-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgnn_guidance.py
executable file
·370 lines (326 loc) · 15.4 KB
/
gnn_guidance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
"""Search guidance using a GNN.
"""
import pickle
import os
import numpy as np
from torch.utils.data import DataLoader
import torch.optim
import torch.nn
import torch
import pddlgym
from pddlgym.structs import Predicate
from PLOI.gnn.gnn import setup_graph_net
from PLOI.gnn.gnn_dataset import GraphDictDataset, graph_batch_collate
from PLOI.gnn.gnn_utils import train_model, get_single_model_prediction
from PLOI.guidance import BaseSearchGuidance
from PLOI.planning import PlanningTimeout, PlanningFailure
class GNNSearchGuidance(BaseSearchGuidance):
"""Search guidance using a GNN.
"""
def __init__(self, training_planner, num_train_problems, num_epochs,
criterion_name, bce_pos_weight, load_from_file,
load_dataset_from_file, dataset_file_prefix,
save_model_prefix, is_strips_domain):
super().__init__()
self._planner = training_planner
self._num_train_problems = num_train_problems
self._num_epochs = num_epochs
self._criterion_name = criterion_name
self._bce_pos_weight = bce_pos_weight
self._load_from_file = load_from_file
self._load_dataset_from_file = load_dataset_from_file
self._dataset_file_prefix = dataset_file_prefix
self._save_model_prefix = save_model_prefix
self._is_strips_domain = is_strips_domain
# Initialize other instance variables.
self._model = None
self._unary_types = None
self._unary_predicates = None
self._binary_predicates = None
self._node_feature_to_index = None
self._edge_feature_to_index = None
self._last_processed_state = None
self._last_object_scores = None
self._num_node_features = None
self._num_edge_features = None
def train(self, train_env_name):
model_outfile = self._save_model_prefix+"_{}.pt".format(train_env_name)
print("Training search guidance {} in domain {}...".format(
self.__class__.__name__, train_env_name))
# Collect raw training data. Inputs are States, outputs are objects.
training_data = self._collect_training_data(train_env_name)
# Convert training data to graphs
graphs_input, graphs_target = self._create_graph_dataset(training_data)
# Use 10% for validation
num_validation = max(1, int(len(graphs_input)*0.1))
train_graphs_input = graphs_input[num_validation:]
train_graphs_target = graphs_target[num_validation:]
valid_graphs_input = graphs_input[:num_validation]
valid_graphs_target = graphs_target[:num_validation]
# Set up dataloaders
graph_dataset = GraphDictDataset(train_graphs_input,
train_graphs_target)
graph_dataset_val = GraphDictDataset(valid_graphs_input,
valid_graphs_target)
dataloader = DataLoader(graph_dataset, batch_size=16, shuffle=False,
num_workers=3, collate_fn=graph_batch_collate)
dataloader_val = DataLoader(graph_dataset_val, batch_size=16,
shuffle=False, num_workers=3,
collate_fn=graph_batch_collate)
dataloaders = {"train": dataloader, "val": dataloader_val}
# Set up model, loss, optimizer
self._model = setup_graph_net(graph_dataset, use_gpu=False, num_steps=3)
if not self._load_from_file or not os.path.exists(model_outfile):
optimizer = torch.optim.Adam(self._model.parameters(), lr=1e-3)
if self._criterion_name == "bce":
pos_weight = self._bce_pos_weight*torch.ones([1])
criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
else:
raise Exception("Unrecognized criterion_name {}".format(
self._criterion_name))
# Train model
model_dict = train_model(self._model, dataloaders,
criterion=criterion, optimizer=optimizer,
use_gpu=False, num_epochs=self._num_epochs)
torch.save(model_dict, model_outfile)
self._model.load_state_dict(model_dict)
print("Saved model to {}.".format(model_outfile))
else:
self._model.load_state_dict(torch.load(model_outfile))
print("Loaded saved model from {}.".format(model_outfile))
def seed(self, seed):
torch.manual_seed(seed)
def score_object(self, obj, state):
if state != self._last_processed_state:
# Create input graph from state
graph, node_to_objects = self._state_to_graph(state)
# Predict graph
prediction = self._predict_graph(graph)
# Derive object scores
object_scores = {o: prediction["nodes"][n][0]
