-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
92 lines (63 loc) · 2.05 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# perimetry
R package for visual field analysis.
<!-- badges: start -->
[![Travis build status](https://travis-ci.com/tjebo/perimetry.svg?branch=master)](https://travis-ci.com/tjebo/perimetry)
[![R-CMD-check](https://github.com/tjebo/perimetry/workflows/R-CMD-check/badge.svg)](https://github.com/tjebo/perimetry/actions)
<!-- badges: end -->
perimetry will simplify visual field analysis based on current concepts and understanding of visual field data.
## Features
## Installation
NOT YET ON CRAN
Development version on github (here!)
``` r
# install.packages("devtools")
devtools::install_github("tjebo/perimetry")
```
## Example
```{r example}
library(perimetry)
```
# tidyfields
A framework for the analysis of visual field (perimetry) data in R.
## Ideas
### 1. Input
### 2. Central object: tidyfield object
```{r}
str(tidyfield_mock)
```
### 3. "Mind the gap" function
Function that completes inputs, that are not stored in the original device output, but that are 'imputable'
E.g., Response [y/n] not saved in MAIA files, but imputable from the staircase values
### 4. Coordinate system
Fixed XY
- xy converted to deg. in visual field space
- Ideal for binocular anlyses
Flipped XY ("left-eye convention")
- Ideal for normal data comparison
> Maybe, both should be included in tidyfield object
> Some convention is needed throughout the package, i.e., each X and Y should have a suffix that specifies the meaning (e.g., "Yvsdeg" for visual field space and degrees )
### Normal data
- Systematic comparison of spatial interpolation techniques necessary
### Output statistics
Spatially-ignorant metrics (will be spatially-weighted)
- Mean Sensitivity [dB]
- Mean Deviation [dB]
- PSD [dB]
- Mean Loss [dB]
- Sqrt. of Loss Variance [dB]
Spatially-adjusted metrics
- Vol. [dB*sr]
- Loss [dB*sr]
- PSD [dB*sr]