forked from noterminusgit/statarb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
qsim.py
395 lines (336 loc) · 15.6 KB
/
qsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
from util import *
from regress import *
from loaddata import *
from collections import defaultdict
import copy
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--start", help="the starting date to generate alpha signals, formatted as 'YYYYMMdd'")
parser.add_argument("--end", help="the end date to generate alpha signals, formatted as 'YYYYMMdd'")
parser.add_argument("--fcast", help="alpha signals, formatted as 'name1:mult1:weight1,name2:mult2:weight2,...'")
parser.add_argument("--cond", default="mkt_cap")
parser.add_argument("--horizon", default=3)
parser.add_argument("--mult", default=1000.0)
parser.add_argument("--slipbps", default=0.0001)
parser.add_argument("--vwap", default=False)
parser.add_argument("--dir", help="the root directory", default='.')
args = parser.parse_args()
ALPHA_MULT = float(args.mult)
horizon = int(args.horizon)
slipbs = float(args.slipbps)
start = args.start
end = args.end
data_dir = args.dir + "/data"
# cols = ['ticker', 'iclose', 'tradable_volume', 'close', 'bvwap', 'tradable_med_volume_21_y', 'mdvp', 'overnight_log_ret', 'date', 'log_ret', 'bvolume', 'mkt_cap']
cols = ['symbol', 'volume', 'close', 'mdvp', 'overnight_log_ret', 'log_ret', 'mkt_cap'] # new
if args.cond not in cols:
cols.append(args.cond)
for ii in range(1, horizon + 1):
name = 'cum_ret' + str(ii)
cols.append(name)
forecasts = []
forecastargs = args.fcast.split(',')
for fcast in forecastargs:
name, mult, weight = fcast.split(":")
forecasts.append(name)
pnl_df = load_cache(dateparser.parse(start), dateparser.parse(end), data_dir, cols)
pnl_df['forecast'] = np.nan
pnl_df['forecast_abs'] = np.nan
pnl_df['volume_d'] = pnl_df['volume'].groupby(level='gvkey').diff()
# pnl_df.loc[ pnl_df['bvolume_d'] < 0, 'bvolume_d'] = pnl_df['bvolume']
pnl_df = push_data(pnl_df, 'volume_d')
pnl_df = push_data(pnl_df, 'close')
pnl_df = push_data(pnl_df, 'volume')
# vwap_new = (vwap * volume_tot - vwap_old / volume_old) / volume_new
pnl_df['close_n'] = (pnl_df['close_n'] * pnl_df['volume_n'] - pnl_df['close'] * pnl_df['volume']) / pnl_df['volume_d_n']
mkt_rets = pnl_df[['cum_ret1', 'mkt_cap']].dropna().groupby('date').apply(mkt_ret)
for fcast in forecasts:
mu_df = load_mus(data_dir, fcast, start, end)
pnl_df = pd.merge(mu_df, pnl_df, how='left', on=['date', 'gvkey'])
# check vwap diff
maxpdiff = np.abs(pnl_df['close_n'] - pnl_df['close']).idxmax()
print("VWAP Diff")
print(maxpdiff)
# print(pnl_df[[ 'ticker', 'vwap_n', 'close']].ix[ maxpdiff ])
print(pnl_df[['symbol', 'close_n', 'close']].ix[maxpdiff]) # new
day_bucket = {
'delta': defaultdict(int),
'not': defaultdict(int),
0: defaultdict(int),
1: defaultdict(int),
2: defaultdict(int),
3: defaultdict(int),
4: defaultdict(int),
5: defaultdict(int)
}
month_bucket = {
'not': defaultdict(int),
0: defaultdict(int),
1: defaultdict(int),
2: defaultdict(int),
3: defaultdict(int),
4: defaultdict(int),
5: defaultdict(int)
}
time_bucket = {
'not': defaultdict(int),
0: defaultdict(int),
1: defaultdict(int),
2: defaultdict(int),
3: defaultdict(int),
4: defaultdict(int),
5: defaultdict(int)
}
dayofweek_bucket = {
'not': defaultdict(int),
0: defaultdict(int),
1: defaultdict(int),
2: defaultdict(int),
3: defaultdict(int),
4: defaultdict(int),
