-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification.py
44 lines (32 loc) · 1.26 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
from data.genres import *
from helper.dataset_tools import *
from models.simple_genre_model import *
from keras.optimizers import Adam
from keras.models import load_model
from keras import backend as k
"""
Runs genre classification based on spectrograms with keras.
"""
def train_model(id = 0):
epochs = 30
batch_size = 32
slice_width = 40
split_ratio = 1
percetage_of_spectrograms_used = 0.35
data_train, data_test = load_data_for_keras(slice_width, split_ratio, percetage_of_spectrograms_used)
print(data_train[0].shape[0], data_test[0].shape[0])
dataset_augmentator = get_image_data_generator()
input_shape = data_train[0].shape[1:]
output_lenght = data_train[1].shape[1]
model = build_model(input_shape, output_lenght)
model.compile(loss='categorical_crossentropy',
optimizer=Adam(),
metrics=['accuracy'])
model.fit_generator(dataset_augmentator.flow(data_train[0], y = data_train[1], batch_size=batch_size), steps_per_epoch=data_train[0].shape[0] / batch_size,
validation_data=data_test, epochs=epochs, verbose=1)
model.save_weights("augmented_final_" + str(id))
train_model(0)
train_model(1)
train_model(2)
train_model(3)