-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpix2pix_test.py
58 lines (47 loc) · 2.03 KB
/
pix2pix_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
from torchvision import transforms
from torch.autograd import Variable
from dataset import DatasetFromFolder
from model import Generator
import utils
import argparse
import os
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=False, default='facades', help='input dataset')
parser.add_argument('--direction', required=False, default='BtoA', help='input and target image order')
parser.add_argument('--batch_size', type=int, default=1, help='test batch size')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--input_size', type=int, default=1024, help='input size')
params = parser.parse_args()
print(params)
# Directories for loading data and saving results
data_dir = '../Data/' + params.dataset + '/'
save_dir = params.dataset + '_test_results/'
model_dir = params.dataset + '_model/'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
if not os.path.exists(model_dir):
os.mkdir(model_dir)
# Data pre-processing
test_transform = transforms.Compose([transforms.Scale(params.input_size),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
# Test data
test_data = DatasetFromFolder(data_dir, subfolder='test', direction=params.direction, transform=test_transform)
test_data_loader = torch.utils.data.DataLoader(dataset=test_data,
batch_size=params.batch_size,
shuffle=False)
# Load model
G = Generator(3, params.ngf, 3)
G.cuda()
G.load_state_dict(torch.load(model_dir + 'generator_param.pkl'))
# Test
for i, (input, target) in enumerate(test_data_loader):
# input & target image data
x_ = Variable(input.cuda())
y_ = Variable(target.cuda())
gen_image = G(x_)
gen_image = gen_image.cpu().data
# Show result for test data
utils.plot_test_result(input, target, gen_image, i, training=False, save=True, save_dir=save_dir)
print('%d images are generated.' % (i + 1))