forked from cjlin1/liblinear
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.c
449 lines (395 loc) · 10.1 KB
/
train.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include "linear.h"
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
#define INF HUGE_VAL
void print_null(const char *s) {}
void exit_with_help()
{
printf(
"Usage: train [options] training_set_file [model_file]\n"
"options:\n"
"-s type : set type of solver (default 1)\n"
" for multi-class classification\n"
" 0 -- L2-regularized logistic regression (primal)\n"
" 1 -- L2-regularized L2-loss support vector classification (dual)\n"
" 2 -- L2-regularized L2-loss support vector classification (primal)\n"
" 3 -- L2-regularized L1-loss support vector classification (dual)\n"
" 4 -- support vector classification by Crammer and Singer\n"
" 5 -- L1-regularized L2-loss support vector classification\n"
" 6 -- L1-regularized logistic regression\n"
" 7 -- L2-regularized logistic regression (dual)\n"
" for regression\n"
" 11 -- L2-regularized L2-loss support vector regression (primal)\n"
" 12 -- L2-regularized L2-loss support vector regression (dual)\n"
" 13 -- L2-regularized L1-loss support vector regression (dual)\n"
"-c cost : set the parameter C (default 1)\n"
"-p epsilon : set the epsilon in loss function of SVR (default 0.1)\n"
"-e epsilon : set tolerance of termination criterion\n"
" -s 0 and 2\n"
" |f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,\n"
" where f is the primal function and pos/neg are # of\n"
" positive/negative data (default 0.01)\n"
" -s 11\n"
" |f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.001)\n"
" -s 1, 3, 4, and 7\n"
" Dual maximal violation <= eps; similar to libsvm (default 0.1)\n"
" -s 5 and 6\n"
" |f'(w)|_1 <= eps*min(pos,neg)/l*|f'(w0)|_1,\n"
" where f is the primal function (default 0.01)\n"
" -s 12 and 13\n"
" |f'(alpha)|_1 <= eps |f'(alpha0)|,\n"
" where f is the dual function (default 0.1)\n"
"-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)\n"
"-wi weight: weights adjust the parameter C of different classes (see README for details)\n"
"-v n: n-fold cross validation mode\n"
"-C : find parameter C (only for -s 0 and 2)\n"
"-q : quiet mode (no outputs)\n"
);
exit(1);
}
void exit_input_error(int line_num)
{
fprintf(stderr,"Wrong input format at line %d\n", line_num);
exit(1);
}
static char *line = NULL;
static int max_line_len;
static char* readline(FILE *input)
{
int len;
if(fgets(line,max_line_len,input) == NULL)
return NULL;
while(strrchr(line,'\n') == NULL)
{
max_line_len *= 2;
line = (char *) realloc(line,max_line_len);
len = (int) strlen(line);
if(fgets(line+len,max_line_len-len,input) == NULL)
break;
}
return line;
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);
void read_problem(const char *filename);
void do_cross_validation();
void do_find_parameter_C();
struct feature_node *x_space;
struct parameter param;
struct problem prob;
struct model* model_;
int flag_cross_validation;
int flag_find_C;
int flag_C_specified;
int flag_solver_specified;
int nr_fold;
double bias;
int main(int argc, char **argv)
{
char input_file_name[1024];
char model_file_name[1024];
const char *error_msg;
parse_command_line(argc, argv, input_file_name, model_file_name);
read_problem(input_file_name);
error_msg = check_parameter(&prob,¶m);
if(error_msg)
{
fprintf(stderr,"ERROR: %s\n",error_msg);
exit(1);
}
if (flag_find_C)
{
do_find_parameter_C();
}
else if(flag_cross_validation)
{
do_cross_validation();
}
else
{
model_=train(&prob, ¶m);
if(save_model(model_file_name, model_))
{
fprintf(stderr,"can't save model to file %s\n",model_file_name);
exit(1);
}
free_and_destroy_model(&model_);
}
destroy_param(¶m);
free(prob.y);
free(prob.x);
free(x_space);
free(line);
return 0;
}
void do_find_parameter_C()
{
double start_C, best_C, best_rate;
double max_C = 1024;
if (flag_C_specified)
start_C = param.C;
else
start_C = -1.0;
printf("Doing parameter search with %d-fold cross validation.\n", nr_fold);
find_parameter_C(&prob, ¶m, nr_fold, start_C, max_C, &best_C, &best_rate);
printf("Best C = %g CV accuracy = %g%%\n", best_C, 100.0*best_rate);
}
void do_cross_validation()
{
int i;
int total_correct = 0;
double total_error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
double *target = Malloc(double, prob.l);
cross_validation(&prob,¶m,nr_fold,target);
if(param.solver_type == L2R_L2LOSS_SVR ||
param.solver_type == L2R_L1LOSS_SVR_DUAL ||
param.solver_type == L2R_L2LOSS_SVR_DUAL)
{
for(i=0;i<prob.l;i++)
{
double y = prob.y[i];
double v = target[i];
total_error += (v-y)*(v-y);
sumv += v;
sumy += y;
sumvv += v*v;
sumyy += y*y;
sumvy += v*y;
}
printf("Cross Validation Mean squared error = %g\n",total_error/prob.l);