5: defaultdict(int)
}
upnames = 0
downnames = 0
cond_bucket_day = defaultdict(int)
cond_bucket_not_day = defaultdict(int)
cond_avg = dict()
# fit_df = pd.DataFrame()
# MIX FORECASTS
pnl_df['forecast'] = 0
for fcast in forecasts:
# pnl_df.loc[ np.abs(pnl_df[fcast]) < .001, fcast ] = 0
pnl_df[fcast + '_adj'] = pnl_df[fcast] # / pnl_df[ fcast ].std()
pnl_df['forecast'] += pnl_df[fcast + '_adj']
pnl_df['forecast_abs'] = np.abs(pnl_df['forecast'])
if 'volume' in pnl_df.columns:
pnl_df['adj_vol'] = pnl_df['volume'] * .01
else:
print("WARNING: using tradable_volume instead of volume")
pnl_df['adj_vol'] = 0.01 * pnl_df[['tradable_volume', 'tradable_med_volume_21_y']].min(axis=1) / 14.0
# zscore
# pnl_df['forecast'] = pnl_df['forecast'].groupby(level=0).transform(lambda x: (x - x.mean())/x.std())
# pnl_df['forecast'] = np.abs(pnl_df['forecast'])
# pnl_df['cur_ret'] = np.log(pnl_df['iclose']/pnl_df['bopen'])
# pnl_df['cdec'] = pnl_df['cur_ret'].rank()/float(len(pnl_df)) * 10
# pnl_df.ix[ np.abs(pnl_df['cur_ret']) > .05, 'forecast'] = 0
pnl_df['fill_shares'] = fill_shares = ALPHA_MULT * pnl_df['forecast']
pnl_df['max_shares'] = pnl_df['adj_vol']
pnl_df['min_shares'] = -1 * pnl_df['adj_vol']
# max_adv = 0.0005
# pnl_df['max_shares'] = pnl_df['tradable_med_volume_21_y'] * max_adv
# pnl_df['min_shares'] = -1 * pnl_df['tradable_med_volume_21_y'] * max_adv
pnl_df['fill_shares'] = pnl_df[['max_shares', 'fill_shares']].min(axis=1)
pnl_df['fill_shares'] = pnl_df[['min_shares', 'fill_shares']].max(axis=1)
pnl_df['notional'] = (pnl_df['fill_shares'] * pnl_df['close']).fillna(0)
max_dollars = 5e5
pnl_df['notional'] = pnl_df['notional'].fillna(0).clip(-max_dollars, max_dollars)
pnl_df['slip'] = np.abs(pnl_df['notional']) * slipbs
# set "fill" price
pnl_df['cum_ret0'] = np.log(pnl_df['close'] / pnl_df['close'])
if args.vwap:
pnl_df['cum_ret0'] = np.log(pnl_df['close'] / pnl_df['vwap_n'])
pnl_df['cum_ret_tot0'] = pnl_df['cum_ret0']
pnl_df['day_pnl0'] = pnl_df['notional'] * (np.exp(pnl_df['cum_ret_tot0']) - 1)
pnl_df['day_pnl0'] = pnl_df['day_pnl0'] - pnl_df['slip']
for hh in range(1, horizon + 1):
pnl_df['cum_ret_tot' + str(hh)] = pnl_df['cum_ret0'] + pnl_df['cum_ret' + str(hh)]
# pnl_df['cum_ret_tot' + str(hh)] = pnl_df['cum_ret' + str(hh)]
pnl_df['day_pnl' + str(hh)] = pnl_df['notional'] * (np.exp(pnl_df['cum_ret_tot' + str(hh)]) - 1)
pnl_df['day_pnl' + str(hh)] = pnl_df['day_pnl' + str(hh)] - pnl_df['slip']
pnl_df = pnl_df.dropna(subset=['day_pnl' + str(hh)])
pnl_df = pnl_df.dropna(subset=['forecast', 'day_pnl0'])
fitlist = []
it = 0
delta_sum = 0
for name, date_group_shallow in pnl_df.groupby(level='date'):
# print("Looking at {}".format(name))
date_group=copy.copy(date_group_shallow)
date_group['decile'] = date_group[args.cond].rank() / float(len(date_group)) * 10
date_group['decile'] = date_group['decile'].fillna(-1).astype(int)
if it == 0:
print("Decile cutoffs")
for dd in range(10):
print("Decile {}: {}".format(dd, date_group[date_group['decile'] == dd][args.cond].max()))
dayname = name.strftime("%Y%m%d")
monthname = name.strftime("%Y%m")
timename = name.strftime("%H:%M:%S")
weekdayname = name.weekday()
delta_pnl = date_group['notional'].sum() * mkt_rets[dateparser.parse(dayname)]
delta_sum += delta_pnl
# CALCULATE PNLS
for hh in range(0, horizon + 1):
pnlname = 'day_pnl' + str(hh)
day_pnl = date_group[pnlname]
