- Connection pool usage
- Database load
-
Throughput
- Operations per second
- Queries per second
- Batch completion rate
-
Efficiency
- Memory per operation
- Queries per operation
- CPU utilization
- Batch Processing
# Inefficient
User.all.each { |user| user.update(status: 'active') }
# Efficient (36x faster)
User.update_all(status: 'active')
- Bulk Operations
# Inefficient
users.each { |user| User.create!(user) }
# Efficient (22x faster)
User.insert_all(users)
- Query Optimization
# Inefficient
User.joins(:posts).where(posts: { created_at: 1.week.ago.. })
.group("users.id").having("COUNT(posts.id) > 5")
# Efficient (1.2x faster)
User.joins(:posts)
.select("users.*, COUNT(posts.id) as posts_count")
.where(posts: { created_at: 1.week.ago.. })
.group("users.id")
.having("COUNT(posts.id) > 5")
- Upsert Operations
# Inefficient
records.each do |record|
User.find_or_create_by(email: record[:email])
end
# Efficient (29.5x faster)
User.upsert_all(records, unique_by: :email)
- Ruby Performance Optimization
- ActiveRecord Query Interface
- Sequel Documentation
- Database Performance Monitoring
graph TD
A[Ruby Performance] -->|ORM Choice| B[ActiveRecord vs Sequel]
A -->|N+1 Prevention| C[Eager Loading]
A -->|Memory Usage| D[Object Allocation]
A -->|Monitoring| E[Profiling Tools]
B -->|Features| F[Query Building]
C -->|Tools| G[Bullet/ar_lazy_preload]
D -->|Solutions| H[OccamsRecord]
E -->|Options| I[rack-mini-profiler]
# Bad - N+1 Query
User.all.each do |user|
puts user.posts.count # Executes N additional queries
end
# Good - Eager Loading
User.includes(:posts).each do |user|
puts user.posts.count # Single query
end
# Better - Lazy Preloading
# Using ar_lazy_preload gem
User.all.each do |user|
puts user.posts.count # Automatically eager loads when needed
end
Our tests with 500 users (each with 20 posts and 10 comments per post) showed significant memory improvements with different approaches:
# Standard ActiveRecord (27.30 MB allocated, 68.34 KB retained)
users_data = User.includes(:posts).map do |user|
{
name: user.name,
email: user.email,
post_count: user.posts.size
}
end
# OccamsRecord (16.03 MB allocated, 16.30 KB retained)
users_data = OccamsRecord
.query(User.all)
.eager_load(:posts)
.run
.map { |user| {
name: user.name,
email: user.email,
post_count: user.posts.size
}}
# Using map (935.91 KB allocated)
user_emails = User.all.map(&:email)
# Using pluck (246.03 KB allocated)
user_emails = User.pluck(:email)
# Memory-intensive (265.98 MB allocated, 187.61 MB retained)
results = User.includes(posts: :comments).map do |user|
{
user: user.attributes,
posts: user.posts.map { |post|
post_data = post.attributes
post_data[:comment_count] = post.comments.size
post_data
}
}
end
# Memory-optimized (2.27 MB allocated, 22.66 KB retained)
results = User
.joins(posts: :comments)
.select('users.*, COUNT(DISTINCT posts.id) as posts_count, COUNT(comments.id) as total_comments')
.group('users.id')
.map { |user| {
user: user.attributes,
posts_count: user.posts_count,
total_comments: user.total_comments
}}
Key Findings:
- OccamsRecord reduces memory allocation by ~41% compared to ActiveRecord
- Using
pluck
instead ofmap
reduces memory usage by ~74% - Moving calculations to the database can reduce memory usage by up to 99%
- Batch processing helps maintain consistent memory usage
- Streaming results prevents memory bloat with large datasets
# Sequel Example
DB.transaction do
dataset = DB[:users].where(active: true)
dataset.each do |user|
# Efficient querying and processing
end
end
# config/initializers/mini_profiler.rb
if Rails.env.development?
require 'rack-mini-profiler'
Rack::MiniProfiler.config.position = 'bottom-right'
end
# config/environments/development.rb
config.after_initialize do
Bullet.enable = true
Bullet.alert = true
Bullet.rails_logger = true
Bullet.add_footer = true
end
- Query Building
# Bad - Multiple queries
users = User.where(active: true)
users = users.where(role: 'admin') if admin_only?
users = users.where('created_at > ?', 1.week.ago) if recent_only?
