diff --git a/_freeze/slides/execute-results/html.json b/_freeze/slides/execute-results/html.json index 295484a..1540957 100644 --- a/_freeze/slides/execute-results/html.json +++ b/_freeze/slides/execute-results/html.json @@ -1,7 +1,8 @@ { - "hash": "f5d666dc1ba4ef53cda3f84ad8763789", + "hash": "9fb68042bd9d7467a217d5a3dffbda6c", "result": { - "markdown": "---\ntitle: \"Building an interpretable SDM from scratch\"\nsubtitle: \"using Julia 1.9\"\nauthor:\n name: \"Timothée Poisot\"\n email: timothee.poisot@umontreal.ca\ninstitute: \"Université de Montréal\"\ntitle-slide-attributes: \n data-background-image: https://cdn.pixabay.com/photo/2017/03/29/11/29/nepal-2184940_960_720.jpg\n data-background-opacity: \"0.15\"\nbibliography: references.bib\ncsl: https://www.zotero.org/styles/ecology-letters\n---\n\n## Overview\n\n- Build a *simple* classifier to predict the distribution of a species\n\n- No, I will not tell you which species, it's a large North American mammal\n\n- Use this as an opportunity to talk about interpretable ML\n\n- Discuss which biases are appropriate in a predictive model\n\n::: footer\nCC BY 4.0 - Timothée Poisot\n:::\n\n------------------------------------------------------------------------\n\n::: r-fit-text\nWe care a lot about the\n\n**process**\n\nand only a little about the\n\n**product**\n:::\n\n------------------------------------------------------------------------\n\n## Why...\n\n... think of SDMs as a ML problem?\n\n: They are (they really, really are, see @beery2021)\n\n... think of explainable ML for SDM?\n\n: Uptake of models *requires* transparent predictions\n\n... not tell us which species this is about?\n\n: Because this is the point (you'll see)\n\n## Do try this at home!\n\n💻 + 📔 + 🗺️ at `https://github.com/tpoisot/InterpretableSDMWithJulia/`\n\n::: {#include-the-packages-we-need .cell execution_count=1}\n``` {.julia .cell-code}\ninclude(joinpath(\"code\", \"pkg.jl\")); # Dependencies\ninclude(joinpath(\"code\", \"nbc.jl\")); # Naive Bayes Classifier\ninclude(joinpath(\"code\", \"bioclim.jl\")); # BioClim model\ninclude(joinpath(\"code\", \"confusion.jl\")); # Confusion matrix utilities\ninclude(joinpath(\"code\", \"splitters.jl\")); # Cross-validation (part one)\ninclude(joinpath(\"code\", \"crossvalidate.jl\")); # Cross-validation (part deux)\ninclude(joinpath(\"code\", \"variableselection.jl\")); # Variable selection\ninclude(joinpath(\"code\", \"shapley.jl\")); # Shapley values\ninclude(joinpath(\"code\", \"palettes.jl\")); # Accessible color palettes\n```\n:::\n\n\n## Species occurrences\n\n::: {#get-the-species-data .cell execution_count=2}\n``` {.julia .cell-code}\nsightings = CSV.File(\"occurrences.csv\")\nocc = [\n (record.longitude, record.latitude)\n for record in sightings\n if record.classification == \"Class A\"\n]\nfilter!(r -> -90 <= r[2] <= 90, occ)\nfilter!(r -> -180 <= r[1] <= 180, occ)\nboundingbox = (\n left = minimum(first.(occ)),\n right = maximum(first.(occ)),\n bottom = minimum(last.(occ)),\n top = maximum(last.(occ)),\n)\n```\n:::\n\n\n## Bioclimatic data\n\nWe collect BioClim data from CHELSA v1, using `SpeciesDistributionToolkit`\n\n::: {#download-the-bioclim-data-from-worldclim2 .cell execution_count=3}\n``` {.julia .cell-code}\nprovider = RasterData(WorldClim2, BioClim)\nopts = (; resolution=2.5)\ntemperature = SimpleSDMPredictor(provider, layer=1; opts..., boundingbox...)\n```\n:::\n\n\n::: footer\nBioClim data from @karger2020; see @dansereau2021 for more about the packages\n:::\n\n## Bioclimatic data\n\nWe set the pixels with only open water to `nothing`\n\n::: {#get-the-open-water-pixels .cell execution_count=4}\n``` {.julia .cell-code}\nwater = \n SimpleSDMPredictor(RasterData(EarthEnv, LandCover), layer=12; boundingbox...)\nland = similar(temperature, Bool)\nreplace!(land, false => true)\nfor k in keys(land)\n if !isnothing(water[k])\n if water[k] == 100\n land[k] = false\n end\n end\nend\ntemperature = mask(land, temperature)\n```\n:::\n\n\n::: footer\nLand-cover data from @tuanmu2014\n:::\n\n## Where are we so far?\n\n::: {#17885051 .cell execution_count=5}\n\n::: {.cell-output .cell-output-display execution_count=6}\n![](slides_files/figure-revealjs/cell-6-output-1.png){}\n:::\n:::\n\n\n## Spatial thinning\n\nWe limit the occurrences to one per grid cell, assigned to the center of the grid cell\n\n::: {#make-the-layer-for-presences .cell execution_count=6}\n``` {.julia .cell-code}\npresence_layer = similar(temperature, Bool)\nfor i in axes(occ, 1)\n if ~isnothing(presence_layer[occ[i]...])\n presence_layer[occ[i]...] = true\n end\nend\n```\n:::\n\n\n## Background points generation\n\nWe generate background points proportionally to the distance away from observations, with a 10km buffer around each point with no background point allowed:\n\n::: {#make-the-pseudo-absence-buffer .cell execution_count=7}\n``` {.julia .cell-code}\npossible_background = pseudoabsencemask(DistanceToEvent, presence_layer)\n```\n:::\n\n\nAnd then we sample three pseudo-absence for each occurrence:\n\n::: {#make-the-absence-layer .cell execution_count=8}\n``` {.julia .cell-code}\nabsence_layer = backgroundpoints(\n (x -> x^1.01).(possible_background), \n 3sum(presence_layer);\n replace=false\n)\n```\n:::\n\n\n::: footer\nSee @barbet-massin2012 for more on background points\n:::\n\n## Background points cleaning\n\nWe can remove all of the information that is neither a presence nor a pseudo-absence\n\n::: {#pseudo-absencepresence-remove .cell execution_count=9}\n``` {.julia .cell-code}\nreplace!(absence_layer, false => nothing)\nreplace!(presence_layer, false => nothing)\n```\n:::\n\n\n## Data overview\n\n::: {#e17987b1 .cell execution_count=10}\n\n::: {.cell-output .cell-output-display execution_count=11}\n![](slides_files/figure-revealjs/cell-11-output-1.png){}\n:::\n:::\n\n\n\n\n## Preparing the responses and variables\n\n::: {#assemble-y-and-x .cell execution_count=12}\n``` {.julia .cell-code}\nXpresence = hcat([bioclim_var[keys(presence_layer)] for bioclim_var in predictors]...)\nypresence = fill(true, length(presence_layer))\nXabsence = hcat([bioclim_var[keys(absence_layer)] for bioclim_var in predictors]...)\nyabsence = fill(false, length(absence_layer))\nX = vcat(Xpresence, Xabsence)\ny = vcat(ypresence, yabsence)\n```\n:::\n\n\n\n\n## The model -- Naive Bayes Classifier\n\nPrediction:\n\n$$\nP(+|x) = \\frac{P(+)}{P(x)}P(x|+)\n$$\n\nDecision rule:\n\n$$\n\\hat y = \\text{argmax}_j \\, P(\\mathbf{c}_j)\\prod_i P(\\mathbf{x}_i|\\mathbf{c}_j)\n$$\n\n::: footer\nWith $n$ instances and $f$ features, NBC trains *and* predicts in $\\mathcal{O}(n\\times f)$\n:::\n\n## The model -- Naive Bayes Classifier\n\nAssumption of Gaussian distributions:\n\n$$\nP(x|+) = \\text{pdf}(x, \\mathcal{N}(\\mu_+, \\sigma_+))\n$$\n\n## Cross-validation\n\nWe keep an **unseen** *testing* set -- this will be used at the very end to report expected model performance\n\n::: {#testing-set .cell execution_count=14}\n``` {.julia .cell-code}\nidx, tidx = holdout(y, X; permute=true)\n```\n:::\n\n\nFor *validation*, we will run k-folds\n\n::: {#k-folds .cell execution_count=15}\n``` {.julia .cell-code}\nty, tX = y[idx], X[idx,:]\nfolds = kfold(ty, tX; k=15, permute=true)\nk = length(folds)\n```\n:::\n\n\n::: footer\nSee @valavi2018 for more on cross-validation\n:::\n\n## A note on cross-validation\n\nAll models share the same folds\n\n: we can compare the validation performance across experiments to select the best model\n\nModel performance can be compared\n\n: we average the relevant summary statistics over each validation set\n\nTesting set is *only* for future evaluation\n\n: we can only use it once and report the expected performance *of the best model*\n\n## Baseline performance\n\nWe need to get a sense of how difficult the classification problem is:\n\n::: {#ce38c2a0 .cell execution_count=16}\n``` {.julia .cell-code}\nN_v0 = crossvalidate(naivebayes, ty, tX, folds)\nB_v0 = crossvalidate(bioclim, ty, tX, folds, eps())\n```\n:::\n\n\nThis uses an un-tuned model with all variables and reports the average over all validation sets. In addition, we will always use the BioClim model as a comparison.\n\n## Measures on the confusion matrix {.smaller}\n\n| | BioClim | NBC |\n|-----|-------------------------------|-------------------------------|\n| FPR | 0\\.32±0\\.0 | 0\\.11±0\\.0 |\n| FNR | 0\\.01±0\\.0 | 0\\.14±0\\.0 |\n| TPR | 0\\.99±0\\.0 | 0\\.86±0\\.0 |\n| TNR | 0\\.68±0\\.0 | 0\\.89±0\\.0 |\n| TSS | 0\\.66±0\\.0 | 0\\.75±0\\.0 |\n| MCC | 0\\.58±0\\.0 | 0\\.71±0\\.0 |\n\n::: footer\nIt's a good idea to check the values for the training sets too...\n:::\n\n## Variable selection\n\nWe add variables one at a time, until the Matthew's Correlation Coefficient stops increasing -- we keep annual temperature, isothermality, mean diurnal range, and annual precipitation\n\n::: {#a2c14deb .cell execution_count=17}\n``` {.julia .cell-code}\navailable_variables = forwardselection(ty, tX, folds, naivebayes, mcc)\n```\n:::\n\n\nThis method identifies 5 variables, some of which are:\n\n1. Mean Temp\\. of Coldest Quarter\n\n2. Mean Diurnal Range \n\n3. Annual Precip\\.\n\n## Variable selection?\n\n- Constrained variable selection\n\n- VIF threshold (over the extent or over document occurrences?)\n\n- PCA for dimensionality reduction *v.* Whitening for colinearity removal\n\n- Potential for data leakage: data transformations don't exist, they are just models we can train\n\n## Model with variable selection\n\n::: {#dfa977c2 .cell execution_count=18}\n``` {.julia .cell-code}\nN_v1 = crossvalidate(naivebayes, ty, tX[:,available_variables], folds)\nB_v1 = crossvalidate(bioclim, ty, tX[:,available_variables], folds, eps())\n```\n:::\n\n\n## Measures on the confusion matrix {.smaller}\n\n| | BioClim | NBC | BioClim (v.s.) | NBC (v.s.) |\n|---------------|---------------|---------------|---------------|---------------|\n| FPR | 0\\.32±0\\.0 | 0\\.11±0\\.0 | 0\\.57±0\\.1 | 0\\.07±0\\.0 |\n| FNR | 0\\.01±0\\.0 | 0\\.14±0\\.0 | 0\\.01±0\\.0 | 0\\.14±0\\.0 |\n| TPR | 0\\.99±0\\.0 | 0\\.86±0\\.0 | 0\\.99±0\\.0 | 0\\.86±0\\.0 |\n| TNR | 0\\.68±0\\.0 | 0\\.89±0\\.0 | 0\\.43±0\\.1 | 0\\.93±0\\.0 |\n| TSS | 0\\.66±0\\.0 | 0\\.75±0\\.0 | 0\\.42±0\\.1 | 0\\.79±0\\.0 |\n| MCC | 0\\.58±0\\.0 | 0\\.71±0\\.0 | 0\\.39±0\\.1 | 0\\.77±0\\.0 |\n\n## How do we make the model better?\n\nThe NBC is a *probabilistic classifier* returning $P(+|\\mathbf{x})$\n\nThe *decision rule* is to assign a presence when $P(\\cdot) > 0.5$\n\nBut $P(\\cdot) > \\tau$ is a far more general approach, and we can use learning curves to identify $\\tau$\n\n## Thresholding the model\n\n::: {#39f67e12 .cell execution_count=19}\n``` {.julia .cell-code}\nthr = LinRange(0.0, 1.0, 500)\nT = hcat([crossvalidate(naivebayes, ty, tX[:,available_variables], folds, t) for t in thr]...)\n```\n:::\n\n\n## But how do we pick the threshold?