for n, o in node_to_objects.items()}
self._last_object_scores = object_scores
self._last_processed_state = state
return self._last_object_scores[obj]
def _collect_training_data(self, train_env_name):
"""Returns X, Y where X are States and Y are sets of objects
"""
outfile = self._dataset_file_prefix + "_{}.pkl".format(train_env_name)
if not self._load_dataset_from_file or not os.path.exists(outfile):
inputs = []
outputs = []
env = pddlgym.make("PDDLEnv{}-v0".format(train_env_name))
assert env.operators_as_actions
for idx in range(min(self._num_train_problems, len(env.problems))):
print("Collecting training data problem {}".format(idx),
flush=True)
env.fix_problem_index(idx)
state, _ = env.reset()
try:
plan = self._planner(env.domain, state, timeout=60)
except (PlanningTimeout, PlanningFailure):
print("Warning: planning failed, skipping: {}".format(
env.problems[idx].problem_fname))
continue
inputs.append(state)
objects_in_plan = {o for act in plan for o in act.variables}
outputs.append(objects_in_plan)
training_data = (inputs, outputs)
with open(outfile, "wb") as f:
pickle.dump(training_data, f)
with open(outfile, "rb") as f:
training_data = pickle.load(f)
return training_data
def _state_to_graph(self, state):
"""Create a graph from a State
"""
assert self._node_feature_to_index is not None, "Must initialize first"
all_objects = sorted(state.objects)
node_to_objects = dict(enumerate(all_objects))
objects_to_node = {v: k for k, v in node_to_objects.items()}
num_objects = len(all_objects)
G = self.wrap_goal_literal
R = self.reverse_binary_literal
graph_input = {}
# Nodes: one per object
graph_input["n_node"] = np.array(num_objects)
input_node_features = np.zeros((num_objects, self._num_node_features))
# Add features for types
for obj_index, obj in enumerate(all_objects):
type_index = self._node_feature_to_index[obj.var_type]
input_node_features[obj_index, type_index] = 1
# Add features for unary state literals
for lit in state.literals:
if lit.predicate.arity != 1:
continue
lit_index = self._node_feature_to_index[lit.predicate]
assert len(lit.variables) == 1
obj_index = objects_to_node[lit.variables[0]]
input_node_features[obj_index, lit_index] = 1
# Add features for unary goal literals
for lit in state.goal.literals:
if lit.predicate.arity != 1:
continue
lit_index = self._node_feature_to_index[G(lit.predicate)]
assert len(lit.variables) == 1
obj_index = objects_to_node[lit.variables[0]]
input_node_features[obj_index, lit_index] = 1
graph_input["nodes"] = input_node_features
# Edges
all_edge_features = np.zeros((num_objects, num_objects,
self._num_edge_features))
# Add edge features for binary state literals
for bin_lit in state.literals:
if bin_lit.predicate.arity != 2:
continue
for lit in [bin_lit, R(bin_lit)]:
pred_index = self._edge_feature_to_index[lit.predicate]
assert len(lit.variables) == 2
obj0_index = objects_to_node[lit.variables[0]]
obj1_index = objects_to_node[lit.variables[1]]
all_edge_features[obj0_index, obj1_index, pred_index] = 1
# Add edge features for binary goal literals
for bin_lit in state.goal.literals:
if bin_lit.predicate.arity != 2:
continue
for lit in [G(bin_lit), G(R(bin_lit))]:
pred_index = self._edge_feature_to_index[lit.predicate]
assert len(lit.variables) == 2
obj0_index = objects_to_node[lit.variables[0]]
obj1_index = objects_to_node[lit.variables[1]]
all_edge_features[obj0_index, obj1_index, pred_index] = 1
# Organize into expected representation
adjacency_mat = np.any(all_edge_features, axis=2)
receivers, senders, edges = [], [], []
for sender, receiver in np.argwhere(adjacency_mat):
edge = all_edge_features[sender, receiver]
senders.append(sender)
receivers.append(receiver)
edges.append(edge)
n_edge = len(edges)
edges = np.reshape(edges, [n_edge, self._num_edge_features])
receivers = np.reshape(receivers, [n_edge]).astype(np.int64)
senders = np.reshape(senders, [n_edge]).astype(np.int64)
n_edge = np.reshape(n_edge, [1]).astype(np.int64)
graph_input["receivers"] = receivers
graph_input["senders"] = senders
graph_input["n_edge"] = n_edge
graph_input["edges"] = edges
# Globals
graph_input["globals"] = None
return graph_input, node_to_objects