# Good - Single query building
users = User.scoping do
scope = User.where(active: true)
scope = scope.where(role: 'admin') if admin_only?
scope = scope.where('created_at > ?', 1.week.ago) if recent_only?
scope
end
- Batch Processing
# Bad - Loading all records at once
User.all.each do |user|
process_user(user)
end
# Good - Processing in batches
User.find_each(batch_size: 1000) do |user|
process_user(user)
end
- View Optimization with Scenic and TimescaleDB
# db/views/monthly_sales_v01.sql
CREATE MATERIALIZED VIEW monthly_sales_v01 AS
SELECT
time_bucket('1 month', orders.created_at) as month,
SUM(orders.total) as total_sales
FROM orders
GROUP BY 1
# app/models/monthly_sale.rb
class MonthlySale < ApplicationRecord
# Scenic view model
include Scenic::Model
scenic_view :monthly_sales_v01,
comment: 'Materialized view for monthly sales'
end
- Database Query Analysis
# Using marginalia for query source tracking
ActiveRecord::Base.connection.execute(<<~SQL).to_a
SELECT *
FROM pg_stat_activity
WHERE application_name LIKE '%Rails%'
SQL
- Memory Profiling
# Using memory_profiler
require 'memory_profiler'
report = MemoryProfiler.report do
# Your code here
end
report.pretty_print
- Custom Preloader
module CustomPreloader
extend ActiveSupport::Concern
included do
after_initialize :preload_commonly_used_associations
end
private
def preload_commonly_used_associations
# Custom preloading logic
end
end
- Query Object Pattern
class ComplexQueryObject
def initialize(relation = User.all)
@relation = relation
end
def call
@relation
.includes(:relevant_associations)
.where(conditions)
.order(sort_criteria)
end
end
require 'benchmark/ips'
Benchmark.ips do |x|
x.report("ActiveRecord") { User.where(active: true).to_a }
x.report("Sequel") { DB[:users].where(active: true).to_a }
x.compare!
end
- Buffer Cache Hit Ratio Trap
# This can artificially improve BCHR while being inefficient
LargeModel.all.select(:id).each do |record|
LargeModel.find(record.id).some_column
end
# Better approach
LargeModel.select(:id, :some_column).find_each do |record|
process_data(record)
end
- Migration Safety
# Using strong_migrations
class AddIndexSafely < ActiveRecord::Migration[7.0]
def change
add_index :users, :email, algorithm: :concurrently
end
end
- Sequel Documentation
- OccamsRecord Guide
- Bullet Documentation
- rack-mini-profiler Guide
- Strong Migrations
- Scenic Views
- Memory Profiler
- Marginalia
- Share your Ruby gems that helped most with performance
Our tests with 1000 users (each with 10 posts and 5 comments per post) showed:
# Bad approach (51 queries, 0.01s)
User.limit(50).each do |user|
puts user.posts.count # N+1 query for each user
end
# Good approach (52 queries, 0.02s)
User.includes(:posts).limit(50).each do |user|
puts user.posts.length # No additional queries
end
# Bad approach (221 queries, 0.05s)
Post.limit(150).each do |post|
puts post.comments.count # N+1 query for each post
end
# Good approach (203 queries, 0.06s)
Post.includes(:comments).limit(150).each do |post|
puts post.comments.length # No additional queries
end
# Without counter cache (requires COUNT query)
user.posts.count # Executes SQL COUNT
# With counter cache (uses cached value)
user.posts_count # Uses database column
preload
: Loads associations in separate querieseager_load
: Uses LEFT OUTER JOINincludes
: Lets ActiveRecord choose the best strategy
Key Findings:
- N+1 queries can significantly impact performance with larger datasets
- Nested N+1 problems compound the performance impact
- Counter caches are effective for frequently accessed counts
- Different eager loading strategies have varying performance characteristics:
preload
: Best for simple associationseager_load
: Efficient for filteringincludes
: Smart choice for general use
## Congratulations! π
You've completed all modules of the PostgreSQL Performance Workshop! For a refresher on any topics, refer back to:
- [Storage & Internals](../01_storage/README.md)
- [Transaction Management](../02_transactions/README.md)
- [Query Optimization](../03_queries/README.md)
- [TimescaleDB Extension](../04_timescale/README.md)
- [Glossary](../../GLOSSARY.md)