\n\n::: {#d8b1753b .cell execution_count=20}\n\n::: {.cell-output .cell-output-display execution_count=24}\n![](slides_files/figure-revealjs/cell-21-output-1.svg){}\n:::\n:::\n\n\n## Tuned model with selected variables\n\n::: {#51843c1a .cell execution_count=21}\n``` {.julia .cell-code}\nN_v2 = crossvalidate(naivebayes, ty, tX[:,available_variables], folds, thr[m])\n```\n:::\n\n\n## Measures on the confusion matrix {.smaller}\n\n| | BioClim | NBC | BioClim (v.s.) | NBC (v.s.) | NBC (v.s. + tuning) |\n|------------|------------|------------|------------|------------|------------|\n| FPR | 0\\.32±0\\.0 | 0\\.11±0\\.0 | 0\\.57±0\\.1 | 0\\.07±0\\.0 | 0\\.06±0\\.0 |\n| FNR | 0\\.01±0\\.0 | 0\\.14±0\\.0 | 0\\.01±0\\.0 | 0\\.14±0\\.0 | 0\\.15±0\\.0 |\n| TPR | 0\\.99±0\\.0 | 0\\.86±0\\.0 | 0\\.99±0\\.0 | 0\\.86±0\\.0 | 0\\.85±0\\.0 |\n| TNR | 0\\.68±0\\.0 | 0\\.89±0\\.0 | 0\\.43±0\\.1 | 0\\.93±0\\.0 | 0\\.94±0\\.0 |\n| TSS | 0\\.66±0\\.0 | 0\\.75±0\\.0 | 0\\.42±0\\.1 | 0\\.79±0\\.0 | 0\\.79±0\\.0 |\n| MCC | 0\\.58±0\\.0 | 0\\.71±0\\.0 | 0\\.39±0\\.1 | 0\\.77±0\\.0 | 0\\.77±0\\.0 |\n\n## How do we make the model better?\n\nThe NBC is a *Bayesian classifier* returning $P(+|\\mathbf{x})$\n\nThe *actual probability* depends on $P(+)$\n\nThere is no reason not to also tune $P(+)$ (jointly with other hyper-parameters)!\n\n## Joint tuning of hyper-parameters\n\n::: {#e5f0942b .cell execution_count=22}\n``` {.julia .cell-code}\nthr = LinRange(0.0, 1.0, 55)\npplus = LinRange(0.0, 1.0, 45)\nT = [crossvalidate(naivebayes, ty, tX[:,available_variables], folds, t; presence=prior) for t in thr, prior in pplus]\nbest_mcc, params = findmax(map(v -> mean(mcc.(v)), T))\nτ = thr[params.I[1]]\nppres = pplus[params.I[2]]\n```\n:::\n\n\n## Tuned (again) model with selected variables\n\n::: {#1d05da68 .cell execution_count=23}\n``` {.julia .cell-code}\nN_v3 = crossvalidate(naivebayes, ty, tX[:,available_variables], folds, τ; presence=ppres)\n```\n:::\n\n\n## Measures on the confusion matrix {.smaller}\n\n| | BioClim | NBC (v0) | NBC (v1) | NBC (v2) | NBC (v3) |\n|------------|------------|-------------|------------|------------|------------|\n| FPR | 0\\.32±0\\.0 | 0\\.11±0\\.0 | 0\\.07±0\\.0 | 0\\.06±0\\.0 | 0\\.06±0\\.0 |\n| FNR | 0\\.01±0\\.0 | 0\\.14±0\\.0 | 0\\.14±0\\.0 | 0\\.15±0\\.0 | 0\\.15±0\\.0 |\n| TPR | 0\\.99±0\\.0 | 0\\.86±0\\.0 | 0\\.86±0\\.0 | 0\\.85±0\\.0 | 0\\.85±0\\.0 |\n| TNR | 0\\.68±0\\.0 | 0\\.89±0\\.0 | 0\\.93±0\\.0 | 0\\.94±0\\.0 | 0\\.94±0\\.0 |\n| TSS | 0\\.66±0\\.0 | 0\\.75±0\\.0 | 0\\.79±0\\.0 | 0\\.79±0\\.0 | 0\\.79±0\\.0 |\n| MCC | 0\\.58±0\\.0 | 0\\.71±0\\.0 | 0\\.77±0\\.0 | 0\\.77±0\\.0 | 0\\.77±0\\.0 |\n\n## Tuned model performance\n\nWe can retrain over *all* the training data\n\n::: {#c490755c .cell execution_count=24}\n``` {.julia .cell-code}\nfinalmodel = naivebayes(ty, tX[:,available_variables]; presence=ppres)\nprediction = vec(mapslices(finalmodel, X[tidx,available_variables]; dims=2))\nC = ConfusionMatrix(prediction, y[tidx], τ)\n```\n:::\n\n\n## Estimated performance\n\n| | Final model |\n|-----|----------------------------|\n| FPR | 0\\.06 |\n| FNR | 0\\.15 |\n| TPR | 0\\.85 |\n| TNR | 0\\.94 |\n| TSS | 0\\.79 |\n| MCC | 0\\.78 |\n\n## Acceptable bias\n\n- false positives: we expect that our knowledge of the distribution is incomplete, and *this is why we train a model*\n\n- false negatives: wrong observations (positive in the data) may be identified by the model (negative prediction)\n\n## Prediction for each pixel\n\n\n\n::: {#f367cc92 .cell execution_count=26}\n``` {.julia .cell-code}\nprediction = similar(temperature, Float64)\nvariability = similar(temperature, Float64)\nuncertainty = similar(temperature, Float64)\nThreads.@threads for k in keys(prediction)\n pred_k = [p[k] for p in predictors[available_variables]]\n bootstraps = [\n samplemodel(pred_k)\n for samplemodel in samplemodels\n ]\n prediction[k] = finalmodel(pred_k)\n variability[k] = iqr(bootstraps)\n uncertainty[k] = entropy(prediction[k])\nend\n```\n:::\n\n\n## Tuned model - prediction\n\n::: {#a18273fd .cell execution_count=27}\n\n::: {.cell-output .cell-output-display execution_count=34}\n![](slides_files/figure-revealjs/cell-28-output-1.png){}\n:::\n:::\n\n\n## Tuned model - variability in output\n\n::: {#0e2dd0e6 .cell execution_count=28}\n\n::: {.cell-output .cell-output-display execution_count=35}\n![](slides_files/figure-revealjs/cell-29-output-1.png){}\n:::\n:::\n\n\n::: footer\nIQR for 50 bootstrap replicates\n:::\n\n## Tuned model - entropy in probability\n\n::: {#8bca6275 .cell execution_count=29}\n\n::: {.cell-output .cell-output-display execution_count=36}\n![](slides_files/figure-revealjs/cell-30-output-1.png){}\n:::\n:::\n\n\n::: footer\nEntropy (in bits) of the NBC probability\n:::\n\n## Tuned model - range\n\n::: {#755beabc .cell execution_count=30}\n\n::: {.cell-output .cell-output-display execution_count=37}\n![](slides_files/figure-revealjs/cell-31-output-1.png){}\n:::\n:::\n\n\n::: footer\nProbability \\> 0.759\n:::\n\n## Predicting the predictions?\n\nShapley values (Monte-Carlo approximation): if we mix the variables across two observations, how important is the $i$-th variable?\n\nExpresses \"importance\" as an additive factor on top of the *average* prediction (here: average prob. of occurrence)\n\n## Calculation of the Shapley values\n\n::: {#3a35709d .cell execution_count=31}\n``` {.julia .cell-code}\nshapval = [similar(first(predictors), Float64) for i in eachindex(available_variables)]\nThreads.@threads for k in keys(shapval[1])\n x = [p[k] for p in predictors[available_variables]]\n for i in axes(shapval, 1)\n shapval[i][k] = shapleyvalues(finalmodel, tX[:,available_variables], x, i; M=50)\n if isnan(shapval[i][k])\n shapval[i][k] = 0.0\n end\n end\nend\n```\n:::\n\n\n## Importance of variables\n\n::: {#a97fdc7e .cell execution_count=32}\n``` {.julia .cell-code}\nvarimp = sum.(map(abs, shapval))\nvarimp ./= sum(varimp)\nshapmax = mosaic(argmax, map(abs, shapval[sortperm(varimp; rev=true)]))\nfor v in sortperm(varimp, rev=true)\n vname = variables[available_variables[v]][2]\n vctr = round(Int, varimp[v]*100)\n println(\"$(vname) - $(vctr)%\")\nend\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMean Temp. of Coldest Quarter - 46%\nAnnual Precip. - 16%\nPrecip. of Coldest Quarter - 14%\nMean Diurnal Range - 12%\nPrecip. Seasonality - 11%\n```\n:::\n:::\n\n\nThere is a difference between **contributing to model performance** and **contributing to model explainability**\n\n## Top three variables\n\n::: {#7e813121 .cell execution_count=33}\n\n::: {.cell-output .cell-output-display execution_count=41}\n![](slides_files/figure-revealjs/cell-34-output-1.png){}\n:::\n:::\n\n\n## Most determinant predictor\n\n::: {#a6ecd92b .cell execution_count=34}\n\n::: {.cell-output .cell-output-display execution_count=42}\n![](slides_files/figure-revealjs/cell-35-output-1.png){}\n:::\n:::\n\n\n## Future predictions\n\n- relevant variables will remain the same\n\n- relevant $P(+)$ will remain the same\n\n- relevant threshold for presences will remain the same\n\n## Future climate data (ca. 2070)\n\n::: {#19a5fbe7 .cell execution_count=35}\n\n::: {.cell-output .cell-output-display execution_count=43}\n```\n19-element Vector{SimpleSDMPredictor{Float32}}:\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n SDM predictor → 955×2048 grid with 1118001 Float32-valued cells\n```\n:::\n:::\n\n\n## Future climate prediction\n\n::: {#36a53444 .cell execution_count=36}\n``` {.julia .cell-code}\nfuture_prediction = similar(temperature, Float64)\nThreads.@threads for k in keys(future_prediction)\n pred_k = [p[k] for p in future_predictors[available_variables]]\n if any(isnothing.(pred_k))\n continue\n end\n future_prediction[k] = finalmodel(pred_k)\nend\n```\n:::\n\n\n## Tuned model - future prediction\n\n::: {#28223584 .cell execution_count=37}\n\n::: {.cell-output .cell-output-display execution_count=45}\n![](slides_files/figure-revealjs/cell-38-output-1.png){}\n:::\n:::\n\n\n## Loss and gain in distribution\n\n::: {#40f6d1c9 .cell execution_count=38}\n\n::: {.cell-output .cell-output-display execution_count=46}\n```\nSDM response → 955×2048 grid with 6822 Float64-valued cells\n Latitudes\t25.125 ⇢ 64.91666666666666\n Longitudes\t-149.79166666666669 ⇢ -64.45833333333334\n```\n:::\n:::\n\n\n| Change | Area (10⁶ km²) |\n|-----|------|\n| Expansion | 1.9194810307638006 | \n| No change | 4.868109022484933 | \n| Loss | 0.1294527148434877 |\n\n## Tuned model - future range change\n\n::: {#37781baa .cell execution_count=39}\n\n::: {.cell-output .cell-output-display execution_count=48}\n![](slides_files/figure-revealjs/cell-40-output-1.png){}\n:::\n:::\n\n\n## But wait...\n\n> What do you think the species was?\n\n## Take-home\n\n- building a model is *incremental*\n\n- each step adds arbitrary decisions we can control for, justify, or live with\n\n- we can provide explanations for every single prediction\n\n- free online textbook (in development) at `https://tpoisot.github.io/DataSciForBiodivSci/`\n\n## References\n\n", + "engine": "jupyter", + "markdown": "---\ntitle: \"Building an interpretable SDM from scratch\"\nsubtitle: \"using Julia 1.9\"\nauthor:\n name: \"Timothée Poisot\"\n email: timothee.poisot@umontreal.ca\ninstitute: \"Université de Montréal\"\ntitle-slide-attributes: \n data-background-image: https://cdn.pixabay.com/photo/2017/03/29/11/29/nepal-2184940_960_720.jpg\n data-background-opacity: \"0.15\"\nbibliography: references.bib\ncsl: https://www.zotero.org/styles/ecology-letters\n---\n\n## Overview\n\n- Build a *simple* classifier to predict the distribution of a species\n\n- No, I will not tell you which species, it's a large North American mammal\n\n- Use this as an opportunity to talk about interpretable ML\n\n- Discuss which biases are appropriate in a predictive model\n\n::: footer\nCC BY 4.0 - Timothée Poisot\n:::\n\n------------------------------------------------------------------------\n\n::: r-fit-text\nWe care a lot about the\n\n**process**\n\nand only a little about the\n\n**product**\n:::\n\n------------------------------------------------------------------------\n\n## Why...\n\n... think of SDMs as a ML problem?\n\n: Because they are\n\n... think of explainable ML for SDM?\n\n: Because model uptake *requires* transparency\n\n... not tell us which species this is about?\n\n: Because this is the point (you'll see)\n\n::: footer\nSee @beery2021 for more on SDM-as-ML\n:::\n\n## Do try this at home!\n\n💻 + 📔 + 🗺️ at `https://github.com/tpoisot/InterpretableSDMWithJulia/`\n\n::: {#include-the-packages-we-need .cell execution_count=1}\n``` {.julia .cell-code}\ninclude(joinpath(\"code\", \"pkg.jl\")); # Dependencies\ninclude(joinpath(\"code\", \"nbc.jl\")); # Naive Bayes Classifier\ninclude(joinpath(\"code\", \"bioclim.jl\")); # BioClim model\ninclude(joinpath(\"code\", \"confusion.jl\")); # Confusion matrix utilities\ninclude(joinpath(\"code\", \"splitters.jl\")); # Cross-validation (part one)\ninclude(joinpath(\"code\", \"crossvalidate.jl\")); # Cross-validation (part deux)\ninclude(joinpath(\"code\", \"variableselection.jl\")); # Variable selection\ninclude(joinpath(\"code\", \"shapley.jl\")); # Shapley values\ninclude(joinpath(\"code\", \"palettes.jl\")); # Accessible color palettes\n```\n:::\n\n\n## Species occurrences\n\n::: {#get-the-species-data .cell execution_count=2}\n``` {.julia .cell-code}\nsightings = CSV.File(\"occurrences.csv\")\nocc = [\n (record.longitude, record.latitude)\n for record in sightings\n if record.classification == \"Class A\"\n]\nfilter!