-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
421 lines (375 loc) · 14.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
""" GCMC model
adapted from: https://github.com/dmlc/dgl/tree/master/examples/pytorch/gcmc
"""
import torch as th
import torch.nn as nn
from dgl import DGLError
from torch.nn import init
import dgl.function as fn
import dgl.nn.pytorch as dglnn
from utils import get_activation, to_etype_name
class GCMCGraphConv(nn.Module):
"""Graph convolution module used in the GCMC model.
Parameters
----------
in_feats : int
Input feature size.
out_feats : int
Output feature size.
weight : bool, optional
If True, apply a linear layer. Otherwise, aggregating the messages
without a weight matrix or with an shared weight provided by caller.
device: str, optional
Which device to put data in. Useful in mix_cpu_gpu training and
multi-gpu training
"""
def __init__(self,
in_feats,
out_feats,
weight=True,
device=None,
dropout_rate=0.0):
super(GCMCGraphConv, self).__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self.device = device
self.dropout = nn.Dropout(dropout_rate)
if weight:
self.weight = nn.Parameter(th.Tensor(in_feats, out_feats))
else:
self.register_parameter('weight', None)
self.reset_parameters()
def reset_parameters(self):
"""Reinitialize learnable parameters."""
if self.weight is not None:
init.xavier_uniform_(self.weight)
def forward(self, graph, feat, weight=None):
"""Compute graph convolution.
Normalizer constant :math:`c_{ij}` is stored as two node data "ci"
and "cj".
Parameters
----------
graph : DGLGraph
The graph.
feat : torch.Tensor
The input feature
weight : torch.Tensor, optional
Optional external weight tensor.
dropout : torch.nn.Dropout, optional
Optional external dropout layer.
Returns
-------
torch.Tensor
The output feature
"""
with graph.local_scope():
if isinstance(feat, tuple):
feat, _ = feat # dst feature not used
cj = graph.srcdata['cj']
ci = graph.dstdata['ci']
if self.device is not None:
cj = cj.to(self.device)
ci = ci.to(self.device)
if weight is not None:
if self.weight is not None:
raise DGLError('External weight is provided while at the same time the'
' module has defined its own weight parameter. Please'
' create the module with flag weight=False.')
else:
weight = self.weight
if weight is not None:
feat = dot_or_identity(feat, weight, self.device)
feat = feat * self.dropout(cj)
graph.srcdata['h'] = feat
graph.update_all(fn.copy_src(src='h', out='m'),
fn.sum(msg='m', out='h'))
rst = graph.dstdata['h']
rst = rst * ci
return rst
class GCMCLayer(nn.Module):
r"""GCMC layer
.. math::
z_j^{(l+1)} = \sigma_{agg}\left[\mathrm{agg}\left(
\sum_{j\in\mathcal{N}_1}\frac{1}{c_{ij}}W_1h_j, \ldots,
\sum_{j\in\mathcal{N}_R}\frac{1}{c_{ij}}W_Rh_j
\right)\right]
After that, apply an extra output projection:
.. math::
h_j^{(l+1)} = \sigma_{out}W_oz_j^{(l+1)}
The equation is applied to both user nodes and item nodes and the parameters
are not shared unless ``share_user_item_param`` is true.
Parameters
----------
rating_vals : list of int or float
Possible rating values.
user_in_units : int
Size of user input feature
item_in_units : int
Size of item input feature
msg_units : int
Size of message :math:`W_rh_j`
out_units : int
Size of of final output user and item features
dropout_rate : float, optional
Dropout rate (Default: 0.0)
agg : str, optional
Function to aggregate messages of different ratings.
Could be any of the supported cross type reducers:
"sum", "max", "min", "mean", "stack".
(Default: "stack")
agg_act : callable, str, optional
Activation function :math:`sigma_{agg}`. (Default: None)
out_act : callable, str, optional
Activation function :math:`sigma_{agg}`. (Default: None)
share_user_item_param : bool, optional
If true, user node and item node share the same set of parameters.
