-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloadingexamples.R
394 lines (328 loc) · 15.5 KB
/
dataloadingexamples.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
## The below code leverages functions from dataloadingfunctions.R to load data
## into a PostgreSQL database with the PostGIS extension installed. This assumes a
## working version of PostgreSQL on the user's computer (or on a server). Various
## tutorials exist for PostgreSQL/PostGIS such as this one
## http://zevross.com/blog/2019/12/04/install-postgres-postgis-and-get-started-with-spatial-sql/
##
## Warning - error handling in the functions (dataloadingfunctions.R) is not well
## developed at this point; users should inspect results and browse throuh R
## terminal for any errors as they use these functions. Furthermore, some of the
## datasets are large and will require sufficient computational capacity (possibly
## 32+ GB of RAM).
##
## NOTE - any queries using the functions 'dbGetQuery,' 'dbSendQuery' or similar
## can also be run through other database clients such as pgAdmin, DBeaver, and the
## QGIS Database Manager
##
## For any code that calls on local files, users will need to adjust file paths for local files
##
## For political and administrative layers, the versions used in the report were
## from 2020, and based on layers downloaded. The boundaries may be very slightly
## different from the geojson files used as examples here, and the examples here
## use the most recent available data.
##
## Some of these operations take time to run. Thus, "system.time()" is used to
## track how long some steps take
##
## This code is provided as an example at the time written, sometimes with local
# files. Users may need to adjust parameters, file paths, etc. for this to work.
##
## Code developed by Mike Treglia, The Nature Conservancy ([email protected])
# Load required packages
library(sf)
library(RPostgres)
library(readxlsx)
library(lwgeom)
library(Hmisc)
library(readxl)
library(dplyr)
# Load functions from the associated file - you may need to adjust your working directory or
# explicitly name the file path
source("dataloadingfunctions.R")
######Setting up Database ################
###### THIS IS ONLY DONE ONCE#############
# Define connection to Postgres (Additional fields may be required such as password and port number)
con <-
dbConnect(RPostgres::Postgres(), user = 'postgres', host = 'localhost')
#create database
dbGetQuery(con, "CREATE DATABASE nyc_urbanforest;")
#create connection to actual database (Additional fields may be required such as password and port number)
con <-
dbConnect(
RPostgres::Postgres(),
user = 'postgres',
host = 'localhost',
dbname = "nyc_urbanforest"
)
#make the db spatially enabled & confirm version
dbGetQuery(con, "CREATE EXTENSION postgis;")
dbGetQuery(con, "CREATE EXTENSION postgis_raster;")
dbGetQuery(con, "CREATE EXTENSION postgis_topology;")
dbGetQuery(con, "CREATE EXTENSION postgis_sfcgal;")
# Use the following to check that postgres
dbGetQuery(con, "SELECT postgis_full_version();")
#create schemas as needed
RPostgreSQL::dbSendQuery(con, "CREATE SCHEMA admin;")
RPostgreSQL::dbSendQuery(con, "CREATE SCHEMA env_assets;")
RPostgreSQL::dbSendQuery(con, "CREATE SCHEMA infrastructure;")
RPostgreSQL::dbSendQuery(con, "CREATE SCHEMA socioeconomic_health;")
###### Once databsase is set up, use the below code to start bringing data in#########
# Connect to database (Add in password, port number, as needed, depending on your local settings)
con <-
dbConnect(Postgres(),
user = 'postgres',
host = 'localhost',
dbname = "nyc_urbanforest")
###############################
## Load in data to PostGIS
## Note - some of this code automatically downloads large datasets that then get imported for these examples
## and in other cases data must be manually downloaded first
###############################
########
# MapPLUTO version 20v6 as GDB
# Download file (Adjust file destination file path)
download.file(
"https://www1.nyc.gov/assets/planning/download/zip/data-maps/open-data/nyc_mappluto_20v6_unclipped_fgdb.zip",
"D:/mappluto.zip"
)
# Unzip
unzip("D:/mappluto.zip", exdir = "D:/mappluto")
# Accession into the database (system.time tracks how long it takes)
system.time(
gdbpathpoly2postgis(
path = "D:/mappluto/MapPLUTO_20v6_unclipped.gdb",
layer = "MapPLUTO_20v6_unclipped",
schema = "admin",
lyrname = "mappluto_citywide_20v6_unclipped"
)
)
# Delete the downloaded and extracted files
unlink("D:/mappluto.zip", recursive = TRUE)
unlink("D:/mappluto", recursive = TRUE)
# use PostGIS functions to check for and fix invalid geometries. (The work heres is being 100% done by PostGIS - just sent through R)
# This was not a common issue across datasets, but occasionally was needed
dbGetQuery(
con,
"UPDATE admin.mappluto_citywide_20v6_unclipped
SET geom_2263 = ST_Multi(ST_CollectionExtract(ST_MakeValid(geom_2263), 3)) where st_isvalid(geom_2263) = false;"
)
########
########
# Some sample administrative boundaries - these levarage geojson files from a REST service, but comparable code would work with shapefiles stored locally