(r -> -90 <= r[2] <= 90, occ)\nfilter!(r -> -180 <= r[1] <= 180, occ)\nboundingbox = (\n left = minimum(first.(occ)),\n right = maximum(first.(occ)),\n bottom = minimum(last.(occ)),\n top = maximum(last.(occ)),\n)\n```\n:::\n\n\n## Bioclimatic data\n\nWe collect BioClim data from CHELSA v1, using `SpeciesDistributionToolkit`\n\n::: {#download-the-bioclim-data-from-worldclim2 .cell execution_count=3}\n``` {.julia .cell-code}\nprovider = RasterData(WorldClim2, BioClim)\nopts = (; resolution=10.0)\ntemperature = SimpleSDMPredictor(provider, layer=1; opts..., boundingbox...)\n```\n:::\n\n\n::: footer\nBioClim data from @karger2020; see @dansereau2021 for more about the packages\n:::\n\n## Bioclimatic data\n\nWe set the pixels with only open water to `nothing`\n\n::: {#get-the-open-water-pixels .cell execution_count=4}\n``` {.julia .cell-code}\nwater = \n SimpleSDMPredictor(RasterData(EarthEnv, LandCover), layer=12; boundingbox...)\nland = similar(temperature, Bool)\nreplace!(land, false => true)\nfor k in keys(land)\n if !isnothing(water[k])\n if water[k] == 100\n land[k] = false\n end\n end\nend\ntemperature = mask(land, temperature)\n```\n:::\n\n\n::: footer\nLand-cover data from @tuanmu2014\n:::\n\n## Where are we so far?\n\n::: {#9283eb52 .cell execution_count=5}\n\n::: {.cell-output .cell-output-display execution_count=7}\n![](slides_files/figure-revealjs/cell-6-output-1.png){}\n:::\n:::\n\n\n## Spatial thinning\n\nWe limit the occurrences to one per grid cell, assigned to the center of the grid cell\n\n::: {#make-the-layer-for-presences .cell execution_count=6}\n``` {.julia .cell-code}\npresence_layer = similar(temperature, Bool)\nfor i in axes(occ, 1)\n if ~isnothing(presence_layer[occ[i]...])\n presence_layer[occ[i]...] = true\n end\nend\n```\n:::\n\n\n## Background points generation\n\nWe generate background points proportionally to the distance away from observations\n\n::: {#make-the-pseudo-absence-buffer .cell execution_count=7}\n``` {.julia .cell-code}\npossible_background = pseudoabsencemask(DistanceToEvent, presence_layer)\n```\n:::\n\n\nAnd then we sample three pseudo-absence for each occurrence:\n\n::: {#make-the-absence-layer .cell execution_count=8}\n``` {.julia .cell-code}\nabsence_layer = backgroundpoints(\n (x -> x^1.01).(possible_background), \n 3sum(presence_layer);\n replace=false\n)\n```\n:::\n\n\n::: footer\nSee @barbet-massin2012 for more on background points\n:::\n\n## Background points cleaning\n\nWe can remove all of the information that is neither a presence nor a pseudo-absence\n\n::: {#pseudo-absencepresence-remove .cell execution_count=9}\n``` {.julia .cell-code}\nreplace!(absence_layer, false => nothing)\nreplace!(presence_layer, false => nothing)\n```\n:::\n\n\n## Data overview\n\n::: {#1e68595c .cell execution_count=10}\n\n::: {.cell-output .cell-output-display execution_count=12}\n![](slides_files/figure-revealjs/cell-11-output-1.png){}\n:::\n:::\n\n\n\n\n## Preparing the responses and variables\n\n::: {#assemble-y-and-x .cell execution_count=12}\n``` {.julia .cell-code}\nXpresence = hcat([bioclim_var[keys(presence_layer)] for bioclim_var in predictors]...)\nypresence = fill(true, length(presence_layer))\nXabsence = hcat([bioclim_var[keys(absence_layer)] for bioclim_var in predictors]...)\nyabsence = fill(false, length(absence_layer))\nX = vcat(Xpresence, Xabsence)\ny = vcat(ypresence, yabsence)\n```\n:::\n\n\n\n\n## The model -- Naive Bayes Classifier\n\nPrediction:\n\n$$\nP(+|x) = \\frac{P(+)}{P(x)}P(x|+)\n$$\n\nDecision rule:\n\n$$\n\\hat y = \\text{argmax}_j \\, P(\\mathbf{c}_j)\\prod_i P(\\mathbf{x}_i|\\mathbf{c}_j)\n$$\n\n::: footer\nWith $n$ instances and $f$ features, NBC trains *and* predicts in $\\mathcal{O}(n\\times f)$\n:::\n\n## The model -- Naive Bayes Classifier\n\nAssumption of Gaussian distributions:\n\n$$\nP(x|+) = \\text{pdf}(x, \\mathcal{N}(\\mu_+, \\sigma_+))\n$$\n\n## Cross-validation\n\nWe keep an **unseen** *testing* set -- this will be used at the very end to report expected model performance\n\n::: {#testing-set .cell execution_count=14}\n``` {.julia .cell-code}\nidx, tidx = holdout(y, X; permute=true)\n```\n:::\n\n\nFor *validation*, we will run k-folds\n\n::: {#k-folds .cell execution_count=15}\n``` {.julia .cell-code}\nty, tX = y[idx], X[idx,:]\nfolds = kfold(ty, tX; k=15, permute=true)\nk = length(folds)\n```\n:::\n\n\n::: footer\nSee @valavi2018 for more on cross-validation\n:::\n\n## A note on cross-validation\n\nAll models share the same folds\n\n: we can compare the validation performance across experiments to select the best model\n\nModel performance can be compared\n\n: we average the relevant summary statistics over each validation set\n\nTesting set is *only* for future evaluation\n\n: we can only use it once and report the expected performance *of the best model*\n\n## Baseline performance\n\nWe need to get a sense of how difficult the classification problem is:\n\n::: {#38198fb6 .cell execution_count=16}\n``` {.julia .cell-code}\nN_v0 = crossvalidate(naivebayes, ty, tX, folds)\nB_v0 = crossvalidate(bioclim, ty, tX, folds, eps())\n```\n:::\n\n\nThis uses an un-tuned model with all variables and reports the average over all validation sets. In addition, we will always use the BioClim model as a comparison.\n\n## Measures on the confusion matrix {.smaller}\n\n| | BioClim | NBC |\n|-----|-------------------------------|-------------------------------|\n| FPR | 0\\.3274 | 0\\.1186 |\n| FNR | 0\\.0138 | 0\\.156 |\n| TPR | 0\\.9862 | 0\\.844 |\n| TNR | 0\\.6726 | 0\\.8814 |\n| TSS | 0\\.6588 | 0\\.7254 |\n| MCC | 0\\.5737 | 0\\.6872 |\n\n::: footer\nIt's a good idea to check the values for the training sets too...\n:::\n\n## Variable selection\n\nWe add variables one at a time, until the Matthew's Correlation Coefficient stops increasing -- we keep annual temperature, isothermality, mean diurnal range, and annual precipitation\n\n::: {#383eec55 .cell execution_count=17}\n``` {.julia .cell-code}\navailable_variables = forwardselection(ty, tX, folds, naivebayes, mcc)\n```\n:::\n\n\nThis method identifies 5 variables, some of which are:\n\n1. Mean Temp\\. of Coldest Quarter\n\n2. Mean Diurnal Range \n\n3. Annual Precip\\.\n\n## Variable selection?\n\n- Constrained variable selection\n\n- VIF threshold (over the extent or over document occurrences?)\n\n- PCA for dimensionality reduction *v.* Whitening for colinearity removal\n\n- Potential for data leakage: data transformations don't exist, they are just models we can train\n\n## Model with variable selection\n\n::: {#4a50f5ce .cell execution_count=18}\n``` {.julia .cell-code}\nN_v1 = crossvalidate(naivebayes, ty, tX[:,available_variables], folds)\nB_v1 = crossvalidate(bioclim, ty, tX[:,available_variables], folds, eps())\n```\n:::\n\n\n## Measures on the confusion matrix {.smaller}\n\n| | BioClim | NBC | BioClim (v.s.) | NBC (v.s.) |\n|---------------|---------------|---------------|---------------|---------------|\n| FPR | 0\\.3274 | 0\\.1186 | 0\\.5892 | 0\\.0908 |\n| FNR | 0\\.0138 | 0\\.156 | 0\\.0071 | 0\\.1411 |\n| TPR | 0\\.9862 | 0\\.844 | 0\\.9929 | 0\\.8589 |\n| TNR | 0\\.6726 | 0\\.8814 | 0\\.4108 | 0\\.9092 |\n| TSS | 0\\.6588 | 0\\.7254 | 0\\.4037 | 0\\.768 |\n| MCC | 0\\.5737 | 0\\.6872 | 0\\.3817 | 0\\.7401 |\n\n## How do we make the model better?\n\nThe NBC is a *probabilistic classifier* returning $P(+|\\mathbf{x})$\n\nThe *decision rule* is to assign a presence when $P(\\cdot) > 0.5$\n\nBut $P(\\cdot) > \\tau$ is a far more general approach, and we can use learning curves to identify $\\tau$\n\n## Thresholding the model\n\n::: {#8cabc328 .cell execution_count=19}\n``` {.julia .cell-code}\nthr = LinRange(0.0, 1.0, 500)\nT = hcat([crossvalidate(naivebayes, ty, tX[:,available_variables], folds, t) for t in thr]...)\n```\n:::\n\n\n## But how do we pick the threshold?\n\n::: {#c8def73c .cell execution_count=20}\n\n::: {.cell-output .cell-output-display execution_count=25}\n![](slides_files/figure-revealjs/cell-21-output-1.svg){}\n:::\n:::\n\n\n## Tuned model with selected variables\n\n::: {#c1239243 .cell execution_count=21}\n``` {.julia .cell-code}\nN_v2 = crossvalidate(naivebayes, ty, tX[:,available_variables], folds, thr[m])\n```\n:::\n\n\n## Measures on the confusion matrix {.smaller}\n\n| | BioClim | NBC | BioClim (v.s.) | NBC (v.s.) | NBC (v.s. + tuning) |\n|------------|------------|------------|------------|------------|------------|\n| FPR | 0\\.3274 | 0\\.1186 | 0\\.5892 | 0\\.0908 | 0\\.0805 |\n| FNR | 0\\.0138 | 0\\.156 | 0\\.0071 | 0\\.1411 | 0\\.1572 |\n| TPR | 0\\.9862 | 0\\.844 | 0\\.9929 | 0\\.8589 | 0\\.8428 |\n| TNR | 0\\.6726 | 0\\.8814 | 0\\.4108 | 0\\.9092 | 0\\.9195 |\n| TSS | 0\\.6588 | 0\\.7254 | 0\\.4037 | 0\\.768 | 0\\.7623 |\n| MCC | 0\\.5737 | 0\\.6872 | 0\\.3817 | 0\\.7401 | 0\\.7445 |\n\n## How do we make the model better?\n\nThe NBC is a *Bayesian classifier* returning $P(+|\\mathbf{x})$\n\nThe *actual probability* depends on $P(+)$\n\nThere is no reason not to also tune $P(+)$ (jointly with other hyper-parameters)!\n\n## Joint tuning of hyper-parameters\n\n::: {#9557f8c7 .cell execution_count=22}\n``` {.julia .cell-code}\nthr = LinRange(0.0, 1.0, 55)\npplus = LinRange(0.0, 1.0, 45)\nT = [crossvalidate(naivebayes, ty, tX[:,available_variables], folds, t; presence=prior) for t in thr, prior in pplus]\nbest_mcc, params = findmax(map(v -> mean(mcc.(v)), T))\nτ = thr[params.I[1]]\nppres = pplus[params.I[2]]\n```\n:::\n\n\n## Tuned (again) model with selected variables\n\n::: {#34b2f0d0 .cell execution_count=23}\n``` {.julia .cell-code}\nN_v3 = crossvalidate(naivebayes, ty, tX[:,available_variables], folds, τ; presence=ppres)\n```\n:::\n\n\n## Measures on the confusion matrix {.smaller}\n\n| | BioClim | NBC (v0) | NBC (v1) | NBC (v2) | NBC (v3) |\n|------------|------------|-------------|------------|------------|------------|\n| FPR | 0\\.3274 | 0\\.1186 | 0\\.0908 | 0\\.0805 | 0\\.0774 |\n| FNR | 0\\.0138 | 0\\.156 | 0\\.1411 | 0\\.1572 | 0\\.1632 |\n| TPR | 0\\.9862 | 0\\.844 | 0\\.8589 | 0\\.8428 | 0\\.8368 |\n| TNR | 0\\.6726 | 0\\.8814 | 0\\.9092 | 0\\.9195 | 0\\.9226 |\n| TSS | 0\\.6588 | 0\\.7254 | 0\\.768 | 0\\.7623 | 0\\.7594 |\n| MCC | 0\\.5737 | 0\\.6872 | 0\\.7401 | 0\\.7445 | 0\\.7448 |\n\n## Tuned model performance\n\nWe can retrain over *all* the training data\n\n::: {#5761b4ac .cell execution_count=24}\n``` {.julia .cell-code}\nfinalmodel = naivebayes(ty, tX[:,available_variables]; presence=ppres)\nprediction = vec(mapslices(finalmodel, X[tidx,available_variables]; dims=2))\nC = ConfusionMatrix(prediction, y[tidx], τ)\n```\n:::\n\n\n## Estimated performance\n\n| | Final model |\n|-----|----------------------------|\n| FPR | 0\\.0673 |\n| FNR | 0\\.1712 |\n| TPR | 0\\.8288 |\n| TNR | 0\\.9327 |\n| TSS | 0\\.7615 |\n| MCC | 0\\.7494 |\n\n## Acceptable bias\n\n- false positives: we expect that our knowledge of the distribution is incomplete, and *this is why we train a model*\n\n- false negatives: wrong observations (positive in the data) may be identified by the model (negative prediction)\n\n## Prediction for each pixel\n\n\n\n::: {#2fc86a64 .cell execution_count=26}\n``` {.julia .cell-code}\nprediction = similar(temperature, Float64)\nvariability = similar(temperature, Float64)\nuncertainty = similar(temperature, Float64)\nThreads.