daysum = day_pnl.sum() - delta_pnl
day_bucket[hh][dayname] += daysum
month_bucket[hh][monthname] += daysum
time_bucket[hh][timename] += daysum
dayofweek_bucket[hh][weekdayname] += daysum
if hh == horizon:
upnames += len(day_pnl[day_pnl > 0])
downnames += len(day_pnl[day_pnl < 0])
absnotional = np.abs(date_group['notional'].fillna(0)).sum()
day_bucket['not'][dayname] += absnotional
month_bucket['not'][monthname] += absnotional
time_bucket['not'][timename] += absnotional
dayofweek_bucket['not'][weekdayname] += absnotional
day_bucket['delta'][dayname] += date_group['notional'].sum()
# CALCULATE CONDITIONAL DECILES
# 9 is the highesto
if args.cond is not None:
condret = 'day_pnl' + str(args.horizon)
for ii in range(-1, 10):
amt = date_group[date_group['decile'] == ii][condret].dropna().sum()
cond_bucket_day[ii] += amt
cond_bucket_not_day[ii] += np.abs(date_group[date_group['decile'] == ii]['notional'].dropna()).sum()
cond_avg[name.strftime("%Y%m%d")] = date_group[args.cond].mean()
it += 1
pnl_df.xs(testid, level=1).to_csv("debug.csv")
print("Delta Sum {}".format(delta_sum))
print()
print()
print("Forecast correlations...")
print(pnl_df[forecasts].corr())
print()
print("Forecast strength...")
plt.figure()
print(pnl_df[forecasts].groupby(level='date').std().plot())
plt.savefig("forecast_strength.png")
print()
print("Generating Total Alpha histogram...")
for forecast in forecasts:
print("Looking at forecast: {} ".format(forecast))
fig1 = plt.figure()
fig1.canvas.set_window_title("Histogram")
pnl_df[forecast].dropna().hist(bins=100)
plt.savefig(forecast + "__hist.png")
print(pnl_df[forecast].describe())
print()
pnlbystock = pnl_df.groupby(level='gvkey')['day_pnl1'].sum()
plt.figure()
pnlbystock.hist(bins=1800)
plt.savefig("stocks.png")
maxid = pnlbystock.idxmax()
print("Max pnl stock pnl distribution: {}".format(pnlbystock.ix[maxid]))
plt.figure()
maxstock_df = pnl_df.xs(maxid, level=1)
maxstock_df['day_pnl1'].hist(bins=100)
plt.savefig("maxstock.png")
maxpnlid = maxstock_df['day_pnl1'].idxmax()
# print(maxstock_df.xs(maxpnlid))
print()
longs = pnl_df[pnl_df['notional'] > 0]['notional'].groupby(level='date').sum()
shorts = np.abs(pnl_df[pnl_df['notional'] < 0]['notional'].groupby(level='date').sum())
nots = longs - shorts
plt.figure()
nots.plot()
plt.savefig("notional_bias.png")
notbiasmax_idx = nots.idxmax()
print("Maximum Notional bias on {}".format(notbiasmax_idx))
print("Bias: {}, Long: {}, Short: {}".format(nots.ix[notbiasmax_idx], longs.ix[notbiasmax_idx],
shorts.ix[notbiasmax_idx]))
plt.figure()
pnl_df.xs(notbiasmax_idx, level=0)['notional'].hist(bins=100)
pnl_df.xs(notbiasmax_idx, level=0).to_csv("max_notional_day.csv")
plt.savefig("maxnotional")
print()
pos = pnl_df[pnl_df['forecast'] > 0].groupby(level='date')['forecast'].count()
neg = pnl_df[pnl_df['forecast'] < 0].groupby(level='date')['forecast'].count()
ratio = pos.astype(float) / neg.astype(float)
plt.figure()
ratio.plot()
plt.savefig("alpha_bias.png")
maxalpha_idx = ratio.idxmax()
print("Maximum Alpha bias on {} of {}".format(maxalpha_idx, ratio.ix[maxalpha_idx]))
plt.figure()
pnl_df.xs(maxalpha_idx, level=0)['forecast'].hist(bins=100)
plt.savefig("maxalphabias.png")
print()
pnl_df = None
for ii in range(horizon + 1):
print("Running horizon " + str(ii))
