-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdaemon.py
157 lines (120 loc) · 4.94 KB
/
daemon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright (C) 2017 DataArt
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import json
import time
import threading
import logging.config
from devicehive_webconfig import Server, Handler
from models.yolo import Yolo2Model
from utils.general import format_predictions, format_notification
from web.routes import routes
from log_config import LOGGING
import save_to_file as sf
logging.config.dictConfig(LOGGING)
logger = logging.getLogger('detector')
class DeviceHiveHandler(Handler):
_device = None
def handle_connect(self):
self._device = self.api.put_device(self._device_id)
super(DeviceHiveHandler, self).handle_connect()
def send(self, data):
if isinstance(data, str):
notification = data
else:
try:
notification = json.dumps(data)
except TypeError:
notification = str(data)
self._device.send_notification(notification)
class Daemon(Server):
encode_params = [cv2.IMWRITE_JPEG_QUALITY, cv2.COLOR_LUV2LBGR]
_detect_frame_data = None
_detect_frame_data_id = None
_cam_thread = None
def __init__(self, *args, **kwargs):
super(Daemon, self).__init__(*args, **kwargs)
self._detect_frame_data_id = 0
self._cam_thread = threading.Thread(target=self._cam_loop, name='cam')
self._cam_thread.setDaemon(True)
def _on_startup(self):
self._cam_thread.start()
def _cam_loop(self):
logger.info('Start camera loop')
cam = cv2.VideoCapture(0)
if not cam.isOpened():
raise IOError('Can\'t open "{}"'.format(0))
source_h = cam.get(cv2.CAP_PROP_FRAME_HEIGHT)
source_w = cam.get(cv2.CAP_PROP_FRAME_WIDTH)
model = Yolo2Model(input_shape=(source_h, source_w, 3))
model.init()
start_time = time.time()
frame_num = 0
fps = 0
try:
while self.is_running:
ret, frame = cam.read()
if not ret:
logger.warning('Can\'t read video data')
continue
predictions = model.evaluate(frame)
classes = []
for o in predictions:
x1 = o['box']['left']
x2 = o['box']['right']
y1 = o['box']['top']
y2 = o['box']['bottom']
color = o['color']
class_name = o['class_name']
# Draw box
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
# Draw label
(test_width, text_height), baseline = cv2.getTextSize(
class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 1)
cv2.rectangle(frame, (x1, y1),
(x1+test_width, y1-text_height-baseline),
color, thickness=cv2.FILLED)
cv2.putText(frame, class_name, (x1, y1-baseline),
cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1)
classes.append(class_name)
sf.save("frame",classes)
end_time = time.time()
fps = fps * 0.9 + 1/(end_time - start_time) * 0.1
start_time = end_time
# Draw additional info
frame_info = 'Frame: {0}, FPS: {1:.2f}'.format(frame_num, fps)
cv2.putText(frame, frame_info, (10, frame.shape[0]-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
logger.info(frame_info)
self._detect_frame_data_id = frame_num
_, img = cv2.imencode('.jpg', frame, self.encode_params)
self._detect_frame_data = img
if predictions:
formatted = format_predictions(predictions)
logger.info('Predictions: {}'.format(formatted))
self._send_dh(format_notification(predictions))
frame_num += 1
finally:
cam.release()
model.close()
def _send_dh(self, data):
if not self.dh_status.connected:
logger.error('Devicehive is not connected')
return
self.deviceHive.handler.send(data)
def get_frame(self):
return self._detect_frame_data, self._detect_frame_data_id
if __name__ == '__main__':
server = Daemon(DeviceHiveHandler, routes=routes)
server.start()