@threads for k in keys(prediction)\n pred_k = [p[k] for p in predictors[available_variables]]\n bootstraps = [\n samplemodel(pred_k)\n for samplemodel in samplemodels\n ]\n prediction[k] = finalmodel(pred_k)\n variability[k] = iqr(bootstraps)\n uncertainty[k] = entropy(prediction[k])\nend\n```\n:::\n\n\n## Tuned model - prediction\n\n::: {#85b5115b .cell execution_count=27}\n\n::: {.cell-output .cell-output-display execution_count=35}\n![](slides_files/figure-revealjs/cell-28-output-1.png){}\n:::\n:::\n\n\n## Tuned model - variability in output\n\n::: {#3adde8e9 .cell execution_count=28}\n\n::: {.cell-output .cell-output-display execution_count=36}\n![](slides_files/figure-revealjs/cell-29-output-1.png){}\n:::\n:::\n\n\n::: footer\nIQR for 50 bootstrap replicates\n:::\n\n## Tuned model - entropy in probability\n\n::: {#96e7bd6d .cell execution_count=29}\n\n::: {.cell-output .cell-output-display execution_count=37}\n![](slides_files/figure-revealjs/cell-30-output-1.png){}\n:::\n:::\n\n\n::: footer\nEntropy (in bits) of the NBC probability\n:::\n\n## Tuned model - range\n\n::: {#87628523 .cell execution_count=30}\n\n::: {.cell-output .cell-output-display execution_count=38}\n![](slides_files/figure-revealjs/cell-31-output-1.png){}\n:::\n:::\n\n\n::: footer\nProbability \\> 0.333\n:::\n\n## Predicting the predictions?\n\nShapley values (Monte-Carlo approximation): if we mix the variables across two observations, how important is the $i$-th variable?\n\nExpresses \"importance\" as an additive factor on top of the *average* prediction (here: average prob. of occurrence)\n\n## Calculation of the Shapley values\n\n::: {#9d60faf1 .cell execution_count=31}\n``` {.julia .cell-code}\nshapval = [similar(first(predictors), Float64) for i in eachindex(available_variables)]\nThreads.@threads for k in keys(shapval[1])\n x = [p[k] for p in predictors[available_variables]]\n for i in axes(shapval, 1)\n shapval[i][k] = shapleyvalues(finalmodel, tX[:,available_variables], x, i; M=50)\n if isnan(shapval[i][k])\n shapval[i][k] = 0.0\n end\n end\nend\n```\n:::\n\n\n## Importance of variables\n\n::: {#bcc40b02 .cell execution_count=32}\n``` {.julia .cell-code}\nvarimp = sum.(map(abs, shapval))\nvarimp ./= sum(varimp)\nshapmax = mosaic(argmax, map(abs, shapval[sortperm(varimp; rev=true)]))\nfor v in sortperm(varimp, rev=true)\n vname = variables[available_variables[v]][2]\n vctr = round(Int, varimp[v]*100)\n println(\"$(vname) - $(vctr)%\")\nend\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMean Temp. of Coldest Quarter - 36%\nAnnual Precip. - 21%\nPrecip. of Coldest Quarter - 19%\nPrecip. Seasonality - 12%\nMean Diurnal Range - 11%\n```\n:::\n:::\n\n\nThere is a difference between **contributing to model performance** and **contributing to model explainability**\n\n## Top three variables\n\n::: {#854ec227 .cell execution_count=33}\n\n::: {.cell-output .cell-output-display execution_count=42}\n![](slides_files/figure-revealjs/cell-34-output-1.png){}\n:::\n:::\n\n\n## Most determinant predictor\n\n::: {#d9693994 .cell execution_count=34}\n\n::: {.cell-output .cell-output-display execution_count=43}\n![](slides_files/figure-revealjs/cell-35-output-1.png){}\n:::\n:::\n\n\n## Future predictions\n\n- relevant variables will remain the same\n\n- relevant $P(+)$ will remain the same\n\n- relevant threshold for presences will remain the same\n\n## Future climate data (ca. 2070)\n\n::: {#aa7c40a6 .cell execution_count=35}\n\n::: {.cell-output .cell-output-display execution_count=44}\n```\n19-element Vector{SimpleSDMPredictor{Float32}}:\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n SDM predictor → 240×513 grid with 69098 Float32-valued cells\n```\n:::\n:::\n\n\n## Future climate prediction\n\n::: {#66eb09a1 .cell execution_count=36}\n``` {.julia .cell-code}\nfuture_prediction = similar(temperature, Float64)\nThreads.@threads for k in keys(future_prediction)\n pred_k = [p[k] for p in future_predictors[available_variables]]\n if any(isnothing.(pred_k))\n continue\n end\n future_prediction[k] = finalmodel(pred_k)\nend\n```\n:::\n\n\n## Tuned model - future prediction\n\n::: {#93b954ab .cell execution_count=37}\n\n::: {.cell-output .cell-output-display execution_count=46}\n![](slides_files/figure-revealjs/cell-38-output-1.png){}\n:::\n:::\n\n\n## Loss and gain in distribution\n\n::: {#75a965db .cell execution_count=38}\n\n::: {.cell-output .cell-output-display execution_count=47}\n```\nSDM response → 240×513 grid with 941 Float64-valued cells\n Latitudes\t25.0 ⇢ 65.0\n Longitudes\t-149.83333333333334 ⇢ -64.33333333333334\n```\n:::\n:::\n\n\n| Change | Area (10⁶ km²) |\n|-----|------|\n| Expansion | 1.900361191915685 | \n| No change | 4.698755924606283 | \n| Loss | 0.2519090994649904 |\n\n## Tuned model - future range change\n\n::: {#5987d0d4 .cell execution_count=39}\n\n::: {.cell-output .cell-output-display execution_count=49}\n![](slides_files/figure-revealjs/cell-40-output-1.png){}\n:::\n:::\n\n\n## But wait...\n\n> What do you think the species was?\n\nHuman in the loop *v.* Algorithm in the loop\n\n## Take-home\n\n- building a model is *incremental*\n\n- each step adds arbitrary decisions we can control for, justify, or live with\n\n- we can provide explanations for every single prediction\n\n- free online textbook (in development) at `https://tpoisot.github.io/DataSciForBiodivSci/`\n\n## References\n\n", "supporting": [ "slides_files/figure-revealjs" ], diff --git a/_freeze/slides/figure-revealjs/cell-11-output-1.png b/_freeze/slides/figure-revealjs/cell-11-output-1.png index 51f2269..c3cad2d 100644 Binary files a/_freeze/slides/figure-revealjs/cell-11-output-1.png and b/_freeze/slides/figure-revealjs/cell-11-output-1.png differ diff --git a/_freeze/slides/figure-revealjs/cell-21-output-1.svg b/_freeze/slides/figure-revealjs/cell-21-output-1.svg index 2ed77f6..abeb6a7 100644 --- a/_freeze/slides/figure-revealjs/cell-21-output-1.svg +++ b/_freeze/slides/figure-revealjs/cell-21-output-1.svg @@ -2,1140 +2,1176 @@ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - - - + - + + + + - + - - + + - - + + - - + + - - + + - - + + - + - - + + - - + + - - + + - - + + - - + + - - + + - + - + - - + + - + + + + - + - - + + - - + + - - + + - - + + - - + + + + + + + + + + + + + + - + + + + - + - + + + + - - + + - - + + - - + + - - + + - - + + - - + + - + - - + + - + - - - - + - + - + - + - + - - - - - - - - - - - - - - + + - + - - - - - - - - + + - + - + - - + + - + - - + + - + + + + - + - + - - + + - + - - - - - + + - + - + - + - + - - + + + + + - + - + + + + - + + + + - + - + - + - - + + - - + + - - + + - - + + - - + + - + - - + + - + - - + + - - - - + - - - - - - - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - + - - - - + - + - - - - - - - + - + - - - - + - + - - + + - - - - - + + - - + + - - + + - + - - - - + - - + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - + + + + + + + + + + - - + + - + + + + - - + + - - - - - + + - - + + - - + + - - + + - - + + - + - + + + + - + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + + + + - + + + + + + + + + + + + + + + + + + + - + @@ -1187,10783 +1223,15372 @@ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - + + - - - + + - - + + - - + + - - + + - - - + + - - + + - - - + + - - + + - - - + + - - + + - - - - - - + + - - + + - - + + - - + + + + + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - - - - - - - - - - - - - - - - - + - + - + - + - + + + + + + + + + + + + + + + + + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - - - - - - - - - - - - - - + - - + + - - - + + - - - + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -11972,8 +16597,30 @@ - - + + + + + + + + + + + + + + + + + + + + + + + + @@ -11981,5295 +16628,708 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_freeze/slides/figure-revealjs/cell-28-output-1.png b/_freeze/slides/figure-revealjs/cell-28-output-1.png index cca59d4..8905ddc 100644 Binary files a/_freeze/slides/figure-revealjs/cell-28-output-1.png and b/_freeze/slides/figure-revealjs/cell-28-output-1.png differ diff --git a/_freeze/slides/figure-revealjs/cell-29-output-1.png b/_freeze/slides/figure-revealjs/cell-29-output-1.png index 59e71ac..4afc162 100644 Binary files a/_freeze/slides/figure-revealjs/cell-29-output-1.png and b/_freeze/slides/figure-revealjs/cell-29-output-1.png differ diff --git a/_freeze/slides/figure-revealjs/cell-30-output-1.png b/_freeze/slides/figure-revealjs/cell-30-output-1.png index 4eb1664..9d662c0 100644 Binary files a/_freeze/slides/figure-revealjs/cell-30-output-1.png and b/_freeze/slides/figure-revealjs/cell-30-output-1.png differ diff --git a/_freeze/slides/figure-revealjs/cell-31-output-1.png b/_freeze/slides/figure-revealjs/cell-31-output-1.png index 1498e71..32a0d00 100644 Binary files a/_freeze/slides/figure-revealjs/cell-31-output-1.png and b/_freeze/slides/figure-revealjs/cell-31-output-1.png differ diff --git a/_freeze/slides/figure-revealjs/cell-34-output-1.png b/_freeze/slides/figure-revealjs/cell-34-output-1.png index 55fb4d4..5fa7c73 100644 Binary files a/_freeze/slides/figure-revealjs/cell-34-output-1.png and b/_freeze/slides/figure-revealjs/cell-34-output-1.png differ diff --git a/_freeze/slides/figure-revealjs/cell-35-output-1.png b/_freeze/slides/figure-revealjs/cell-35-output-1.png index a243312..9f6334b 100644 Binary files a/_freeze/slides/figure-revealjs/cell-35-output-1.png and b/_freeze/slides/figure-revealjs/cell-35-output-1.png differ diff --git a/_freeze/slides/figure-revealjs/cell-38-output-1.png b/_freeze/slides/figure-revealjs/cell-38-output-1.png index 3bd10e2..aaecde2 100644 Binary files a/_freeze/slides/figure-revealjs/cell-38-output-1.png and b/_freeze/slides/figure-revealjs/cell-38-output-1.png differ diff --git a/_freeze/slides/figure-revealjs/cell-40-output-1.png b/_freeze/slides/figure-revealjs/cell-40-output-1.png index 072de96..cb6e3f9 100644 Binary files a/_freeze/slides/figure-revealjs/cell-40-output-1.png and b/_freeze/slides/figure-revealjs/cell-40-output-1.png differ diff --git a/_freeze/slides/figure-revealjs/cell-6-output-1.png b/_freeze/slides/figure-revealjs/cell-6-output-1.png index 5eb1aa8..2d42aa8 100644 Binary files a/_freeze/slides/figure-revealjs/cell-6-output-1.png and b/_freeze/slides/figure-revealjs/cell-6-output-1.png differ diff --git a/docs/index.html b/docs/index.html index ca47810..5eff7a1 100644 --- a/docs/index.html +++ b/docs/index.html @@ -7,7 +7,7 @@ - + Building an interpretable SDM from scratch @@ -97,6 +97,7 @@ div.csl-bib-body { } div.csl-entry { clear: both; + margin-bottom: 0em; } .hanging-indent div.csl-entry { margin-left:2em; @@ -453,17 +454,20 @@