# The layername is automatically stored here with the date this is done on in the format YYYYMMDD.
# Borough Boundaries
vectorpathpoly2postgis(
path = "https://services5.arcgis.com/GfwWNkhOj9bNBqoJ/arcgis/rest/services/NYC_Borough_Boundary/FeatureServer/0/query?where=1=1&outFields=*&outSR=4326&f=pgeojson",
schema = "admin",
lyrname = paste("boroughs_nowater", gsub("-", "", as.character(Sys.Date(
))), sep = "")
)
#Community Districts
vectorpathpoly2postgis(
path = "https://services5.arcgis.com/GfwWNkhOj9bNBqoJ/arcgis/rest/services/NYC_Community_Districts/FeatureServer/0/query?where=1=1&outFields=*&outSR=4326&f=pgeojson",
schema = "admin",
lyrname = paste("commdists_", gsub("-", "", as.character(Sys.Date(
))), sep = "")
)
########
########
## Canopy change data (after being downloaded from NYC OpenData manually at https://data.cityofnewyork.us/Environment/Tree-Canopy-Change-2010-2017-/by9k-vhck)
## NOTE - after unzipping the file, a ".gdb" extension likely needs to be added onto the folder name unless this has been fixed on the Open Data portal
x <-
st_read(dsn = "D:/NYC_TreeCanopyChange_2010_2017.gdb", layer = "NYC_TreeCanopyChange_2010_2017")
# NOTE - the original dataset had multisurface objects in addition to multipolygon objects which can poses challenges
# when working with the data in postgres. We used sf::st_cast in R to convert make consistent geometry type
x <- st_cast(x, "MULTIPOLYGON")
# write multipolygon data out to gpkg temporarily and then load the data into PostGIS
# Alternatively, one can use the robjpoly2postgis without writing the data out to a geojson
st_write(x, dsn = "NYC_TreeCanopyChange_2010_2017.gpkg", layer = "NYC_TreeCanopyChange_2010_2017")
system.time(
gpkgpathpoly2postgis(
path = "NYC_TreeCanopyChange_2010_2017.gpkg",
layer = "NYC_TreeCanopyChange_2010_2017",
schema = "env_assets",
lyrname = "treecanopychange_2010_2017_nyc"
)
)
# Remove the object from workspace and delete the geopackage from the local computer
rm(x)
unlink("NYC_TreeCanopyChange_2010_2017.gpkg")
# Address any issues of invalid polygons
dbSendQuery(
con,
"UPDATE env_assets.treecanopychange_2010_2017_nyc_v2_fixed
SET geom_2263 = ST_Multi(ST_CollectionExtract(ST_MakeValid(geom_2263), 3)) where st_isvalid(geom_2263) = false;"
)
########
########
## Load Street Tree Census Dataa
########
# 2015 Tree Census - https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/pi5s-9p35
# Metadata at https://data.cityofnewyork.us/api/views/pi5s-9p35/files/2e1e0292-20b4-4678-bea5-6936180074b3?download=true&filename=StreetTreeCensus2015TreesDataDictionary20161102.pdf
system.time(
vectorpathpnt2postgis(
path = "https://data.cityofnewyork.us/api/geospatial/pi5s-9p35?method=export&format=GeoJSON",
schema = "env_assets",
lyrname = "streettrees2015_v2"
)
)
#2005 Tree Census - https://data.cityofnewyork.us/Environment/2005-Street-Tree-Census/29bw-z7pj
# Metadata at https://data.cityofnewyork.us/api/views/29bw-z7pj/files/89627e6e-7d68-47a2-9e21-7822e3bd9c25?download=true&filename=NewYorkCity_StreetTreeCensus2005_DataDescription.pdf
system.time(
vectorpathpnt2postgis(
path = "https://data.cityofnewyork.us/api/geospatial/ye4j-rp7z?method=export&format=GeoJSON",
schema = "env_assets",
lyrname = "streettrees2005_v2"
)
)
## Had to fix boroname for SI in 2005 dataset because it was originally stored as borocode
dbSendQuery(
con,
"update env_assets.streettrees2005
set boroname='Staten Island' where boroname like '5'"
)
