forked from KhronosGroup/OpenCL-SDK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranspose.py
234 lines (180 loc) · 6.37 KB
/
transpose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Transposition of a matrix
# originally for PyCUDA by Hendrik Riedmann <[email protected]>
import pyopencl as cl
import numpy
import numpy.linalg as la
block_size = 16
class NaiveTranspose:
def __init__(self, ctx):
self.kernel = (
cl.Program(
ctx,
"""
__kernel void transpose(
__global float *a_t, __global float *a,
unsigned a_width, unsigned a_height)
{
int read_idx = get_global_id(0) + get_global_id(1) * a_width;
int write_idx = get_global_id(1) + get_global_id(0) * a_height;
a_t[write_idx] = a[read_idx];
}
""",)
.build()
.transpose
)
def __call__(self, queue, tgt, src, shape):
w, h = shape
assert w % block_size == 0
assert h % block_size == 0
return self.kernel(
queue,
(w, h),
(block_size, block_size),
tgt,
src,
numpy.uint32(w),
numpy.uint32(h),
)
class SillyTranspose(NaiveTranspose):
def __call__(self, queue, tgt, src, shape):
w, h = shape
assert w % block_size == 0
assert h % block_size == 0
return self.kernel(
queue, (w, h), None, tgt, src, numpy.uint32(w), numpy.uint32(h)
)
class TransposeWithLocal:
def __init__(self, ctx):
self.kernel = (
cl.Program(
ctx,
"""
#define BLOCK_SIZE %(block_size)d
#define A_BLOCK_STRIDE (BLOCK_SIZE * a_width)
#define A_T_BLOCK_STRIDE (BLOCK_SIZE * a_height)
__kernel __attribute__((reqd_work_group_size(BLOCK_SIZE, BLOCK_SIZE, 1)))
void transpose(
__global float *a_t, __global float *a,
unsigned a_width, unsigned a_height,
__local float *a_local)
{
int base_idx_a =
get_group_id(0) * BLOCK_SIZE +
get_group_id(1) * A_BLOCK_STRIDE;
int base_idx_a_t =
get_group_id(1) * BLOCK_SIZE +
get_group_id(0) * A_T_BLOCK_STRIDE;
int glob_idx_a =
base_idx_a + get_local_id(0) + a_width * get_local_id(1);
int glob_idx_a_t =
base_idx_a_t + get_local_id(0) + a_height * get_local_id(1);
a_local[get_local_id(1)*BLOCK_SIZE+get_local_id(0)] = a[glob_idx_a];
barrier(CLK_LOCAL_MEM_FENCE);
a_t[glob_idx_a_t] = a_local[get_local_id(0)*BLOCK_SIZE+get_local_id(1)];
}
"""
% {"block_size": block_size},
)
.build()
.transpose
)
def __call__(self, queue, tgt, src, shape):
w, h = shape
assert w % block_size == 0
assert h % block_size == 0
return self.kernel(
queue,
(w, h),
(block_size, block_size),
tgt,
src,
numpy.uint32(w),
numpy.uint32(h),
cl.LocalMemory(4 * block_size * (block_size + 1)),
)
def transpose_using_cl(ctx, queue, cpu_src, cls):
mf = cl.mem_flags
a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=cpu_src)
a_t_buf = cl.Buffer(ctx, mf.WRITE_ONLY, size=cpu_src.nbytes)
cls(ctx)(queue, a_t_buf, a_buf, cpu_src.shape)
w, h = cpu_src.shape
result = numpy.empty((h, w), dtype=cpu_src.dtype)
cl.enqueue_copy(queue, result, a_t_buf).wait()
a_buf.release()
a_t_buf.release()
return result
def check_transpose():
for cls in [NaiveTranspose, SillyTranspose, TransposeWithLocal]:
print("checking", cls.__name__)
ctx = cl.create_some_context()
for dev in ctx.devices:
assert dev.local_mem_size > 0
queue = cl.CommandQueue(ctx)
for i in numpy.arange(10, 13, 0.125):
size = int(((2 ** i) // 32) * 32)
print(size)
source = numpy.random.rand(size, size).astype(numpy.float32)
result = transpose_using_cl(ctx, queue, source, NaiveTranspose)
err = source.T - result
err_norm = la.norm(err)
assert err_norm == 0, (size, err_norm)
def benchmark_transpose():
ctx = cl.create_some_context()
for dev in ctx.devices:
assert dev.local_mem_size > 0
queue = cl.CommandQueue(
ctx, properties=cl.command_queue_properties.PROFILING_ENABLE
)
sizes = [int(((2 ** i) // 32) * 32) for i in numpy.arange(10, 13, 0.125)]
# for i in numpy.arange(10, 10.5, 0.125)]
mem_bandwidths = {}
methods = [SillyTranspose, NaiveTranspose, TransposeWithLocal]
for cls in methods:
name = cls.__name__.replace("Transpose", "")
mem_bandwidths[cls] = meth_mem_bws = []
for size in sizes:
source = numpy.random.rand(size, size).astype(numpy.float32)
mf = cl.mem_flags
a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=source)
a_t_buf = cl.Buffer(ctx, mf.WRITE_ONLY, size=source.nbytes)
method = cls(ctx)
for i in range(4):
method(queue, a_t_buf, a_buf, source.shape)
count = 12
events = []
for i in range(count):
events.append(method(queue, a_t_buf, a_buf, source.shape))
events[-1].wait()
time = sum(evt.profile.end - evt.profile.start for evt in events)
mem_bw = 2 * source.nbytes * count / (time * 1e-9)
print("benchmarking", name, size, mem_bw / 1e9, "GB/s")
meth_mem_bws.append(mem_bw)
a_buf.release()
a_t_buf.release()
try:
from matplotlib.pyplot import (
clf,
plot,
xlabel,
ylabel,
savefig,
legend,
grid,
)
except ModuleNotFoundError:
pass
else:
for i in range(len(methods)):
clf()
for j in range(i + 1):
method = methods[j]
name = method.__name__.replace("Transpose", "")
plot(sizes, numpy.array(mem_bandwidths[method]) / 1e9, "o-",
label=name)
xlabel("Matrix width/height $N$")
ylabel("Memory Bandwidth [GB/s]")
legend(loc="best")
grid()
savefig("transpose-benchmark-%d.pdf" % i)
check_transpose()
benchmark_transpose()