-
Notifications
You must be signed in to change notification settings - Fork 80
/
pyproject.toml
291 lines (266 loc) · 11.8 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
[tool.poetry]
name = "etna"
version = "2.2.0"
repository = "https://github.com/tinkoff-ai/etna"
readme = "README.md"
description = "ETNA is the first python open source framework of Tinkoff.ru AI Center. It is designed to make working with time series simple, productive, and fun."
license = "Apache-2.0"
classifiers = [
"Development Status :: 5 - Production/Stable",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3",
"Topic :: Software Development :: Libraries :: Python Modules",
"Intended Audience :: Science/Research",
"Intended Audience :: Education",
"Operating System :: Unix",
"Operating System :: MacOS",
"Operating System :: Microsoft :: Windows",
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License"
]
packages = [
{ include = "etna", from = "." },
]
authors = [
"Andrey Alekseev <[email protected]>",
"Julia Shenshina <[email protected]>",
"Martin Gabdushev <[email protected]>",
"Albina Munirova <[email protected]>",
"Artem Levashov <[email protected]>",
"Alexey Podkidyshev <[email protected]>",
"Nikita Barinov <[email protected]>",
"Dmitry Bunin <[email protected]>",
"Alexander Chikov <[email protected]>",
"Artem Makhin <[email protected]>"
]
[tool.poetry.dependencies]
python = ">=3.8.0, <3.11.0"
scikit-learn = ">=0.24, <2"
pandas = "^1.1"
catboost = ">=0.21"
ruptures = "^1.1.5"
numba = ">=0.53.1"
seaborn = "^0.11.1"
statsmodels = ">=0.12,<0.14"
pmdarima = ">=1.8.0"
dill = "^0.3.4"
toml = "^0.10.2"
loguru = "^0.5.3"
hydra-slayer = "^0.2.0"
typer = "^0.4.0"
omegaconf = "^2.1.1"
holidays = ">=0.13,<1.0"
boto3 = "^1.5"
botocore = "*"
scipy = "^1.0"
Bottleneck = "^1.3.4"
numpy = "*"
joblib = "*"
plotly = "*"
hydra_slayer = "*"
matplotlib = "*"
typing_extensions = "*"
tbats = "^1.1.0"
Deprecated = "1.2.13"
types-Deprecated = "1.2.9"
prophet = {version = "^1.0", optional = true}
torch = {version = ">=1.8.0,<1.12.0", optional = true}
pytorch-forecasting = {version = "^0.9.0", optional = true}
pytorch-lightning = {version = "*", optional = true}
wandb = {version = "^0.12.2", optional = true}
optuna = {version = ">=2.5.0,<3.0.0", optional = true}
sqlalchemy = {version = "^1.1.0", optional = true}
statsforecast = {version = "1.4", optional = true}
sphinx-mathjax-offline = {version = "^0.0.1", optional = true}
nbsphinx = {version = "^0.8.2", optional = true}
Sphinx = {version = "^4.1", optional = true}
numpydoc = {version = "^1.1.0", optional = true}
sphinx-rtd-theme = {version = "^0.5.1", optional = true}
myst-parser = {version = "^0.15.0", optional = true}
GitPython = {version = "^3.1.20", optional = true}
pytest = {version = "^6.2", optional = true}
coverage = {version = "^5.4", optional = true}
pytest-cov = {version = "^2.11.1", optional = true}
black = {extras = ["jupyter"], version = "^22.3.0", optional = true}
isort = {version = "^5.8.0", optional = true}
flake8 = {version = "^3.9.2", optional = true}
pep8-naming = {version = "^0.12.1", optional = true}
flake8-bugbear = {version = "^22.4.25", optional = true}
flake8-comprehensions = {version = "^3.9.0", optional = true}
flake8-docstrings = {version = "^1.6.0", optional = true}
mypy = {version = ">=0.950,<2", optional = true}
types-PyYAML = {version = "^6.0.0", optional = true}
codespell = {version = "^2.0.0", optional = true}
click = {version = ">=8.0.1, <8.1", optional = true}
semver = {version = "^2.13.0", optional = true}
ipywidgets = {version = "^7.6.5", optional = true}
jupyter = {version = "*", optional = true}
nbconvert = {version = "*", optional = true}
pyts = {version = "^0.12.0", optional = true}
tsfresh = {version = "~0.20.0", optional = true}
types-setuptools = {version = "^65.7.0", optional = true}