#1995 Tree Census - https://data.cityofnewyork.us/Environment/1995-Street-Tree-Census/tn4g-ski5
# metadata at https://data.cityofnewyork.us/api/views/tn4g-ski5/files/1JFmze_FoZt7nuxgfO_20gzhvmcEYbG673kbl8fiBp4?download=true&filename=NewYorkCity_StreetTreeCensus1995_Description.pdf
system.time(
xycsvpnt2postgis(
"https://data.cityofnewyork.us/api/views/tn4g-ski5/rows.csv?accessType=DOWNLOAD",
xcoord = "X",
ycoord = "Y",
crs = 2263,
schema = "env_assets",
lyrname = "streettrees1995_v2"
)
)
########
########
# Load Lion 16a (latest version of Lion available at https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-lion.page)
#read data after downloading and unzipping
system.time(x <- st_read("D:/nyclion_16a/lion.gdb", "lion"))
# Cast all lines to multilinestring objects, as the gdb some as multicurves which poses challenges if they're
# in the same table in postgres
x <- st_cast(x, "MULTILINESTRING")
# Write to geojson file temporarily for using the data import function and write into database.
# Alternatively, one can use the robjline2postgis without writing the data out to a geojson
st_write(x, "lion16a.geojson")
system.time(vectorpathlines2postgis("lion16a.geojson", "infrastructure", "lion16a"))
# Delete the temporary geojson file that was created and remove the object "x" from R
unlink(lion16a.geojson)
rm(x)
########
########## Some more complex or different types of operations #########
########
## NYC NTA boundaries with unpopulated areas split up
# Read NTA data into R
ntas <-
st_read(
"https://services5.arcgis.com/GfwWNkhOj9bNBqoJ/arcgis/rest/services/NYC_Neighborhood_Tabulation_Areas/FeatureServer/0/query?where=1=1&outFields=*&outSR=4326&f=geojson",
stringsAsFactors = FALSE
) %>% st_transform(crs = 2263)
# Lowecase column names for simplicity
names(ntas) <- tolower(name(ntas))
# Split data into populated and unpopulated areas based on nta codes
ntas.pop <-
ntas[which(ntas$ntacode %nin% c("SI99", "QN99", "QN98", "MN99", "BX99", "BX98", "BK99")),]
ntas.unpop <-
ntas[which(ntas$ntacode %in% c("SI99", "QN99", "QN98", "MN99", "BX99", "BX98", "BK99")),]
# Cast to Polygon (instead of Multipolygon) which splits them up into different rows of data
ntas.unpop_polygon <- st_cast(ntas.unpop, "POLYGON")
# Make NTA codes something like... SI99-1
ntas.unpop_polygon <-
cbind(ntas.unpop_polygon, id = seq(1:nrow(ntas.unpop_polygon)))
head(ntas.unpop_polygon)
ntas.unpop_polygon$ntacode <-
paste(ntas.unpop_polygon$ntacode, ntas.unpop_polygon$id, sep = "-")
ntas.unpop_polygon$id <- NULL
# Make the polygons of unopopulated areas into a "MULTIPOLYGON" Geometry type for consistency with the other data
ntas.unpop_polygon <- st_cast(ntas.unpop_polygon, "MULTIPOLYGON")
# Append the new unpopulated area polygons to the data of populated areas
ntas.final <- rbind(ntas.pop, ntas.unpop_polygon)
# Calculate area and perimter to have with the data
ntas.final$shape_area <- st_area(ntas.final)
ntas.final$shape_leng <- lwgeom::st_perimeter(ntas.final)
# Write to a geojson (Geojsons follow a convention of being stored in EPGS 4326, hence the transformation in this line)
st_write(st_transform(ntas.final, crs = 4326),
"~/ntas_unpopulatedareas_separated.geojson")
# Remove the nta data from local memory
rm(ntas.final, ntas.pop, ntas.unpop, ntas.unpop_polygon, ntas)
# Lead into the database
vectorpathpoly2postgis(
path = "~/ntas_unpopulatedareas_separated.geojson",
schema = "admin",
lyrname = paste(
"nyc_nta_unpopareas_separated_",
gsub("-", "", as.character(Sys.Date())),
sep = ""
)
)