def _predict_graph(self, input_graph):
"""Predict the target graph given the input graph
"""
assert self._model is not None, "Must train before calling predict"
prediction = get_single_model_prediction(self._model, input_graph)
# Apply sigmoids
sigmoid = lambda x: 1/(1 + np.exp(-x))
prediction["nodes"] = sigmoid(prediction["nodes"])
# We're not predicting edges
prediction["edges"] = input_graph["edges"].copy()
return prediction
@classmethod
def wrap_goal_literal(cls, x):
"""Helper for converting a state to required input representation
"""
if isinstance(x, Predicate):
return Predicate("WANT"+x.name, x.arity, var_types=x.var_types,
is_negative=x.is_negative, is_anti=x.is_anti)
new_predicate = cls.wrap_goal_literal(x.predicate)
return new_predicate(*x.variables)
@classmethod
def reverse_binary_literal(cls, x):
"""Helper for converting a state to required input representation
"""
if isinstance(x, Predicate):
assert x.arity == 2
return Predicate("REV"+x.name, x.arity, var_types=x.var_types,
is_negative=x.is_negative, is_anti=x.is_anti)
new_predicate = cls.reverse_binary_literal(x.predicate)
variables = [v for v in x.variables]
assert len(variables) == 2
return new_predicate(*variables[::-1])
def _create_graph_dataset(self, training_data):
# Initialize the graph features
# First get the types and predicates
self._unary_types = set()
self._unary_predicates = set()
self._binary_predicates = set()
for state in training_data[0]:
types = {o.var_type for o in state.objects}
self._unary_types.update(types)
for lit in set(state.literals) | set(state.goal.literals):
arity = lit.predicate.arity
assert arity == len(lit.variables)
assert arity <= 2, "Arity > 2 predicates not yet supported"
if arity == 0:
continue
elif arity == 1:
self._unary_predicates.add(lit.predicate)
elif arity == 2:
self._binary_predicates.add(lit.predicate)
self._unary_types = sorted(self._unary_types)
self._unary_predicates = sorted(self._unary_predicates)
self._binary_predicates = sorted(self._binary_predicates)
G = self.wrap_goal_literal
R = self.reverse_binary_literal
# Initialize node features
self._node_feature_to_index = {}
index = 0
for unary_type in self._unary_types:
self._node_feature_to_index[unary_type] = index
index += 1
for unary_predicate in self._unary_predicates:
self._node_feature_to_index[unary_predicate] = index
index += 1
for unary_predicate in self._unary_predicates:
self._node_feature_to_index[G(unary_predicate)] = index
index += 1
# Initialize edge features
self._edge_feature_to_index = {}
index = 0
for binary_predicate in self._binary_predicates:
self._edge_feature_to_index[binary_predicate] = index
index += 1
for binary_predicate in self._binary_predicates:
self._edge_feature_to_index[R(binary_predicate)] = index
index += 1
for binary_predicate in self._binary_predicates:
self._edge_feature_to_index[G(binary_predicate)] = index
index += 1
for binary_predicate in self._binary_predicates:
self._edge_feature_to_index[G(R(binary_predicate))] = index
index += 1
self._num_node_features = len(self._node_feature_to_index)
nnf = self._num_node_features
assert max(self._node_feature_to_index.values()) == nnf-1
self._num_edge_features = len(self._edge_feature_to_index)
nef = self._num_edge_features
assert max(self._edge_feature_to_index.values()) == nef-1
# Process data
num_training_examples = len(training_data[0])
graphs_input = []
graphs_target = []
for i in range(num_training_examples):
state = training_data[0][i]
target_object_set = training_data[1][i]
graph_input, node_to_objects = self._state_to_graph(state)
graph_target = {
"n_node": graph_input["n_node"],
"n_edge": graph_input["n_edge"],
"edges": graph_input["edges"],
"senders": graph_input["senders"],
"receivers": graph_input["receivers"],
"globals": graph_input["globals"],
}
# Target nodes
objects_to_node = {v: k for k, v in node_to_objects.items()}
object_mask = np.zeros((len(node_to_objects), 1), dtype=np.int64)
for o in target_object_set:
obj_index = objects_to_node[o]
object_mask[obj_index] = 1
graph_target["nodes"] = object_mask
graphs_input.append(graph_input)
graphs_target.append(graph_target)
return graphs_input, graphs_target