Require ``user_in_units`` and ``move_in_units`` to be the same.
(Default: False)
device: str, optional
Which device to put data in. Useful in mix_cpu_gpu training and
multi-gpu training
"""
def __init__(self,
rating_vals,
user_in_units,
item_in_units,
msg_units,
out_units,
dropout_rate=0.0,
agg='stack', # or 'sum'
agg_act=None,
out_act=None,
share_user_item_param=False,
device=None):
super(GCMCLayer, self).__init__()
self.rating_vals = rating_vals
self.agg = agg
self.share_user_item_param = share_user_item_param
self.ufc = nn.Linear(msg_units, out_units)
if share_user_item_param:
self.ifc = self.ufc
else:
self.ifc = nn.Linear(msg_units, out_units)
if agg == 'stack':
# divide the original msg unit size by number of ratings to keep
# the dimensionality
assert msg_units % len(rating_vals) == 0
msg_units = msg_units // len(rating_vals)
self.dropout = nn.Dropout(dropout_rate)
self.W_r = nn.ParameterDict()
subConv = {} # list of GCN layers (one per rating)
for rating in rating_vals:
# PyTorch parameter name can't contain "."
rating = to_etype_name(rating)
rev_rating = 'rev-%s' % rating
if share_user_item_param and user_in_units == item_in_units:
self.W_r[rating] = nn.Parameter(th.randn(user_in_units, msg_units))
self.W_r['rev-%s' % rating] = self.W_r[rating]
subConv[rating] = GCMCGraphConv(user_in_units,
msg_units,
weight=False,
device=device,
dropout_rate=dropout_rate)
subConv[rev_rating] = GCMCGraphConv(user_in_units,
msg_units,
weight=False,
device=device,
dropout_rate=dropout_rate)
else:
self.W_r = None
subConv[rating] = GCMCGraphConv(user_in_units,
msg_units,
weight=True,
device=device,
dropout_rate=dropout_rate)
subConv[rev_rating] = GCMCGraphConv(item_in_units,
msg_units,
weight=True,
device=device,
dropout_rate=dropout_rate)
self.conv = dglnn.HeteroGraphConv(subConv, aggregate=agg)
self.agg_act = get_activation(agg_act)
self.out_act = get_activation(out_act)
self.device = device
self.reset_parameters()
def partial_to(self, device):
"""Put parameters into device except W_r
Parameters
----------
device : torch device
Which device the parameters are put in.
"""
assert device == self.device
if device is not None:
self.ufc.cuda(device)
if self.share_user_item_param is False:
self.ifc.cuda(device)
self.dropout.cuda(device)
def reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, graph, ufeat=None, ifeat=None):
"""Forward function
Parameters
----------
graph : DGLHeteroGraph
User-item rating graph. It should contain two node types: "user"
and "item" and many edge types each for one rating value.
ufeat : torch.Tensor, optional
User features. If None, using an identity matrix.
ifeat : torch.Tensor, optional
Movie features. If None, using an identity matrix.
Returns
-------
new_ufeat : torch.Tensor
New user features
new_ifeat : torch.Tensor
New item features
"""
in_feats = {'user': ufeat, 'item': ifeat}
mod_args = {}
for i, rating in enumerate(self.rating_vals):
rating = to_etype_name(rating)
rev_rating = 'rev-%s' % rating
mod_args[rating] = (self.W_r[rating] if self.W_r is not None else None,)
mod_args[rev_rating] = (self.W_r[rev_rating] if self.W_r is not None else None,)
out_feats = self.conv(graph, in_feats, mod_args=mod_args)
ufeat = out_feats['user']
ifeat = out_feats['item']
ufeat = ufeat.view(ufeat.shape[0], -1)
ifeat = ifeat.view(ifeat.shape[0], -1)
# fc and non-linear
ufeat = self.agg_act(ufeat)
ifeat = self.agg_act(ifeat)
ufeat = self.dropout(ufeat)
ifeat = self.dropout(ifeat)
ufeat = self.ufc(ufeat)
ifeat = self.ifc(ifeat)
return self.out_act(ufeat), self.out_act(ifeat)
class BiDecoder(nn.Module):
r"""Bi-linear decoder.
