-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_adapters.py
243 lines (209 loc) · 8.04 KB
/
dataset_adapters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from signals_and_geometry import convolve_recordings, sclog
import torch
import torch.nn.functional as F
import torchaudio
from assert_eq import assert_eq
from dataset3d import k_obstacles, k_sensor_recordings
from device_dict import DeviceDict
from current_simulation_description import Nx, Ny, Nz, minimum_x_units
from which_device import get_compute_device
def sclog_dict(dd):
assert isinstance(dd, DeviceDict)
dd_new = DeviceDict({})
for k, v in dd.items():
dd_new[k] = v
dd_new[k_sensor_recordings] = sclog(dd[k_sensor_recordings])
return dd_new
def subset_recordings_dict(dd, sensor_indices):
assert isinstance(dd, DeviceDict)
assert isinstance(sensor_indices, list)
dd_new = DeviceDict({})
for k, v in dd.items():
dd_new[k] = v
sensor_recordings = dd[k_sensor_recordings]
assert sensor_recordings.ndim in [2, 3]
if sensor_recordings.ndim == 2:
sensor_recordings = sensor_recordings[sensor_indices]
elif sensor_recordings.ndim == 3:
sensor_recordings = sensor_recordings[:, sensor_indices]
dd_new[k_sensor_recordings] = sensor_recordings
return dd_new
def convolve_recordings_dict(dd, emitter_signal):
assert isinstance(dd, DeviceDict)
assert isinstance(emitter_signal, torch.Tensor)
dd_new = DeviceDict({})
for k, v in dd.items():
dd_new[k] = v
sensor_recordings = dd[k_sensor_recordings]
assert sensor_recordings.ndim in [2, 3]
sensor_recordings = convolve_recordings(emitter_signal, sensor_recordings)
dd_new[k_sensor_recordings] = sensor_recordings
return dd_new
def occupancy_grid_to_depthmap(occupancy, spatial_dimension):
assert isinstance(occupancy, torch.Tensor)
assert_eq(occupancy.dtype, torch.bool)
assert spatial_dimension in [0, 1, 2]
batch_mode = occupancy.ndim == 4
if not batch_mode:
occupancy = occupancy.unsqueeze(0)
B, H, W, D = occupancy.shape
if spatial_dimension == 0:
depthmap = torch.ones((B, W, D), device=occupancy.device)
for i in range(H):
depthmap[occupancy[:, i, :, :]] = 1.0 - (i / (H - 1))
elif spatial_dimension == 1:
depthmap = torch.ones((B, H, D), device=occupancy.device)
for i in range(W):
depthmap[occupancy[:, :, i, :]] = 1.0 - (i / (W - 1))
elif spatial_dimension == 2:
depthmap = torch.ones((B, H, W), device=occupancy.device)
for i in range(D):
depthmap[occupancy[:, :, :, i]] = 1.0 - (i / (D - 1))
if not batch_mode:
depthmap = depthmap.squeeze(0)
return depthmap
# batvision waveform input
# dd{audio} => {audio}, assert 4 channels, resample from 2048 to 3200 samples
def wavesim_to_batvision_waveform(dd):
assert isinstance(dd, DeviceDict)
audio = dd[k_sensor_recordings]
batch_mode = audio.ndim == 3
if not batch_mode:
audio = audio.unsqueeze(0)
B, C, L = audio.shape
assert_eq(C, 4)
assert_eq(L, 2048)
audio_resampled = F.interpolate(
audio, size=3200, mode="linear", align_corners=False
)
assert_eq(audio_resampled.shape, (B, 4, 3200))
audio_resampled = audio_resampled.reshape(B, 4, 1, 3200)
if not batch_mode:
audio_resampled = audio_resampled.squeeze(0)
return audio_resampled
# batvision spectrogram input
# dd{audio} => {spectrograms}, assert 4 channels, compute 4x RGB spectrogram
to_spectrogram_batvision = torchaudio.transforms.Spectrogram(
n_fft=430,
win_length=64,
hop_length=6,
window_fn=torch.hann_window,
).to(get_compute_device())
def wavesim_to_batvision_spectrogram(dd):
assert isinstance(dd, DeviceDict)
audio = dd[k_sensor_recordings]
batch_mode = audio.ndim == 3
if not batch_mode:
audio = audio.unsqueeze(0)
B, C, L = audio.shape
assert_eq(C, 4)
assert_eq(L, 2048)
spectrograms = to_spectrogram_batvision(audio)
assert_eq(spectrograms.shape, (B, 4, 216, 342))
spectrograms = spectrograms[:, :, :, :334]
