-
Notifications
You must be signed in to change notification settings - Fork 13
/
TruncatedNormal.py
136 lines (109 loc) · 4.64 KB
/
TruncatedNormal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import math
from numbers import Number
import torch
from torch.distributions import Distribution, constraints
from torch.distributions.utils import broadcast_all
CONST_SQRT_2 = math.sqrt(2)
CONST_INV_SQRT_2PI = 1 / math.sqrt(2 * math.pi)
CONST_INV_SQRT_2 = 1 / math.sqrt(2)
CONST_LOG_INV_SQRT_2PI = math.log(CONST_INV_SQRT_2PI)
CONST_LOG_SQRT_2PI_E = 0.5 * math.log(2 * math.pi * math.e)
class TruncatedStandardNormal(Distribution):
"""
Truncated Standard Normal distribution
https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
"""
arg_constraints = {
'a': constraints.real,
'b': constraints.real,
}
has_rsample = True
def __init__(self, a, b, validate_args=None):
self.a, self.b = broadcast_all(a, b)
if isinstance(a, Number) and isinstance(b, Number):
batch_shape = torch.Size()
else:
batch_shape = self.a.size()
super(TruncatedStandardNormal, self).__init__(batch_shape, validate_args=validate_args)
if self.a.dtype != self.b.dtype:
raise ValueError('Truncation bounds types are different')
if any((self.a >= self.b).view(-1,).tolist()):
raise ValueError('Incorrect truncation range')
eps = torch.finfo(self.a.dtype).eps
self._dtype_min_gt_0 = eps
self._dtype_max_lt_1 = 1 - eps
self._little_phi_a = self._little_phi(self.a)
self._little_phi_b = self._little_phi(self.b)
self._big_phi_a = self._big_phi(self.a)
self._big_phi_b = self._big_phi(self.b)
self._Z = (self._big_phi_b - self._big_phi_a).clamp_min(eps)
self._log_Z = self._Z.log()
little_phi_coeff_a = torch.nan_to_num(self.a, nan=math.nan)
little_phi_coeff_b = torch.nan_to_num(self.b, nan=math.nan)
self._lpbb_m_lpaa_d_Z = (self._little_phi_b * little_phi_coeff_b - self._little_phi_a * little_phi_coeff_a) / self._Z
self._mean = -(self._little_phi_b - self._little_phi_a) / self._Z
self._variance = 1 - self._lpbb_m_lpaa_d_Z - ((self._little_phi_b - self._little_phi_a) / self._Z) ** 2
self._entropy = CONST_LOG_SQRT_2PI_E + self._log_Z - 0.5 * self._lpbb_m_lpaa_d_Z
@constraints.dependent_property
def support(self):
return constraints.interval(self.a, self.b)
@property
def mean(self):
return self._mean
@property
def variance(self):
return self._variance
@property
def entropy(self):
return self._entropy
@property
def auc(self):
return self._Z
@staticmethod
def _little_phi(x):
return (-(x ** 2) * 0.5).exp() * CONST_INV_SQRT_2PI
@staticmethod
def _big_phi(x):
return 0.5 * (1 + (x * CONST_INV_SQRT_2).erf())
@staticmethod
def _inv_big_phi(x):
return CONST_SQRT_2 * (2 * x - 1).erfinv()
def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
return ((self._big_phi(value) - self._big_phi_a) / self._Z).clamp(0, 1)
def icdf(self, value):
return self._inv_big_phi(self._big_phi_a + value * self._Z)
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
return CONST_LOG_INV_SQRT_2PI - self._log_Z - (value ** 2) * 0.5
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
p = torch.empty(shape, device=self.a.device).uniform_(self._dtype_min_gt_0, self._dtype_max_lt_1)
return self.icdf(p)
class TruncatedNormal(TruncatedStandardNormal):
"""
Truncated Normal distribution
https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
"""
has_rsample = True
def __init__(self, loc, scale, a, b, validate_args=None):
self.loc, self.scale, a, b = broadcast_all(loc, scale, a, b)
a = (a - self.loc) / self.scale
b = (b - self.loc) / self.scale
super(TruncatedNormal, self).__init__(a, b, validate_args=validate_args)
self._log_scale = self.scale.log()
self._mean = self._mean * self.scale + self.loc
self._variance = self._variance * self.scale ** 2
self._entropy += self._log_scale
def _to_std_rv(self, value):
return (value - self.loc) / self.scale
def _from_std_rv(self, value):
return value * self.scale + self.loc
def cdf(self, value):
return super(TruncatedNormal, self).cdf(self._to_std_rv(value))
def icdf(self, value):
return self._from_std_rv(super(TruncatedNormal, self).icdf(value))
def log_prob(self, value):
return super(TruncatedNormal, self).log_prob(self._to_std_rv(value)) - self._log_scale