# Get rid of the geojson file that was created.
unlink("~/ntas_unpopulatedareas_separated.geojson")
########
########
## Load Social Vulnerability Index data
## This joins the Social Vulnerability data to NYC-specific census tract
## boundaries from the NYC Department of City Planning and accessions them into the database
## Social Vulnerability Data downloadable as csv file (or shapefile) by going through menus at
## https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
sovi <- read.csv("D:/NewYork.csv")
# Select only the rows desired based on filtering on column mame
sovi <-
sovi[sovi$COUNTY %in% c("Bronx", "Richmond", "New York", "Kings", "Queens"), ]
# Crate and fill in new column for boro/census tract code that will match the NYC-based census tract spatial data
sovi$boroct <- as.character("NA")
sovi$BoroCode <- as.character("NA")
sovi$BoroCode[which(sovi$COUNTY == "New York")] <- "1"
sovi$BoroCode[which(sovi$COUNTY == "Bronx")] <- "2"
sovi$BoroCode[which(sovi$COUNTY == "Kings")] <- "3"
sovi$BoroCode[which(sovi$COUNTY == "Queens")] <- "4"
sovi$BoroCode[which(sovi$COUNTY == "Richmond")] <- "5"
sovi$boroct <-
paste(sovi$BoroCode, substr(sovi$FIPS, 6, 12), sep = "")
# Load census tract boundaries from Bytes of the Big Apple (2010 boundaries) and so some light-weight manipulation for consistency
ct <-
st_read(
"https://services5.arcgis.com/GfwWNkhOj9bNBqoJ/arcgis/rest/services/NYC_Census_Tracts_for_2010_US_Census/FeatureServer/0/query?where=1=1&outFields=*&outSR=4326&f=pgeojson"
) %>%
st_transform(crs = 2263)
names(ct) <- tolower(names(ct))
# make single sf object with sovi data and boroct by merging the two datasets
censustract_sovi2018 <-
merge(ct, (replace(sovi, sovi == -999, NA)), by.y = "boroct", by.x = "boroct2010")
# Exclude any unnecessary fields - the main one here is the State code from the US Census (36 for NY)
censustract_sovi2018 <-
dplyr::select(censustract_sovi2018, -c("ï..ST")) # Note - if calling on a census tract dataset from the database, add "pgid" to this as well
# write data out to a temporary geojson, load data into database, and remove temporary file and the object in the workspace
# This can be by writing censustract_sovi2018 directly from R using the robjpoly2postgis function also (from the associated package sourced at the beginning of this script)
st_write(
st_transform(censustract_sovi2018, crs = 4326),
"D:/sovi2018_censustract2010.geojson"
)
system.time(
vectorpathpoly2postgis(
path = "D:/sovi2018_censustract2010.geojson",
schema = "socioeconomic_health",
lyrname = "sovi2018_censustract2010"
)
)
unlink("D:/sovi2018_censustract2010.geojson")
rm(ct, censustract_sovi2018, sovi)
########
### Non-spatial data
## NYC NTA-Census Tract Lookup Table
# xlsx file is avaialble from Bytes of the Big Apple, but the file doesn't read into R at all using the xlsx pacakge.
# Original file is at https://www1.nyc.gov/assets/planning/download/office/data-maps/nyc-population/census2010/nyc2010census_tabulation_equiv.xlsx; data were downloaded, saved as another xlsx file, simplifying some column names, and used.
# Load the data
nta_census_lookup <-
read_xlsx("D:/nyc2010census_tabulation_equiv_R_readable.xlsx") %>% data.frame()
# Create a field called "boroct2010" which is the concatenation of borocode and census tract from the nta census lookup table
nta_census_lookup$boroct2010 <-
paste(nta_census_lookup$borocode,
nta_census_lookup$censustract2010,
sep = "")
# Write the result to the database
dbWriteTable(
value = nta_census_lookup,
conn = con,
name = c("admin", "nta_censustract2010_lookup")
)