Why…

… think of SDMs as a ML problem?
-

They are (they really, really are, see Beery et al. (2021))

+

Because they are

… think of explainable ML for SDM?
-

Uptake of models requires transparent predictions

+

Because model uptake requires transparency

… not tell us which species this is about?

Because this is the point (you’ll see)

+

Do try this at home!

@@ -504,7 +508,7 @@

Bioclimatic data

We collect BioClim data from CHELSA v1, using SpeciesDistributionToolkit

provider = RasterData(WorldClim2, BioClim)
-opts = (; resolution=2.5)
+opts = (; resolution=10.0)
 temperature = SimpleSDMPredictor(provider, layer=1; opts..., boundingbox...)

Background points generation

-

We generate background points proportionally to the distance away from observations, with a 10km buffer around each point with no background point allowed:

+

We generate background points proportionally to the distance away from observations

possible_background = pseudoabsencemask(DistanceToEvent, presence_layer)
@@ -646,7 +650,7 @@

A note on cross-validation

Baseline performance

We need to get a sense of how difficult the classification problem is:

-
+
N_v0 = crossvalidate(naivebayes, ty, tX, folds)
 B_v0 = crossvalidate(bioclim, ty, tX, folds, eps())
@@ -665,33 +669,33 @@

Measures on the confusion matrix

FPR -0.32±0.0 -0.11±0.0 +0.3274 +0.1186 FNR -0.01±0.0 -0.14±0.0 +0.0138 +0.156 TPR -0.99±0.0 -0.86±0.0 +0.9862 +0.844 TNR -0.68±0.0 -0.89±0.0 +0.6726 +0.8814 TSS -0.66±0.0 -0.75±0.0 +0.6588 +0.7254 MCC -0.58±0.0 -0.71±0.0 +0.5737 +0.6872 @@ -702,7 +706,7 @@

Measures on the confusion matrix

Variable selection

We add variables one at a time, until the Matthew’s Correlation Coefficient stops increasing – we keep annual temperature, isothermality, mean diurnal range, and annual precipitation

-
+
available_variables = forwardselection(ty, tX, folds, naivebayes, mcc)

This method identifies 5 variables, some of which are:

@@ -723,7 +727,7 @@

Variable selection?

Model with variable selection

-
+
N_v1 = crossvalidate(naivebayes, ty, tX[:,available_variables], folds)
 B_v1 = crossvalidate(bioclim, ty, tX[:,available_variables], folds, eps())
@@ -750,45 +754,45 @@

Measures on the confusion matrix

FPR -0.32±0.0 -0.11±0.0 -0.57±0.1 -0.07±0.0 +0.3274 +0.1186 +0.5892 +0.0908 FNR -0.01±0.0 -0.14±0.0 -0.01±0.0 -0.14±0.0 +0.0138 +0.156 +0.0071 +0.1411 TPR -0.99±0.0 -0.86±0.0 -0.99±0.0 -0.86±0.0 +0.9862 +0.844 +0.9929 +0.8589 TNR -0.68±0.0 -0.89±0.0 -0.43±0.1 -0.93±0.0 +0.6726 +0.8814 +0.4108 +0.9092 TSS -0.66±0.0 -0.75±0.0 -0.42±0.1 -0.79±0.0 +0.6588 +0.7254 +0.4037 +0.768 MCC -0.58±0.0 -0.71±0.0 -0.39±0.1 -0.77±0.0 +0.5737 +0.6872 +0.3817 +0.7401 @@ -801,7 +805,7 @@

How do we make the model better?

Thresholding the model

-
+
thr = LinRange(0.0, 1.0, 500)
 T = hcat([crossvalidate(naivebayes, ty, tX[:,available_variables], folds, t) for t in thr]...)
@@ -812,7 +816,7 @@

But how do we pick the threshold?

Tuned model with selected variables

-
+
N_v2 = crossvalidate(naivebayes, ty, tX[:,available_variables], folds, thr[m])
@@ -840,51 +844,51 @@

Measures on the confusion matrix

FPR -0.32±0.0 -0.11±0.0 -0.57±0.1 -0.07±0.0 -0.06±0.0 +0.3274 +0.1186 +0.5892 +0.0908 +0.0805 FNR -0.01±0.0 -0.14±0.0 -0.01±0.0 -0.14±0.0 -0.15±0.0 +0.0138 +0.156 +0.0071 +0.1411 +0.1572 TPR -0.99±0.0 -0.86±0.0 -0.99±0.0 -0.86±0.0 -0.85±0.0 +0.9862 +0.844 +0.9929 +0.8589 +0.8428 TNR -0.68±0.0 -0.89±0.0 -0.43±0.1 -0.93±0.0 -0.94±0.0 +0.6726 +0.8814 +0.4108 +0.9092 +0.9195 TSS -0.66±0.0 -0.75±0.0 -0.42±0.1 -0.79±0.0 -0.79±0.0 +0.6588 +0.7254 +0.4037 +0.768 +0.7623 MCC -0.58±0.0 -0.71±0.0 -0.39±0.1 -0.77±0.0 -0.77±0.0 +0.5737 +0.6872 +0.3817 +0.7401 +0.7445 @@ -897,7 +901,7 @@

How do we make the model better?

Joint tuning of hyper-parameters

-
+
thr = LinRange(0.0, 1.0, 55)
 pplus = LinRange(0.0, 1.0, 45)
 T = [crossvalidate(naivebayes, ty, tX[:,available_variables], folds, t; presence=prior) for t in thr, prior in pplus]
@@ -908,7 +912,7 @@ 

Joint tuning of hyper-parameters

Tuned (again) model with selected variables

-
+
N_v3 = crossvalidate(naivebayes, ty, tX[:,available_variables], folds, τ; presence=ppres)
@@ -936,51 +940,51 @@

Measures on the confusion matrix

FPR -0.32±0.0 -0.11±0.0 -0.07±0.0 -0.06±0.0 -0.06±0.0 +0.3274 +0.1186 +0.0908 +0.0805 +0.0774 FNR -0.01±0.0 -0.14±0.0 -0.14±0.0 -0.15±0.0 -0.15±0.0 +0.0138 +0.156 +0.1411 +0.1572 +0.1632 TPR -0.99±0.0 -0.86±0.0 -0.86±0.0 -0.85±0.0 -0.85±0.0 +0.9862 +0.844 +0.8589 +0.8428 +0.8368 TNR -0.68±0.0 -0.89±0.0 -0.93±0.0 -0.94±0.0 -0.94±0.0 +0.6726 +0.8814 +0.9092 +0.9195 +0.9226 TSS -0.66±0.0 -0.75±0.0 -0.79±0.0 -0.79±0.0 -0.79±0.0 +0.6588 +0.7254 +0.768 +0.7623 +0.7594 MCC -0.58±0.0 -0.71±0.0 -0.77±0.0 -0.77±0.0 -0.77±0.0 +0.5737 +0.6872 +0.7401 +0.7445 +0.7448 @@ -988,7 +992,7 @@

Measures on the confusion matrix

Tuned model performance

We can retrain over all the training data

-
+
finalmodel = naivebayes(ty, tX[:,available_variables]; presence=ppres)
 prediction = vec(mapslices(finalmodel, X[tidx,available_variables]; dims=2))
 C = ConfusionMatrix(prediction, y[tidx], τ)
@@ -1006,27 +1010,27 @@

Estimated performance

FPR -0.06 +0.0673 FNR -0.15 +0.1712 TPR -0.85 +0.8288 TNR -0.94 +0.9327 TSS -0.79 +0.7615 MCC -0.78 +0.7494 @@ -1040,7 +1044,7 @@

Acceptable bias

Prediction for each pixel

-
+
prediction = similar(temperature, Float64)
 variability = similar(temperature, Float64)
 uncertainty = similar(temperature, Float64)
@@ -1078,7 +1082,7 @@ 

Tuned model - entropy in probability

Tuned model - range

@@ -1088,7 +1092,7 @@

Predicting the predictions?

Calculation of the Shapley values

-
+
shapval = [similar(first(predictors), Float64) for i in eachindex(available_variables)]
 Threads.@threads for k in keys(shapval[1])
     x = [p[k] for p in predictors[available_variables]]
@@ -1103,7 +1107,7 @@ 

Calculation of the Shapley values

Importance of variables

-
+
varimp = sum.(map(abs, shapval))
 varimp ./= sum(varimp)
 shapmax = mosaic(argmax, map(abs, shapval[sortperm(varimp; rev=true)]))
@@ -1113,11 +1117,11 @@ 

Importance of variables

println("$(vname) - $(vctr)%") end
-
Mean Temp. of Coldest Quarter - 46%
-Annual Precip. - 16%
-Precip. of Coldest Quarter - 14%
-Mean Diurnal Range  - 12%
-Precip. Seasonality  - 11%
+
Mean Temp. of Coldest Quarter - 36%
+Annual Precip. - 21%
+Precip. of Coldest Quarter - 19%
+Precip. Seasonality  - 12%
+Mean Diurnal Range  - 11%

There is a difference between contributing to model performance and contributing to model explainability

@@ -1140,34 +1144,34 @@

Future predictions

Future climate data (ca. 2070)

-
-
+
+
19-element Vector{SimpleSDMPredictor{Float32}}:
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
- SDM predictor → 955×2048 grid with 1118001 Float32-valued cells
+ SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells + SDM predictor → 240×513 grid with 69098 Float32-valued cells

Future climate prediction

-
+
future_prediction = similar(temperature, Float64)
 Threads.@threads for k in keys(future_prediction)
     pred_k = [p[k] for p in future_predictors[available_variables]]
@@ -1184,11 +1188,11 @@ 

Tuned model - future prediction

Loss and gain in distribution

-
-
-
SDM response → 955×2048 grid with 6822 Float64-valued cells
-  Latitudes 25.125 ⇢ 64.91666666666666
-  Longitudes    -149.79166666666669 ⇢ -64.45833333333334
+
+
+
SDM response → 240×513 grid with 941 Float64-valued cells
+  Latitudes 25.0 ⇢ 65.0
+  Longitudes    -149.83333333333334 ⇢ -64.33333333333334
@@ -1201,15 +1205,15 @@

Loss and gain in distribution

- + - + - +
Expansion1.91948103076380061.900361191915685
No change4.8681090224849334.698755924606283
Loss0.12945271484348770.2519090994649904
@@ -1223,6 +1227,7 @@

But wait…

What do you think the species was?

