-
Notifications
You must be signed in to change notification settings - Fork 0
/
nailTest.R
44 lines (31 loc) · 980 Bytes
/
nailTest.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
inputfile="/home/ben/workspace/timeCourse/code/nail/input/sample_data/sample_expression_data.txt"
nailIn = read.table( inputfile,sep="\t", header=TRUE, row.names=1,stringsAsFactors = FALSE )
nailIn
chip2<-nailIn[,2]/nailIn[,1]
log2(chip2)
sums
sums<-colSums(nailIn)
chip1 <-nailIn[,1]/sums[1]
log2(chip1)
log2(nailIn[,1]/(sum(sums)/6))
log2(nailIn[,1])
log2(nailIn[,2]/sums[2])
log2(nailIn[1,]/(sum(nailIn[1,])/6))
rld<-rlog(dds)
rld
library("vsn")
par(mfrow=c(1,3))
notAllZero <- (rowSums(counts(dds))>0)
meanSdPlot(log2(counts(dds,normalized=TRUE)[notAllZero,] + 1))
meanSdPlot(assay(rld[notAllZero,]))
mcols(rld,use.names=TRUE)[1:4,1:4]
transformedData<-assays(dds)[["mu"]]
head(assays(dds)[["mu"]])
class(transformedData)
dim(transformedData)
head(counts)
write.csv(transformedData, "nailInput.csv" )
transformedData<-transformedData[candidates,]
candidates<-read.csv("../results/tripleDE.csv",row.names=1,header=TRUE)
candidates<-rownames(candidates)
candidates