[tool.poetry.extras]
# optional deps
prophet = ["prophet"]
torch = ["torch", "pytorch-forecasting", "pytorch-lightning"]
wandb = ["wandb"]
auto = ["optuna", "sqlalchemy"]
classification = ["pyts", "tsfresh"]
statsforecast = ["statsforecast"]
# dev deps
release = ["click", "semver"]
docs = ["Sphinx", "numpydoc", "sphinx-rtd-theme", "nbsphinx", "sphinx-mathjax-offline", "myst-parser", "GitPython"]
tests = ["pytest-cov", "coverage", "pytest"]
jupyter = ["jupyter", "nbconvert", "black"]
style = ["black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", "types-setuptools"]
all = [
"prophet",
"torch", "pytorch-forecasting", "pytorch-lightning",
"wandb",
"optuna", "sqlalchemy",
"pyts", "tsfresh",
"statsforecast"
]
all-dev = [
"prophet",
"torch", "pytorch-forecasting", "pytorch-lightning",
"wandb",
"optuna", "sqlalchemy",
"click", "semver",
"Sphinx", "numpydoc", "sphinx-rtd-theme", "nbsphinx", "sphinx-mathjax-offline", "myst-parser", "GitPython",
"pytest-cov", "coverage", "pytest",
"black", "isort", "flake8", "pep8-naming", "flake8-docstrings", "mypy", "types-PyYAML", "codespell", "flake8-bugbear", "flake8-comprehensions", "types-setuptools",
"click", "semver",
"jupyter", "nbconvert",
"pyts", "tsfresh",
"statsforecast"
]
[tool.poetry.scripts]
etna = "etna.commands.__main__:app"
[tool.black]
line-length = 120
target-version = ['py37', 'py38', 'py39']
include = '\.pyi?$'
exclude = '''
/(
\.git
| \.hg
| \.mypy_cache
| \.tox
| \.venv
| _build
| buck-out
| build
| dist
| etna/libs
# The following are specific to Black, you probably don't want those.
| blib2to3
| tests/data
)/
'''
[tool.isort]
multi_line_output = 3
include_trailing_comma = true
force_grid_wrap = 0
use_parentheses = true
ensure_newline_before_comments = true
line_length = 120
[tool.pytest.ini_options]
minversion = "6.0"
doctest_optionflags = "NORMALIZE_WHITESPACE IGNORE_EXCEPTION_DETAIL NUMBER"
# TODO: Uncomment after some solution in https://github.com/pytest-dev/pytest/issues/10773
#filterwarnings = [
# "error",
# "ignore: Torchmetrics v0.9 introduced a new argument class property called `full_state_update` that",
# "ignore: TSDataset freq can't be inferred",
# "ignore: test_size, test_start and test_end cannot be",
# "ignore: You probably set wrong freq. Discovered freq in you data is None",
# "ignore: Some regressors don't have enough values in segment",
# "ignore: Segments contains NaNs in the last timestamps.",
# "ignore: pandas.util.testing is deprecated. Use the functions in the public API",
# "ignore: Call to deprecated class CatBoostModelPerSegment.", # OK
# "ignore: Call to deprecated class CatBoostModelMultiSegment.", # OK
# "ignore: Attribute 'loss' is an instance of `nn.Module` and is already",
# "ignore: Columns from feature_to_use which are out of dataframe columns will",
# "ignore: Comparison of Timestamp with datetime.date is deprecated in order to",
# "ignore: CountryHoliday is deprecated, use country_holidays instead.",
# "ignore: Exogenous or target data contains None! It will be dropped",
# "ignore: is less than n_segments. Algo will filter data",
# "ignore: Given top_k=30 is bigger than n_features=20. Transform will not filter",
# "ignore: Implicitly cleaning up ",
# "ignore: Maximum Likelihood optimization failed to converge. Check mle_retvals",
# "ignore: Mean of empty slice",
# "ignore: No frequency information was provided, so inferred frequency D will",
# "ignore: Non-stationary starting autoregressive parameters found. Using zeros as starting parameters.",
# "ignore: Slicing a positional slice with .loc is not supported",
# "ignore: Some of external objects in input parameters could be not",
# "ignore: The 'check_less_precise' keyword in testing.assert_*_equal is deprecated and will be",
# "ignore: The default dtype for empty Series will be 