+

Human in the loop v. Algorithm in the loop

Take-home

@@ -1239,7 +1244,7 @@

References

-
+
Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3, 327–338.
diff --git a/docs/slides_files/figure-revealjs/cell-11-output-1.png b/docs/slides_files/figure-revealjs/cell-11-output-1.png index 51f2269..c3cad2d 100644 Binary files a/docs/slides_files/figure-revealjs/cell-11-output-1.png and b/docs/slides_files/figure-revealjs/cell-11-output-1.png differ diff --git a/docs/slides_files/figure-revealjs/cell-21-output-1.svg b/docs/slides_files/figure-revealjs/cell-21-output-1.svg index 2ed77f6..abeb6a7 100644 --- a/docs/slides_files/figure-revealjs/cell-21-output-1.svg +++ b/docs/slides_files/figure-revealjs/cell-21-output-1.svg @@ -2,1140 +2,1176 @@ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - - - + - + + + + - + - - + + - - + + - - + + - - + + - - + + - + - - + + - - + + - - + + - - + + - - + + - - + + - + - + - - + + - + + + + - + - - + + - - + + - - + + - - + + - - + + + + + + + + + + + + + + - + + + + - + - + + + + - - + + - - + + - - + + - - + + - - + + - - + + - + - - + + - + - - - - + - + - + - + - + - - - - - - - - - - - - - - + + - + - - - - - - - - + + - + - + - - + + - + - - + + - + + + + - + - + - - + + - + - - - - - + + - + - + - + - + - - + + + + + - + - + + + + - + + + + - + - + - + - - + + - - + + - - + + - - + + - - + + - + - - + + - + - - + + - - - - + - - - - - - - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - + - - - - + - + - - - - - - - + - + - - - - + - + - - + + - - - - - + + - - + + - - + + - + - - - - + - - + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - + + + + + + + + + + - - + + - + + + + - - + + - - - - - + + - - + + - - + + - - + + - - + + - + - + + + + - + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + + + + - + + + + + + + + + + + + + + + + + + + - + @@ -1187,10783 +1223,15372 @@ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - + + - - - + + - - + + - - + + - - + + - - - + + - - + + - - - + + - - + + - - - + + - - + + - - - - - - + + - - + + - - + + - - + + + + + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - - - - - - - - - - - - - - - - - + - + - + - + - + + + + + + + + + + + + + + + + + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - - - - - - - - - - - - - - + - - + + - - - + + - - - + + - - - + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -11972,8 +16597,30 @@ - - + + + + + + + + + + + + + + + + + + + + + + + + @@ -11981,5295 +16628,708 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/slides_files/figure-revealjs/cell-28-output-1.png b/docs/slides_files/figure-revealjs/cell-28-output-1.png index cca59d4..8905ddc 100644 Binary files a/docs/slides_files/figure-revealjs/cell-28-output-1.png and b/docs/slides_files/figure-revealjs/cell-28-output-1.png differ diff --git a/docs/slides_files/figure-revealjs/cell-29-output-1.png b/docs/slides_files/figure-revealjs/cell-29-output-1.png index 59e71ac..4afc162 100644 Binary files a/docs/slides_files/figure-revealjs/cell-29-output-1.png and b/docs/slides_files/figure-revealjs/cell-29-output-1.png differ diff --git a/docs/slides_files/figure-revealjs/cell-30-output-1.png b/docs/slides_files/figure-revealjs/cell-30-output-1.png index 4eb1664..9d662c0 100644 Binary files a/docs/slides_files/figure-revealjs/cell-30-output-1.png and b/docs/slides_files/figure-revealjs/cell-30-output-1.png differ diff --git a/docs/slides_files/figure-revealjs/cell-31-output-1.png b/docs/slides_files/figure-revealjs/cell-31-output-1.png index 1498e71..32a0d00 100644 Binary files a/docs/slides_files/figure-revealjs/cell-31-output-1.png and b/docs/slides_files/figure-revealjs/cell-31-output-1.png differ diff --git a/docs/slides_files/figure-revealjs/cell-34-output-1.png b/docs/slides_files/figure-revealjs/cell-34-output-1.png index 55fb4d4..5fa7c73 100644 Binary files a/docs/slides_files/figure-revealjs/cell-34-output-1.png and b/docs/slides_files/figure-revealjs/cell-34-output-1.png differ diff --git a/docs/slides_files/figure-revealjs/cell-35-output-1.png b/docs/slides_files/figure-revealjs/cell-35-output-1.png index a243312..9f6334b 100644 Binary files a/docs/slides_files/figure-revealjs/cell-35-output-1.png and b/docs/slides_files/figure-revealjs/cell-35-output-1.png differ diff --git a/docs/slides_files/figure-revealjs/cell-38-output-1.png b/docs/slides_files/figure-revealjs/cell-38-output-1.png index 3bd10e2..aaecde2 100644 Binary files a/docs/slides_files/figure-revealjs/cell-38-output-1.png and b/docs/slides_files/figure-revealjs/cell-38-output-1.png differ diff --git a/docs/slides_files/figure-revealjs/cell-40-output-1.png b/docs/slides_files/figure-revealjs/cell-40-output-1.png index 072de96..cb6e3f9 100644 Binary files a/docs/slides_files/figure-revealjs/cell-40-output-1.png and b/docs/slides_files/figure-revealjs/cell-40-output-1.png differ diff --git a/docs/slides_files/figure-revealjs/cell-6-output-1.png b/docs/slides_files/figure-revealjs/cell-6-output-1.png index 5eb1aa8..2d42aa8 100644 Binary files a/docs/slides_files/figure-revealjs/cell-6-output-1.png and b/docs/slides_files/figure-revealjs/cell-6-output-1.png differ diff --git a/docs/slides_files/libs/revealjs/dist/theme/quarto.css b/docs/slides_files/libs/revealjs/dist/theme/quarto.css index 40eb7ab..ca31e15 100644 --- a/docs/slides_files/libs/revealjs/dist/theme/quarto.css +++ b/docs/slides_files/libs/revealjs/dist/theme/quarto.css @@ -1,5 +1,5 @@ -@import"./fonts/source-sans-pro/source-sans-pro.css";:root{--r-background-color: rgb(246, 244, 238);--r-main-font: Noto Sans, sans-serif;--r-main-font-size: 40px;--r-main-color: #222;--r-block-margin: 20px;--r-heading-margin: 0 0 20px 0;--r-heading-font: Noto Sans Display, Noto Sans, sans-serif;--r-heading-color: rgb(17, 79, 84);--r-heading-line-height: 1.2;--r-heading-letter-spacing: normal;--r-heading-text-transform: none;--r-heading-text-shadow: none;--r-heading-font-weight: 100;--r-heading1-text-shadow: none;--r-heading1-size: 2.5em;--r-heading2-size: 1.6em;--r-heading3-size: 1.3em;--r-heading4-size: 1em;--r-code-font: Noto Sans Mono, monospace;--r-link-color: rgb(29, 130, 101);--r-link-color-dark: #0f4334;--r-link-color-hover: #26ac85;--r-selection-background-color: #48d6ad;--r-selection-color: rgb(246, 244, 238)}.reveal-viewport{background:#f6f4ee;background-color:var(--r-background-color)}.reveal{font-family:var(--r-main-font);font-size:var(--r-main-font-size);font-weight:normal;color:var(--r-main-color)}.reveal ::selection{color:var(--r-selection-color);background:var(--r-selection-background-color);text-shadow:none}.reveal ::-moz-selection{color:var(--r-selection-color);background:var(--r-selection-background-color);text-shadow:none}.reveal .slides section,.reveal .slides section>section{line-height:1.3;font-weight:inherit}.reveal h1,.reveal h2,.reveal h3,.reveal h4,.reveal h5,.reveal h6{margin:var(--r-heading-margin);color:var(--r-heading-color);font-family:var(--r-heading-font);font-weight:var(--r-heading-font-weight);line-height:var(--r-heading-line-height);letter-spacing:var(--r-heading-letter-spacing);text-transform:var(--r-heading-text-transform);text-shadow:var(--r-heading-text-shadow);word-wrap:break-word}.reveal h1{font-size:var(--r-heading1-size)}.reveal h2{font-size:var(--r-heading2-size)}.reveal h3{font-size:var(--r-heading3-size)}.reveal h4{font-size:var(--r-heading4-size)}.reveal h1{text-shadow:var(--r-heading1-text-shadow)}.reveal p{margin:var(--r-block-margin) 0;line-height:1.3}.reveal h1:last-child,.reveal h2:last-child,.reveal h3:last-child,.reveal h4:last-child,.reveal h5:last-child,.reveal h6:last-child{margin-bottom:0}.reveal img,.reveal video,.reveal iframe{max-width:95%;max-height:95%}.reveal strong,.reveal b{font-weight:bold}.reveal em{font-style:italic}.reveal ol,.reveal dl,.reveal ul{display:inline-block;text-align:left;margin:0 0 0 1em}.reveal ol{list-style-type:decimal}.reveal ul{list-style-type:disc}.reveal ul ul{list-style-type:square}.reveal ul ul ul{list-style-type:circle}.reveal ul ul,.reveal ul ol,.reveal ol ol,.reveal ol ul{display:block;margin-left:40px}.reveal dt{font-weight:bold}.reveal dd{margin-left:40px}.reveal blockquote{display:block;position:relative;width:70%;margin:var(--r-block-margin) auto;padding:5px;font-style:italic;background:rgba(255,255,255,.05);box-shadow:0px 0px 2px rgba(0,0,0,.2)}.reveal blockquote p:first-child,.reveal blockquote p:last-child{display:inline-block}.reveal q{font-style:italic}.reveal pre{display:block;position:relative;width:90%;margin:var(--r-block-margin) auto;text-align:left;font-size:.55em;font-family:var(--r-code-font);line-height:1.2em;word-wrap:break-word;box-shadow:0px 5px 15px rgba(0,0,0,.15)}.reveal code{font-family:var(--r-code-font);text-transform:none;tab-size:2}.reveal pre code{display:block;padding:5px;overflow:auto;max-height:400px;word-wrap:normal}.reveal .code-wrapper{white-space:normal}.reveal .code-wrapper code{white-space:pre}.reveal table{margin:auto;border-collapse:collapse;border-spacing:0}.reveal table th{font-weight:bold}.reveal table th,.reveal table td{text-align:left;padding:.2em .5em .2em .5em;border-bottom:1px solid}.reveal table th[align=center],.reveal table td[align=center]{text-align:center}.reveal table th[align=right],.reveal table td[align=right]{text-align:right}.reveal table tbody tr:last-child th,.reveal table tbody tr:last-child td{border-bottom:none}.reveal sup{vertical-align:super;font-size:smaller}.reveal sub{vertical-align:sub;font-size:smaller}.reveal small{display:inline-block;font-size:.6em;line-height:1.2em;vertical-align:top}.reveal small *{vertical-align:top}.reveal img{margin:var(--r-block-margin) 0}.reveal a{color:var(--r-link-color);text-decoration:none;transition:color .15s ease}.reveal a:hover{color:var(--r-link-color-hover);text-shadow:none;border:none}.reveal .roll span:after{color:#fff;background:var(--r-link-color-dark)}.reveal .r-frame{border:4px solid var(--r-main-color);box-shadow:0 0 10px rgba(0,0,0,.15)}.reveal a .r-frame{transition:all .15s linear}.reveal a:hover .r-frame{border-color:var(--r-link-color);box-shadow:0 0 20px rgba(0,0,0,.55)}.reveal .controls{color:var(--r-link-color)}.reveal .progress{background:rgba(0,0,0,.2);color:var(--r-link-color)}@media print{.backgrounds{background-color:var(--r-background-color)}}.top-right{position:absolute;top:1em;right:1em}.hidden{display:none !important}.zindex-bottom{z-index:-1 !important}.quarto-layout-panel{margin-bottom:1em}.quarto-layout-panel>figure{width:100%}.quarto-layout-panel>figure>figcaption,.quarto-layout-panel>.panel-caption{margin-top:10pt}.quarto-layout-panel>.table-caption{margin-top:0px}.table-caption p{margin-bottom:.5em}.quarto-layout-row{display:flex;flex-direction:row;align-items:flex-start}.quarto-layout-valign-top{align-items:flex-start}.quarto-layout-valign-bottom{align-items:flex-end}.quarto-layout-valign-center{align-items:center}.quarto-layout-cell{position:relative;margin-right:20px}.quarto-layout-cell:last-child{margin-right:0}.quarto-layout-cell figure,.quarto-layout-cell>p{margin:.2em}.quarto-layout-cell img{max-width:100%}.quarto-layout-cell .html-widget{width:100% !important}.quarto-layout-cell div figure p{margin:0}.quarto-layout-cell figure{display:inline-block;margin-inline-start:0;margin-inline-end:0}.quarto-layout-cell table{display:inline-table}.quarto-layout-cell-subref figcaption,figure .quarto-layout-row figure figcaption{text-align:center;font-style:italic}.quarto-figure{position:relative;margin-bottom:1em}.quarto-figure>figure{width:100%;margin-bottom:0}.quarto-figure-left>figure>p,.quarto-figure-left>figure>div{text-align:left}.quarto-figure-center>figure>p,.quarto-figure-center>figure>div{text-align:center}.quarto-figure-right>figure>p,.quarto-figure-right>figure>div{text-align:right}.quarto-figure>figure>div.cell-annotation,.quarto-figure>figure>div