# pnl_df = pnl_df.dropna(subset=['cum_ret' + str(ii), 'forecast'])
# results_ols = sm.OLS(pnl_df['cum_ret' + str(ii)], sm.add_constant(pnl_df['forecast'])).fit()
# printresults_ols.summary()
nots = pd.DataFrame([[datetime.strptime(d, '%Y%m%d'), v] for d, v in sorted(day_bucket['not'].items())],
columns=['date', 'notional'])
nots.set_index(keys=['date'], inplace=True)
plt.figure()
nots['notional'].plot()
plt.savefig("notional.png")
rets = pd.DataFrame([[datetime.strptime(d, '%Y%m%d'), v] for d, v in sorted(day_bucket[ii].items())],
columns=['date', 'pnl'])
rets.set_index(keys=['date'], inplace=True)
rets = pd.merge(rets, nots, left_index=True, right_index=True)
print("Total Pnl: ${:.0f}K".format(rets['pnl'].sum() / 1000.0))
if ii > 0:
rets['pnl'] = rets['pnl'] / ii
rets['day_rets'] = rets['pnl'] / rets['notional']
rets['day_rets'].replace([np.inf, -np.inf], np.nan, inplace=True)
rets['day_rets'].fillna(0, inplace=True)
rets['cum_ret'] = (1 + rets['day_rets']).dropna().cumprod()
plt.figure()
if args.cond is not None:
conds = pd.DataFrame([[datetime.strptime(d, '%Y%m%d'), v] for d, v in sorted(cond_avg.items())],
columns=['date', 'cond'])
conds.set_index(keys=['date'], inplace=True)
rets[args.cond] = conds['cond']
rets['cum_ret'].plot(legend=True)
rets[args.cond].plot(secondary_y=True, legend=True)
else:
rets['cum_ret'].plot()
plt.draw()
plt.savefig("rets." + str(ii) + "." + ".".join(forecasts) + ".png")
mean = rets['day_rets'].mean() * 252
std = rets['day_rets'].std() * math.sqrt(252)
sharpe = mean / std
print("Day " + str(ii) + " mean: {:.4f} std: {:.4f} sharpe: {:.4f} avg Notional: ${:.0f}K".format(mean, std, sharpe,
rets[
'notional'].mean() / 1000.0))
print()
if args.cond is not None:
print("Cond {} breakdown Bps".format(args.cond))
totnot = 0
for k, v in cond_bucket_not_day.items():
totnot += v
for dec in sorted(cond_bucket_day.keys()):
notional = cond_bucket_not_day[dec] / 10000.0
if notional > 0:
print("Decile {}: {:.4f} {:.4f} {:.4f} {:.2f}%".format(dec, cond_bucket_day[dec] / notional,
cond_bucket_day[dec] / notional,
cond_bucket_day[dec] / notional,
100.0 * cond_bucket_not_day[dec] / totnot))
print()
print("Month breakdown Bps")
for month in sorted(month_bucket['not'].keys()):
notional = month_bucket['not'][month] / 10000.0
if notional > 0:
print("Month {}: {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}".format(month, month_bucket[0][month] / notional,
month_bucket[1][month] / notional,
month_bucket[2][month] / notional,
month_bucket[3][month] / notional,
month_bucket[5][month] / notional))
print()
print("Time breakdown Bps")
for time in sorted(time_bucket['not'].keys()):
notional = time_bucket['not'][time] / 10000.0
if notional > 0:
print("Time {}: {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}".format(time, time_bucket[0][time] / notional,
time_bucket[1][time] / notional,
time_bucket[2][time] / notional,
time_bucket[3][time] / notional,
time_bucket[5][time] / notional))
print()
print("Dayofweek breakdown Bps")
for dayofweek in sorted(dayofweek_bucket['not'].keys()):
notional = dayofweek_bucket['not'][dayofweek] / 10000.0
if notional > 0:
print("Dayofweek {}: {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}".format(dayofweek,
dayofweek_bucket[0][dayofweek] / notional,
dayofweek_bucket[1][dayofweek] / notional,
dayofweek_bucket[2][dayofweek] / notional,
dayofweek_bucket[3][dayofweek] / notional,
dayofweek_bucket[5][dayofweek] / notional))
print()
print("Up %: {:.4f}".format(float(upnames) / (upnames + downnames)))