spectrograms = torch.log(torch.clamp(torch.abs(spectrograms), min=1e-12))
vmin = torch.min(torch.min(spectrograms, dim=-1)[0], dim=-1)[0]
vmax = torch.max(torch.max(spectrograms, dim=-1)[0], dim=-1)[0]
assert_eq(vmin.shape, (B, 4))
assert_eq(vmax.shape, (B, 4))
vmin = vmin.reshape(B, 4, 1, 1)
vmax = vmax.reshape(B, 4, 1, 1)
spectrograms = (spectrograms - vmin) / (vmax - vmin)
assert_eq(spectrograms.shape, (B, 4, 216, 334))
if not batch_mode:
spectrograms = spectrograms.squeeze(0)
return spectrograms
# batvision depthmap output
# dd{obstacles} => depthmap, volume render 69x69 image with depth normalized to [0,1], resample to 128x128
def wavesim_to_batvision_depthmap(dd):
assert isinstance(dd, DeviceDict)
obstacles = dd[k_obstacles]
batch_mode = obstacles.ndim == 4
if not batch_mode:
obstacles = obstacles.unsqueeze(0)
B = obstacles.shape[0]
assert_eq(obstacles.shape, (B, Nx, Ny, Nz))
depthmap = occupancy_grid_to_depthmap(obstacles, spatial_dimension=0)
depthmap = F.interpolate(
depthmap.unsqueeze(1),
size=(128, 128),
mode="bilinear",
align_corners=False,
).squeeze(1)
assert_eq(depthmap.shape, (B, 128, 128))
if not batch_mode:
depthmap = depthmap.squeeze(0)
return depthmap
# batgnet spectrogram input
# dd{audio} => dd{spectrograms}, assert 4 channels, compute 4x long window spectrograms and 4x short window spectrograms, resample to 256x256
to_spectrogram_batgnet_sw = torchaudio.transforms.Spectrogram(
n_fft=512,
win_length=64,
hop_length=8,
window_fn=torch.hann_window,
).to(get_compute_device())
to_spectrogram_batgnet_lw = torchaudio.transforms.Spectrogram(
n_fft=512,
win_length=256,
hop_length=8,
window_fn=torch.hann_window,
).to(get_compute_device())
def wavesim_to_batgnet_spectrogram(dd):
assert isinstance(dd, DeviceDict)
audio = dd[k_sensor_recordings]
batch_mode = audio.ndim == 3
if not batch_mode:
audio = audio.unsqueeze(0)
B, C, L = audio.shape
assert_eq(C, 4)
assert_eq(L, 2048)
spectrogram_lw = to_spectrogram_batgnet_lw(audio)
assert_eq(spectrogram_lw.shape, (B, 4, 257, 257))
spectrogram_sw = to_spectrogram_batgnet_sw(audio)
assert_eq(spectrogram_sw.shape, (B, 4, 257, 257))
spectrogram_lw = spectrogram_lw[:, :, :256, :256]
spectrogram_sw = spectrogram_sw[:, :, :256, :256]
spectrogram_lw = torch.log(torch.clamp(torch.abs(spectrogram_lw), min=1e-12))
spectrogram_sw = torch.log(torch.clamp(torch.abs(spectrogram_sw), min=1e-12))
spectrograms = torch.cat([spectrogram_sw, spectrogram_lw], dim=1)
vmin = torch.min(torch.min(spectrograms, dim=-1)[0], dim=-1)[0]
vmax = torch.max(torch.max(spectrograms, dim=-1)[0], dim=-1)[0]
assert_eq(vmin.shape, (B, 8))
assert_eq(vmax.shape, (B, 8))
vmin = vmin.reshape(B, 8, 1, 1)
vmax = vmax.reshape(B, 8, 1, 1)
spectrograms = (spectrograms - vmin) / (vmax - vmin)
assert_eq(spectrograms.shape, (B, 8, 256, 256))
if not batch_mode:
spectrograms = spectrograms.squeeze(0)
return spectrograms
# batgnet occupancy output
# dd{obstacles} => dd{obstacles}, resample ROI to 64x64x64, back-fill
def wavesim_to_batgnet_occupancy(dd, backfill):
assert isinstance(dd, DeviceDict)
assert isinstance(backfill, bool)
obstacles = dd[k_obstacles]
batch_mode = obstacles.ndim == 4
if not batch_mode:
obstacles = obstacles.unsqueeze(0)
B = obstacles.shape[0]
assert_eq(obstacles.shape, (B, Nx, Ny, Nz))
roi = obstacles[:, minimum_x_units:]
occupancy = (
F.interpolate(
roi.unsqueeze(1).float(),
size=(64, 64, 64),
mode="trilinear",
align_corners=False,
).squeeze(1)
> 0.5
)
assert_eq(occupancy.shape, (B, 64, 64, 64))
if backfill:
mask = torch.zeros((B, 64, 64), dtype=torch.bool, device=obstacles.device)
for x in range(64):
mask.logical_or_(occupancy[:, x])
occupancy[:, x] = mask
if not batch_mode:
occupancy = occupancy.squeeze(0)
return occupancy