You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi - below are two of my train loss curves from training the alpaca data on LLaMa2-hf. Pleeease anyone has insights into these two questions? (params below)
Why did both training loss experience a significant drop within the first 100 steps?
How to fix oscillations the green curve has? What can be the possible reasons?
-----------------------params for Blue line-----------------------
# model/data params
base_model: str = "meta-llama/Llama-2-7b-hf",
data_path: str = "alpaca_data.json",
output_dir: str = "", #./lora-alpaca/fine-tuned_outputs
# training hyperparams
batch_size: int = 128,
micro_batch_size: int = 8,
num_epochs: int = 10,
learning_rate: float = 3e-4,
cutoff_len: int = 512,
val_set_size: int = 2000,
# lora hyperparams
lora_r: int = 16,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [
"q_proj",
"v_proj",
],
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
):
-----------------------params for Green line-----------------------
same params as above, except:
python finetune.py
--base_model='meta-llama/Llama-2-7b-hf'
--data_path: "yahma/alpaca-cleaned"
--num_epochs=10
--cutoff_len=512
--group_by_length
--output_dir='./lora-alpaca-finetuned-outputs'
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]'
--lora_r=16
--micro_batch_size=8
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
Hi - below are two of my train loss curves from training the alpaca data on LLaMa2-hf. Pleeease anyone has insights into these two questions? (params below)
-----------------------params for Blue line-----------------------
# model/data params
base_model: str = "meta-llama/Llama-2-7b-hf",
data_path: str = "alpaca_data.json",
output_dir: str = "", #./lora-alpaca/fine-tuned_outputs
# training hyperparams
batch_size: int = 128,
micro_batch_size: int = 8,
num_epochs: int = 10,
learning_rate: float = 3e-4,
cutoff_len: int = 512,
val_set_size: int = 2000,
# lora hyperparams
lora_r: int = 16,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [
"q_proj",
"v_proj",
],
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
):
-----------------------params for Green line-----------------------
same params as above, except:
python finetune.py
--base_model='meta-llama/Llama-2-7b-hf'
--data_path: "yahma/alpaca-cleaned"
--num_epochs=10
--cutoff_len=512
--group_by_length
--output_dir='./lora-alpaca-finetuned-outputs'
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]'
--lora_r=16
--micro_batch_size=8
Beta Was this translation helpful? Give feedback.
All reactions