printf("Cross Validation Squared correlation coefficient = %g\n",
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))
);
}
else
{
for(i=0;i<prob.l;i++)
if(target[i] == prob.y[i])
++total_correct;
printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
}
free(target);
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name)
{
int i;
void (*print_func)(const char*) = NULL; // default printing to stdout
// default values
param.solver_type = L2R_L2LOSS_SVC_DUAL;
param.C = 1;
param.eps = INF; // see setting below
param.p = 0.1;
param.nr_weight = 0;
param.weight_label = NULL;
param.weight = NULL;
param.init_sol = NULL;
flag_cross_validation = 0;
flag_C_specified = 0;
flag_solver_specified = 0;
flag_find_C = 0;
bias = -1;
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
if(++i>=argc)
exit_with_help();
switch(argv[i-1][1])
{
case 's':
param.solver_type = atoi(argv[i]);
flag_solver_specified = 1;
break;
case 'c':
param.C = atof(argv[i]);
flag_C_specified = 1;
break;
case 'p':
param.p = atof(argv[i]);
break;
case 'e':
param.eps = atof(argv[i]);
break;
case 'B':
bias = atof(argv[i]);
break;
case 'w':
++param.nr_weight;
param.weight_label = (int *) realloc(param.weight_label,sizeof(int)*param.nr_weight);
param.weight = (double *) realloc(param.weight,sizeof(double)*param.nr_weight);
param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
param.weight[param.nr_weight-1] = atof(argv[i]);
break;
case 'v':
flag_cross_validation = 1;
nr_fold = atoi(argv[i]);
if(nr_fold < 2)
{
fprintf(stderr,"n-fold cross validation: n must >= 2\n");
exit_with_help();
}
break;
case 'q':
print_func = &print_null;
i--;
break;
case 'C':
flag_find_C = 1;
i--;
break;
default:
fprintf(stderr,"unknown option: -%c\n", argv[i-1][1]);
exit_with_help();
break;
}
}
set_print_string_function(print_func);
// determine filenames
if(i>=argc)
exit_with_help();
strcpy(input_file_name, argv[i]);
if(i<argc-1)
strcpy(model_file_name,argv[i+1]);
else
{
char *p = strrchr(argv[i],'/');
if(p==NULL)
p = argv[i];
else
++p;
sprintf(model_file_name,"%s.model",p);
}
// default solver for parameter selection is L2R_L2LOSS_SVC
if(flag_find_C)
{
if(!flag_cross_validation)
nr_fold = 5;
if(!flag_solver_specified)
{
fprintf(stderr, "Solver not specified. Using -s 2\n");
param.solver_type = L2R_L2LOSS_SVC;
}
else if(param.solver_type != L2R_LR && param.solver_type != L2R_L2LOSS_SVC)
{
fprintf(stderr, "Warm-start parameter search only available for -s 0 and -s 2\n");
exit_with_help();
}
}
if(param.eps == INF)
{
switch(param.solver_type)
{
case L2R_LR:
case L2R_L2LOSS_SVC:
param.eps = 0.01;
break;
case L2R_L2LOSS_SVR:
param.eps = 0.001;
break;
case L2R_L2LOSS_SVC_DUAL:
case L2R_L1LOSS_SVC_DUAL:
case MCSVM_CS:
case L2R_LR_DUAL:
param.eps = 0.1;
break;
case L1R_L2LOSS_SVC:
case L1R_LR:
param.eps = 0.01;
break;
case L2R_L1LOSS_SVR_DUAL:
case L2R_L2LOSS_SVR_DUAL:
param.eps = 0.1;
break;
}
}
}
// read in a problem (in libsvm format)
void read_problem(const char *filename)
{
int max_index, inst_max_index, i;
size_t elements, j;
FILE *fp = fopen(filename,"r");
char *endptr;
char *idx, *val, *label;
if(fp == NULL)
{
fprintf(stderr,"can't open input file %s\n",filename);
exit(1);
}
prob.l = 0;
elements = 0;
max_line_len = 1024;
line = Malloc(char,max_line_len);
while(readline(fp)!=NULL)
{
char *p = strtok(line," \t"); // label
// features
while(1)
{
p = strtok(NULL," \t");
if(p == NULL || *p == '\n') // check '\n' as ' ' may be after the last feature
break;
elements++;
}
elements++; // for bias term
prob.l++;
}
rewind(fp);
prob.bias=bias;
prob.y = Malloc(double,prob.l);
prob.x = Malloc(struct feature_node *,prob.l);
x_space = Malloc(struct feature_node,elements+prob.l);
max_index = 0;
j=0;
for(i=0;i<prob.l;i++)
{
inst_max_index = 0; // strtol gives 0 if wrong format
readline(fp);
prob.x[i] = &x_space[j];
label = strtok(line," \t\n");
if(label == NULL) // empty line
exit_input_error(i+1);
prob.y[i] = strtod(label,&endptr);
if(endptr == label || *endptr != '\0')
exit_input_error(i+1);
while(1)
{
idx = strtok(NULL,":");
val = strtok(NULL," \t");
if(val == NULL)
break;
errno = 0;
x_space[j].index = (int) strtol(idx,&endptr,10);
if(endptr == idx || errno != 0 || *endptr != '\0' || x_space[j].index <= inst_max_index)
exit_input_error(i+1);
else
inst_max_index = x_space[j].index;
errno = 0;
x_space[j].value = strtod(val,&endptr);
if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
exit_input_error(i+1);
++j;
}
if(inst_max_index > max_index)
max_index = inst_max_index;
if(prob.bias >= 0)
x_space[j++].value = prob.bias;
x_space[j++].index = -1;
}
if(prob.bias >= 0)
{
prob.n=max_index+1;
for(i=1;i<prob.l;i++)
(prob.x[i]-2)->index = prob.n;
x_space[j-2].index = prob.n;
}
else
prob.n=max_index;
fclose(fp);
}