Given a bipartite graph G, for each edge (i, j) ~ G, compute the likelihood
of it being class r by:
.. math::
p(M_{ij}=r) = \text{softmax}(u_i^TQ_rv_j)
The trainable parameter :math:`Q_r` is further decomposed to a linear
combination of basis weight matrices :math:`P_s`:
.. math::
Q_r = \sum_{s=1}^{b} a_{rs}P_s
Parameters
----------
in_units : int
Size of input user and item features
num_classes : int
Number of classes.
num_basis : int, optional
Number of basis. (Default: 2)
dropout_rate : float, optional
Dropout raite (Default: 0.0)
"""
def __init__(self,
in_units,
num_classes,
num_basis=2,
dropout_rate=0.0):
super(BiDecoder, self).__init__()
self._num_basis = num_basis
self.dropout = nn.Dropout(dropout_rate)
self.Ps = nn.ParameterList(
nn.Parameter(th.randn(in_units, in_units))
for _ in range(num_basis))
self.combine_basis = nn.Linear(self._num_basis, num_classes, bias=False)
self.reset_parameters()
def reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, graph, ufeat, ifeat):
"""Forward function.
Parameters
----------
graph : DGLHeteroGraph
"Flattened" user-item graph with only one edge type.
ufeat : th.Tensor
User embeddings. Shape: (|V_u|, D)
ifeat : th.Tensor
Movie embeddings. Shape: (|V_m|, D)
Returns
-------
th.Tensor
Predicting scores for each user-item edge.
"""
with graph.local_scope():
ufeat = self.dropout(ufeat)
ifeat = self.dropout(ifeat)
graph.nodes['item'].data['h'] = ifeat
basis_out = []
for i in range(self._num_basis):
graph.nodes['user'].data['h'] = ufeat @ self.Ps[i]
graph.apply_edges(fn.u_dot_v('h', 'h', 'sr'))
basis_out.append(graph.edata['sr'])
out = th.cat(basis_out, dim=1)
out = self.combine_basis(out)
return out
class DenseBiDecoder(nn.Module):
r"""Dense bi-linear decoder.
Dense implementation of the bi-linear decoder used in GCMC. Suitable when
the graph can be efficiently represented by a pair of arrays (one for source
nodes; one for destination nodes).
Parameters
----------
in_units : int
Size of input user and item features
num_classes : int
Number of classes.
num_basis : int, optional
Number of basis. (Default: 2)
dropout_rate : float, optional
Dropout raite (Default: 0.0)
"""
def __init__(self,
in_units,
num_classes,
num_basis=2,
dropout_rate=0.0):
super().__init__()
self._num_basis = num_basis
self.dropout = nn.Dropout(dropout_rate)
self.P = nn.Parameter(th.randn(num_basis, in_units, in_units))
self.combine_basis = nn.Linear(self._num_basis, num_classes, bias=False)
self.reset_parameters()
def reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, ufeat, ifeat):
"""Forward function.
Compute logits for each pair ``(ufeat[i], ifeat[i])``.
Parameters
----------
ufeat : th.Tensor
User embeddings. Shape: (B, D)
ifeat : th.Tensor
Movie embeddings. Shape: (B, D)
Returns
-------
th.Tensor
Predicting scores for each user-item edge. Shape: (B, num_classes)
"""
ufeat = self.dropout(ufeat)
ifeat = self.dropout(ifeat)
out = th.einsum('ai,bij,aj->ab', ufeat, self.P, ifeat)
out = self.combine_basis(out)
return out
def dot_or_identity(A, B, device=None):
# if A is None, treat as identity matrix
if A is None:
return B
elif len(A.shape) == 1:
if device is None:
return B[A]
else:
return B[A].to(device)
else:
return A @ B