-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimal_example.py
41 lines (27 loc) · 1.06 KB
/
minimal_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from pytorch_lightning import LightningModule, Trainer
from torch.utils.data import DataLoader, TensorDataset
class Submodule(LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(10, 1)
def configure_optimizers(self):
return torch.optim.Adam(self.layer.parameters())
def training_step(self, batch, batch_idx):
x, y = batch
loss = torch.nn.functional.mse_loss(self.layer(x), y)
self.log("train_loss", loss)
dataloader = DataLoader(
TensorDataset(torch.rand(10, 10), torch.rand(10, 1)),
)
Trainer(max_epochs=1).fit(Submodule(), dataloader, dataloader)
class Architecture(LightningModule):
def __init__(self):
super().__init__()
self.submodule = Submodule()
def configure_optimizers(self):
return self.submodule.configure_optimizers()
def training_step(self, batch, batch_idx):
self.submodule.training_step(batch, batch_idx)
self.log("bar", 1)
Trainer(max_epochs=1).fit(Architecture(), dataloader, dataloader)