Skip to content
/ ISIn Public

Python implementation of "Parameters for burst detection"

License

Notifications You must be signed in to change notification settings

tk-neuron/ISIn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Parameters for burst detection (Python3)

This code is unofficial Python3 implementation of the following paper's algorithm:

Bakkum DJ, Radivojevic M, Frey U, Franke F, Hierlemann A, Takahashi H. Parameters for burst detection. Front Comput Neurosci. 2014 Jan 13;7:193. doi: 10.3389/fncom.2013.00193. PMID: 24567714; PMCID: PMC3915237.

Install

After cloning this repository, do:

(venv) cd ISIn
(venv) pip install .  # make sure you're in the virtual environment for your project

Example

See details in examples directory.

from ISIn import BurstDetector

spike_train = np.array([])  # prepare a single spike train (np.array) that combines all spikes from multiple channels
bursts = BurstDetector.detect(spiketime=spike_train, n=500, threshold=100)

print(bursts[i])  # ith burst
print(bursts[:, 0])  # array of all bursts' start time
print(bursts[:, 1])  # array of all bursts' end time

Optimal n_list varies a lot depending on your data (e.g. culturing density, the number of channels), so I recommend trying various N values.