'object' instead",
# "ignore: This model does not work with exogenous features and regressors.",
# "ignore: Transformation will be applied inplace, out_column param will be ignored",
# "ignore: You defined a `validation_step` but have no `val_dataloader`. Skipping val",
# "ignore: You probably set wrong freq. Discovered freq in you data",
# "ignore: SeasonalMovingAverageModel does not work with any exogenous series or features.",
# "ignore: MovingAverageModel does not work with any exogenous series or features.",
# "ignore: NaiveModel does not work with any exogenous series or features.",
# "ignore: `np.object` is a deprecated alias for the builtin `object`. To",
# "ignore: divide by zero encountered in log",
# "ignore: inplace is deprecated and will be removed in a future",
# "ignore: invalid value encountered in double_scalars",
# "ignore: Arrays of bytes/strings is being converted to decimal numbers if",
# "ignore: Attribute 'logging_metrics' is an instance of `nn.Module` and is already",
# "ignore: Exogenous data contains columns with category type! It will be",
# "ignore: Features {'unknown'} are not found and will be dropped!",
# "ignore: SARIMAX model does not work with exogenous features",
# "ignore: Series.dt.weekofyear and Series.dt.week have been deprecated",
# "ignore: The dataloader, train_dataloader, does not have many workers which may",
# "ignore: Creating a tensor from a list of numpy.ndarrays",
# "ignore: Trying to infer the `batch_size` from an ambiguous collection",
# "ignore: ReduceLROnPlateau conditioned on metric val_loss which is not available but strict",
# "ignore: Checkpoint directory",
# "ignore: Objective did not converge. You might want to increase the number",
# "ignore: distutils Version classes are deprecated.",
# "ignore: invalid escape sequence",
# "ignore::pandas.core.common.SettingWithCopyWarning",
# "ignore: You haven't set all parameters inside class __init__ method.* 'box_cox_bounds'",
# "ignore: You haven't set all parameters inside class __init__ method.* 'use_box_cox'",
# "ignore: You haven't set all parameters inside class __init__ method.* 'use_trend'",
# "ignore: You haven't set all parameters inside class __init__ method.* 'use_damped_trend'",
# "ignore: You haven't set all parameters inside class __init__ method.* 'seasonal_periods'",
# "ignore: You haven't set all parameters inside class __init__ method.* 'show_warnings'",
# "ignore: You haven't set all parameters inside class __init__ method.* 'n_jobs'",
# "ignore: You haven't set all parameters inside class __init__ method.* 'multiprocessing_start_method'",
# "ignore: You haven't set all parameters inside class __init__ method.* 'context'",
# "ignore: You haven't set all parameters inside class __init__ method.* 'use_arma_errors'",
# "ignore: New behaviour in v1.1.5",
# "ignore: The 'check_less_precise' keyword in testing",
# "ignore: Feature names only support names that are all strings",
# "ignore: Given top_k=.* is less than n_segments. Algo will filter data without Gale-Shapley run.",
# "ignore: Call to deprecated create function", # protobuf warning
# "ignore: Dynamic prediction specified to begin during out-of-sample forecasting period, and so has no effect.",
# "ignore: `tsfresh` is not available, to install it, run `pip install tsfresh==0.19.0 && pip install protobuf==3.20.1`",
# "ignore::pytorch_lightning.utilities.rank_zero.LightningDeprecationWarning",
# "ignore: The default method 'yw' can produce PACF values outside",
# "ignore: All-NaN slice encountered",
#]
markers = [
"smoke",
"long_1",
"long_2"
]
[tool.coverage.report]
exclude_lines = [
'^ +assert_never\(.*?\)$',
]
[tool.mypy]
ignore_missing_imports = true
strict_optional = true
files = "etna/"
exclude = "etna/libs"
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"