code{text-align:left}figure>p:empty{display:none}figure>p:first-child{margin-top:0;margin-bottom:0}figure>figcaption{margin-top:.5em}div[id^=tbl-]{position:relative}.quarto-figure>.anchorjs-link{position:absolute;top:.6em;right:.5em}div[id^=tbl-]>.anchorjs-link{position:absolute;top:.7em;right:.3em}.quarto-figure:hover>.anchorjs-link,div[id^=tbl-]:hover>.anchorjs-link,h2:hover>.anchorjs-link,h3:hover>.anchorjs-link,h4:hover>.anchorjs-link,h5:hover>.anchorjs-link,h6:hover>.anchorjs-link,.reveal-anchorjs-link>.anchorjs-link{opacity:1}#title-block-header{margin-block-end:1rem;position:relative;margin-top:-1px}#title-block-header .abstract{margin-block-start:1rem}#title-block-header .abstract .abstract-title{font-weight:600}#title-block-header a{text-decoration:none}#title-block-header .author,#title-block-header .date,#title-block-header .doi{margin-block-end:.2rem}#title-block-header .quarto-title-block>div{display:flex}#title-block-header .quarto-title-block>div>h1{flex-grow:1}#title-block-header .quarto-title-block>div>button{flex-shrink:0;height:2.25rem;margin-top:0}tr.header>th>p:last-of-type{margin-bottom:0px}table,.table{caption-side:top;margin-bottom:1.5rem}caption,.table-caption{padding-top:.5rem;padding-bottom:.5rem;text-align:center}.utterances{max-width:none;margin-left:-8px}iframe{margin-bottom:1em}details{margin-bottom:1em}details[show]{margin-bottom:0}details>summary{color:#6f6f6f}details>summary>p:only-child{display:inline}pre.sourceCode,code.sourceCode{position:relative}p code:not(.sourceCode){white-space:pre-wrap}code{white-space:pre}@media print{code{white-space:pre-wrap}}pre>code{display:block}pre>code.sourceCode{white-space:pre}pre>code.sourceCode>span>a:first-child::before{text-decoration:none}pre.code-overflow-wrap>code.sourceCode{white-space:pre-wrap}pre.code-overflow-scroll>code.sourceCode{white-space:pre}code a:any-link{color:inherit;text-decoration:none}code a:hover{color:inherit;text-decoration:underline}ul.task-list{padding-left:1em}[data-tippy-root]{display:inline-block}.tippy-content .footnote-back{display:none}.quarto-embedded-source-code{display:none}.quarto-unresolved-ref{font-weight:600}.quarto-cover-image{max-width:35%;float:right;margin-left:30px}.cell-output-display .widget-subarea{margin-bottom:1em}.cell-output-display:not(.no-overflow-x),.knitsql-table:not(.no-overflow-x){overflow-x:auto}.panel-input{margin-bottom:1em}.panel-input>div,.panel-input>div>div{display:inline-block;vertical-align:top;padding-right:12px}.panel-input>p:last-child{margin-bottom:0}.layout-sidebar{margin-bottom:1em}.layout-sidebar .tab-content{border:none}.tab-content>.page-columns.active{display:grid}div.sourceCode>iframe{width:100%;height:300px;margin-bottom:-0.5em}a{text-underline-offset:3px}div.ansi-escaped-output{font-family:monospace;display:block}/*! +@import"./fonts/source-sans-pro/source-sans-pro.css";:root{--r-background-color: rgb(246, 244, 238);--r-main-font: Noto Sans, sans-serif;--r-main-font-size: 40px;--r-main-color: #222;--r-block-margin: 20px;--r-heading-margin: 0 0 20px 0;--r-heading-font: Noto Sans Display, Noto Sans, sans-serif;--r-heading-color: rgb(17, 79, 84);--r-heading-line-height: 1.2;--r-heading-letter-spacing: normal;--r-heading-text-transform: none;--r-heading-text-shadow: none;--r-heading-font-weight: 100;--r-heading1-text-shadow: none;--r-heading1-size: 2.5em;--r-heading2-size: 1.6em;--r-heading3-size: 1.3em;--r-heading4-size: 1em;--r-code-font: Noto Sans Mono, monospace;--r-link-color: rgb(29, 130, 101);--r-link-color-dark: #0f4334;--r-link-color-hover: #26ac85;--r-selection-background-color: #48d6ad;--r-selection-color: rgb(246, 244, 238)}.reveal-viewport{background:#f6f4ee;background-color:var(--r-background-color)}.reveal{font-family:var(--r-main-font);font-size:var(--r-main-font-size);font-weight:normal;color:var(--r-main-color)}.reveal ::selection{color:var(--r-selection-color);background:var(--r-selection-background-color);text-shadow:none}.reveal ::-moz-selection{color:var(--r-selection-color);background:var(--r-selection-background-color);text-shadow:none}.reveal .slides section,.reveal .slides section>section{line-height:1.3;font-weight:inherit}.reveal h1,.reveal h2,.reveal h3,.reveal h4,.reveal h5,.reveal h6{margin:var(--r-heading-margin);color:var(--r-heading-color);font-family:var(--r-heading-font);font-weight:var(--r-heading-font-weight);line-height:var(--r-heading-line-height);letter-spacing:var(--r-heading-letter-spacing);text-transform:var(--r-heading-text-transform);text-shadow:var(--r-heading-text-shadow);word-wrap:break-word}.reveal h1{font-size:var(--r-heading1-size)}.reveal h2{font-size:var(--r-heading2-size)}.reveal h3{font-size:var(--r-heading3-size)}.reveal h4{font-size:var(--r-heading4-size)}.reveal h1{text-shadow:var(--r-heading1-text-shadow)}.reveal p{margin:var(--r-block-margin) 0;line-height:1.3}.reveal h1:last-child,.reveal h2:last-child,.reveal h3:last-child,.reveal h4:last-child,.reveal h5:last-child,.reveal h6:last-child{margin-bottom:0}.reveal img,.reveal video,.reveal iframe{max-width:95%;max-height:95%}.reveal strong,.reveal b{font-weight:bold}.reveal em{font-style:italic}.reveal ol,.reveal dl,.reveal ul{display:inline-block;text-align:left;margin:0 0 0 1em}.reveal ol{list-style-type:decimal}.reveal ul{list-style-type:disc}.reveal ul ul{list-style-type:square}.reveal ul ul ul{list-style-type:circle}.reveal ul ul,.reveal ul ol,.reveal ol ol,.reveal ol ul{display:block;margin-left:40px}.reveal dt{font-weight:bold}.reveal dd{margin-left:40px}.reveal blockquote{display:block;position:relative;width:70%;margin:var(--r-block-margin) auto;padding:5px;font-style:italic;background:rgba(255,255,255,.05);box-shadow:0px 0px 2px rgba(0,0,0,.2)}.reveal blockquote p:first-child,.reveal blockquote p:last-child{display:inline-block}.reveal q{font-style:italic}.reveal pre{display:block;position:relative;width:90%;margin:var(--r-block-margin) auto;text-align:left;font-size:.55em;font-family:var(--r-code-font);line-height:1.2em;word-wrap:break-word;box-shadow:0px 5px 15px rgba(0,0,0,.15)}.reveal code{font-family:var(--r-code-font);text-transform:none;tab-size:2}.reveal pre code{display:block;padding:5px;overflow:auto;max-height:400px;word-wrap:normal}.reveal .code-wrapper{white-space:normal}.reveal .code-wrapper code{white-space:pre}.reveal table{margin:auto;border-collapse:collapse;border-spacing:0}.reveal table th{font-weight:bold}.reveal table th,.reveal table td{text-align:left;padding:.2em .5em .2em .5em;border-bottom:1px solid}.reveal table th[align=center],.reveal table td[align=center]{text-align:center}.reveal table th[align=right],.reveal table td[align=right]{text-align:right}.reveal table tbody tr:last-child th,.reveal table tbody tr:last-child td{border-bottom:none}.reveal sup{vertical-align:super;font-size:smaller}.reveal sub{vertical-align:sub;font-size:smaller}.reveal small{display:inline-block;font-size:.6em;line-height:1.2em;vertical-align:top}.reveal small *{vertical-align:top}.reveal img{margin:var(--r-block-margin) 0}.reveal a{color:var(--r-link-color);text-decoration:none;transition:color .15s ease}.reveal a:hover{color:var(--r-link-color-hover);text-shadow:none;border:none}.reveal .roll span:after{color:#fff;background:var(--r-link-color-dark)}.reveal .r-frame{border:4px solid var(--r-main-color);box-shadow:0 0 10px rgba(0,0,0,.15)}.reveal a .r-frame{transition:all .15s linear}.reveal a:hover .r-frame{border-color:var(--r-link-color);box-shadow:0 0 20px rgba(0,0,0,.55)}.reveal .controls{color:var(--r-link-color)}.reveal .progress{background:rgba(0,0,0,.2);color:var(--r-link-color)}@media print{.backgrounds{background-color:var(--r-background-color)}}.top-right{position:absolute;top:1em;right:1em}.hidden{display:none !important}.zindex-bottom{z-index:-1 !important}figure.figure{display:block}.quarto-layout-panel{margin-bottom:1em}.quarto-layout-panel>figure{width:100%}.quarto-layout-panel>figure>figcaption,.quarto-layout-panel>.panel-caption{margin-top:10pt}.quarto-layout-panel>.table-caption{margin-top:0px}.table-caption p{margin-bottom:.5em}.quarto-layout-row{display:flex;flex-direction:row;align-items:flex-start}.quarto-layout-valign-top{align-items:flex-start}.quarto-layout-valign-bottom{align-items:flex-end}.quarto-layout-valign-center{align-items:center}.quarto-layout-cell{position:relative;margin-right:20px}.quarto-layout-cell:last-child{margin-right:0}.quarto-layout-cell figure,.quarto-layout-cell>p{margin:.2em}.quarto-layout-cell img{max-width:100%}.quarto-layout-cell .html-widget{width:100% !important}.quarto-layout-cell div figure p{margin:0}.quarto-layout-cell figure{display:block;margin-inline-start:0;margin-inline-end:0}.quarto-layout-cell table{display:inline-table}.quarto-layout-cell-subref figcaption,figure .quarto-layout-row figure figcaption{text-align:center;font-style:italic}.quarto-figure{position:relative;margin-bottom:1em}.quarto-figure>figure{width:100%;margin-bottom:0}.quarto-figure-left>figure>p,.quarto-figure-left>figure>div{text-align:left}.quarto-figure-center>figure>p,.quarto-figure-center>figure>div{text-align:center}.quarto-figure-right>figure>p,.quarto-figure-right>figure>div{text-align:right}.quarto-figure>figure>div.cell-annotation,.quarto-figure>figure>div code{text-align:left}figure>p:empty{display:none}figure>p:first-child{margin-top:0;margin-bottom:0}figure>figcaption{margin-top:.5em}figure.quarto-float-lst>figcaption{margin-bottom:.5em}div[id^=tbl-]{position:relative}.quarto-figure>.anchorjs-link{position:absolute;top:.6em;right:.5em}div[id^=tbl-]>.anchorjs-link{position:absolute;top:.7em;right:.3em}.quarto-figure:hover>.anchorjs-link,div[id^=tbl-]:hover>.anchorjs-link,h2:hover>.anchorjs-link,h3:hover>.anchorjs-link,h4:hover>.anchorjs-link,h5:hover>.anchorjs-link,h6:hover>.anchorjs-link,.reveal-anchorjs-link>.anchorjs-link{opacity:1}#title-block-header{margin-block-end:1rem;position:relative;margin-top:-1px}#title-block-header .abstract{margin-block-start:1rem}#title-block-header .abstract .abstract-title{font-weight:600}#title-block-header a{text-decoration:none}#title-block-header .author,#title-block-header .date,#title-block-header .doi{margin-block-end:.2rem}#title-block-header .quarto-title-block>div{display:flex}#title-block-header .quarto-title-block>div>h1{flex-grow:1}#title-block-header .quarto-title-block>div>button{flex-shrink:0;height:2.25rem;margin-top:0}tr.header>th>p:last-of-type{margin-bottom:0px}table,.table{caption-side:top;margin-bottom:1.5rem}figure.quarto-float-tbl figcaption,caption,.table-caption{padding-top:.5rem;padding-bottom:.5rem;text-align:center}.utterances{max-width:none;margin-left:-8px}iframe{margin-bottom:1em}details{margin-bottom:1em}details[show]{margin-bottom:0}details>summary{color:#6f6f6f}details>summary>p:only-child{display:inline}pre.sourceCode,code.sourceCode{position:relative}p code:not(.sourceCode){white-space:pre-wrap}code{white-space:pre}@media print{code{white-space:pre-wrap}}pre>code{display:block}pre>code.sourceCode{white-space:pre}pre>code.sourceCode>span>a:first-child::before{text-decoration:none}pre.code-overflow-wrap>code.sourceCode{white-space:pre-wrap}pre.code-overflow-scroll>code.sourceCode{white-space:pre}code a:any-link{color:inherit;text-decoration:none}code a:hover{color:inherit;text-decoration:underline}ul.task-list{padding-left:1em}[data-tippy-root]{display:inline-block}.tippy-content .footnote-back{display:none}.tippy-content{overflow-x:scroll}.quarto-embedded-source-code{display:none}.quarto-unresolved-ref{font-weight:600}.quarto-cover-image{max-width:35%;float:right;margin-left:30px}.cell-output-display .widget-subarea{margin-bottom:1em}.cell-output-display:not(.no-overflow-x),.knitsql-table:not(.no-overflow-x){overflow-x:auto}.panel-input{margin-bottom:1em}.panel-input>div,.panel-input>div>div{display:inline-block;vertical-align:top;padding-right:12px}.panel-input>p:last-child{margin-bottom:0}.layout-sidebar{margin-bottom:1em}.layout-sidebar .tab-content{border:none}.tab-content>.page-columns.active{display:grid}div.sourceCode>iframe{width:100%;height:300px;margin-bottom:-0.5em}a{text-underline-offset:3px}div.ansi-escaped-output{font-family:monospace;display:block}/*! * * ansi colors from IPython notebook's * -*/.ansi-black-fg{color:#3e424d}.ansi-black-bg{background-color:#3e424d}.ansi-black-intense-fg{color:#282c36}.ansi-black-intense-bg{background-color:#282c36}.ansi-red-fg{color:#e75c58}.ansi-red-bg{background-color:#e75c58}.ansi-red-intense-fg{color:#b22b31}.ansi-red-intense-bg{background-color:#b22b31}.ansi-green-fg{color:#00a250}.ansi-green-bg{background-color:#00a250}.ansi-green-intense-fg{color:#007427}.ansi-green-intense-bg{background-color:#007427}.ansi-yellow-fg{color:#ddb62b}.ansi-yellow-bg{background-color:#ddb62b}.ansi-yellow-intense-fg{color:#b27d12}.ansi-yellow-intense-bg{background-color:#b27d12}.ansi-blue-fg{color:#208ffb}.ansi-blue-bg{background-color:#208ffb}.ansi-blue-intense-fg{color:#0065ca}.ansi-blue-intense-bg{background-color:#0065ca}.ansi-magenta-fg{color:#d160c4}.ansi-magenta-bg{background-color:#d160c4}.ansi-magenta-intense-fg{color:#a03196}.ansi-magenta-intense-bg{background-color:#a03196}.ansi-cyan-fg{color:#60c6c8}.ansi-cyan-bg{background-color:#60c6c8}.ansi-cyan-intense-fg{color:#258f8f}.ansi-cyan-intense-bg{background-color:#258f8f}.ansi-white-fg{color:#c5c1b4}.ansi-white-bg{background-color:#c5c1b4}.ansi-white-intense-fg{color:#a1a6b2}.ansi-white-intense-bg{background-color:#a1a6b2}.ansi-default-inverse-fg{color:#fff}.ansi-default-inverse-bg{background-color:#000}.ansi-bold{font-weight:bold}.ansi-underline{text-decoration:underline}:root{--quarto-body-bg: rgb(246, 244, 238);--quarto-body-color: #222;--quarto-text-muted: #6f6f6f;--quarto-border-color: rgb(211, 208, 203);--quarto-border-width: 1px;--quarto-border-radius: 4px}table.gt_table{color:var(--quarto-body-color);font-size:1em;width:100%;background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_column_spanner_outer{color:var(--quarto-body-color);background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_col_heading{color:var(--quarto-body-color);font-weight:bold;background-color:rgba(0,0,0,0)}table.gt_table thead.gt_col_headings{border-bottom:1px solid currentColor;border-top-width:inherit;border-top-color:var(--quarto-border-color)}table.gt_table thead.gt_col_headings:not(:first-child){border-top-width:1px;border-top-color:var(--quarto-border-color)}table.gt_table td.gt_row{border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-width:0px}table.gt_table tbody.gt_table_body{border-top-width:1px;border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-color:currentColor}div.columns{display:initial;gap:initial}div.column{display:inline-block;overflow-x:initial;vertical-align:top;width:50%}.code-annotation-tip-content{word-wrap:break-word}.code-annotation-container-hidden{display:none !important}dl.code-annotation-container-grid{display:grid;grid-template-columns:min-content auto}dl.code-annotation-container-grid dt{grid-column:1}dl.code-annotation-container-grid dd{grid-column:2}pre.sourceCode.code-annotation-code{padding-right:0}code.sourceCode .code-annotation-anchor{z-index:100;position:absolute;right:.5em;left:inherit;background-color:rgba(0,0,0,0)}:root{--mermaid-bg-color: rgb(246, 244, 238);--mermaid-edge-color: #999;--mermaid-node-fg-color: #222;--mermaid-fg-color: #222;--mermaid-fg-color--lighter: #3c3c3c;--mermaid-fg-color--lightest: #555555;--mermaid-font-family: Noto Sans, sans-serif;--mermaid-label-bg-color: rgb(246, 244, 238);--mermaid-label-fg-color: #468;--mermaid-node-bg-color: rgba(68, 102, 136, 0.1);--mermaid-node-fg-color: #222}@media print{:root{font-size:11pt}#quarto-sidebar,#TOC,.nav-page{display:none}.page-columns .content{grid-column-start:page-start}.fixed-top{position:relative}.panel-caption,.figure-caption,figcaption{color:#666}}.code-copy-button{position:absolute;top:0;right:0;border:0;margin-top:5px;margin-right:5px;background-color:rgba(0,0,0,0);z-index:3}.code-copy-button:focus{outline:none}.code-copy-button-tooltip{font-size:.75em}.code-copy-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,');background-repeat:no-repeat;background-size:1rem 1rem}.code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml,')}.code-copy-button:hover>.bi::before{background-image:url('data:image/svg+xml,')}.code-copy-button-checked:hover>.bi::before{background-image:url('data:image/svg+xml,')}.panel-tabset [role=tablist]{border-bottom:1px solid #d3d0cb;list-style:none;margin:0;padding:0;width:100%}.panel-tabset [role=tablist] *{-webkit-box-sizing:border-box;box-sizing:border-box}@media(min-width: 30em){.panel-tabset [role=tablist] li{display:inline-block}}.panel-tabset [role=tab]{border:1px solid rgba(0,0,0,0);border-top-color:#d3d0cb;display:block;padding:.5em 1em;text-decoration:none}@media(min-width: 30em){.panel-tabset [role=tab]{border-top-color:rgba(0,0,0,0);display:inline-block;margin-bottom:-1px}}.panel-tabset [role=tab][aria-selected=true]{background-color:#d3d0cb}@media(min-width: 30em){.panel-tabset [role=tab][aria-selected=true]{background-color:rgba(0,0,0,0);border:1px solid #d3d0cb;border-bottom-color:#f6f4ee}}@media(min-width: 30em){.panel-tabset [role=tab]:hover:not([aria-selected=true]){border:1px solid #d3d0cb}}.code-with-filename .code-with-filename-file{margin-bottom:0;padding-bottom:2px;padding-top:2px;padding-left:.7em;border:var(--quarto-border-width) solid var(--quarto-border-color);border-radius:var(--quarto-border-radius);border-bottom:0;border-bottom-left-radius:0%;border-bottom-right-radius:0%}.code-with-filename div.sourceCode,.reveal .code-with-filename div.sourceCode{margin-top:0;border-top-left-radius:0%;border-top-right-radius:0%}.code-with-filename .code-with-filename-file pre{margin-bottom:0}.code-with-filename .code-with-filename-file,.code-with-filename .code-with-filename-file pre{background-color:rgba(219,219,219,.8)}.quarto-dark .code-with-filename .code-with-filename-file,.quarto-dark .code-with-filename .code-with-filename-file pre{background-color:#555}.code-with-filename .code-with-filename-file strong{font-weight:400}.reveal.center .slide aside,.reveal.center .slide div.aside{position:initial}section.has-light-background,section.has-light-background h1,section.has-light-background h2,section.has-light-background h3,section.has-light-background h4,section.has-light-background h5,section.has-light-background h6{color:#222}section.has-light-background a,section.has-light-background a:hover{color:#2a76dd}section.has-light-background code{color:#4758ab}section.has-dark-background,section.has-dark-background h1,section.has-dark-background h2,section.has-dark-background h3,section.has-dark-background h4,section.has-dark-background h5,section.has-dark-background h6{color:#fff}section.has-dark-background a,section.has-dark-background a:hover{color:#42affa}section.has-dark-background code{color:#ffa07a}#title-slide,div.reveal div.slides section.quarto-title-block{text-align:center}#title-slide .subtitle,div.reveal div.slides section.quarto-title-block .subtitle{margin-bottom:2.5rem}.reveal .slides{text-align:left}.reveal .title-slide h1{font-size:1.6em}.reveal[data-navigation-mode=linear] .title-slide h1{font-size:2.5em}.reveal div.sourceCode{border:1px solid #d3d0cb;border-radius:4px}.reveal pre{width:100%;box-shadow:none;background-color:#fdfdfc;border:none;margin:0;font-size:.55em}.reveal code{color:var(--quarto-hl-fu-color);background-color:rgba(0,0,0,0);white-space:pre-wrap}.reveal pre.sourceCode code{background-color:#fdfdfc;padding:6px 9px;max-height:500px;white-space:pre}.reveal pre code{background-color:#f6f4ee;color:#222}.reveal .column-output-location{display:flex;align-items:stretch}.reveal .column-output-location .column:first-of-type div.sourceCode{height:100%;background-color:#fdfdfc}.reveal blockquote{display:block;position:relative;color:#6f6f6f;width:unset;margin:var(--r-block-margin) auto;padding:.625rem 1.75rem;border-left:.25rem solid #6f6f6f;font-style:normal;background:none;box-shadow:none}.reveal blockquote p:first-child,.reveal blockquote p:last-child{display:block}.reveal .slide aside,.reveal .slide div.aside{position:absolute;bottom:20px;font-size:0.7em;color:#6f6f6f}.reveal .slide sup{font-size:0.7em}.reveal .slide.scrollable aside,.reveal .slide.scrollable div.aside{position:relative;margin-top:1em}.reveal .slide aside .aside-footnotes{margin-bottom:0}.reveal .slide aside .aside-footnotes li:first-of-type{margin-top:0}.reveal .layout-sidebar{display:flex;width:100%;margin-top:.8em}.reveal .layout-sidebar .panel-sidebar{width:270px}.reveal .layout-sidebar-left .panel-sidebar{margin-right:calc(0.5em * 2)}.reveal .layout-sidebar-right .panel-sidebar{margin-left:calc(0.5em * 2)}.reveal .layout-sidebar .panel-fill,.reveal .layout-sidebar .panel-center,.reveal .layout-sidebar .panel-tabset{flex:1}.reveal .panel-input,.reveal .panel-sidebar{font-size:.5em;padding:.5em;border-style:solid;border-color:#d3d0cb;border-width:1px;border-radius:4px;background-color:#f8f9fa}.reveal .panel-sidebar :first-child,.reveal .panel-fill :first-child{margin-top:0}.reveal .panel-sidebar :last-child,.reveal .panel-fill :last-child{margin-bottom:0}.panel-input>div,.panel-input>div>div{vertical-align:middle;padding-right:1em}.reveal p,.reveal .slides section,.reveal .slides section>section{line-height:1.3}.reveal.smaller .slides section,.reveal .slides section.smaller,.reveal .slides section .callout{font-size:0.7em}.reveal.smaller .slides h1,.reveal .slides section.smaller h1{font-size:calc(2.5em / 0.7)}.reveal.smaller .slides h2,.reveal .slides section.smaller h2{font-size:calc(1.6em / 0.7)}.reveal.smaller .slides h3,.reveal .slides section.smaller h3{font-size:calc(1.3em / 0.7)}.reveal .columns>.column>:not(ul,ol){margin-left:.25em;margin-right:.25em}.reveal .columns>.column:first-child>:not(ul,ol){margin-right:.5em;margin-left:0}.reveal .columns>.column:last-child>:not(ul,ol){margin-right:0;margin-left:.5em}.reveal .slide-number{color:#26ac85;background-color:#f6f4ee}.reveal .footer{color:#6f6f6f}.reveal .footer a{color:#1d8265}.reveal .slide-number{color:#6f6f6f}.reveal .slide figure>figcaption,.reveal .slide img.stretch+p.caption,.reveal .slide img.r-stretch+p.caption{font-size:0.7em}@media screen and (min-width: 500px){.reveal .controls[data-controls-layout=edges] .navigate-left{left:.2em}.reveal .controls[data-controls-layout=edges] .navigate-right{right:.2em}.reveal .controls[data-controls-layout=edges] .navigate-up{top:.4em}.reveal .controls[data-controls-layout=edges] .navigate-down{bottom:2.3em}}.tippy-box[data-theme~=light-border]{background-color:#f6f4ee;color:#222;border-radius:4px;border:solid 1px #6f6f6f;font-size:.6em}.tippy-box[data-theme~=light-border] .tippy-arrow{color:#6f6f6f}.tippy-box[data-placement^=bottom]>.tippy-content{padding:7px 10px;z-index:1}.reveal .callout.callout-style-simple .callout-body,.reveal .callout.callout-style-default .callout-body,.reveal .callout.callout-style-simple div.callout-title,.reveal .callout.callout-style-default div.callout-title{font-size:inherit}.reveal .callout.callout-style-default .callout-icon::before,.reveal .callout.callout-style-simple .callout-icon::before{height:2rem;width:2rem;background-size:2rem 2rem}.reveal .callout.callout-titled .callout-title p{margin-top:.5em}.reveal .callout.callout-titled .callout-icon::before{margin-top:1rem}.reveal .callout.callout-titled .callout-body>.callout-content>:last-child{margin-bottom:1rem}.reveal .panel-tabset [role=tab]{padding:.25em .7em}.reveal .slide-menu-button .fa-bars::before{background-image:url('data:image/svg+xml,')}.reveal .slide-chalkboard-buttons .fa-easel2::before{background-image:url('data:image/svg+xml,')}.reveal .slide-chalkboard-buttons .fa-brush::before{background-image:url('data:image/svg+xml,')}/*! light */.reveal ol[type=a]{list-style-type:lower-alpha}.reveal ol[type=a s]{list-style-type:lower-alpha}.reveal ol[type=A s]{list-style-type:upper-alpha}.reveal ol[type=i]{list-style-type:lower-roman}.reveal ol[type=i s]{list-style-type:lower-roman}.reveal ol[type=I s]{list-style-type:upper-roman}.reveal ol[type="1"]{list-style-type:decimal}.reveal ul.task-list{list-style:none}.reveal ul.task-list li input[type=checkbox]{width:2em;height:2em;margin:0 1em .5em -1.6em;vertical-align:middle}div.cell-output-display div.pagedtable-wrapper table.table{font-size:.6em}.reveal .code-annotation-container-hidden{display:none}.reveal code.sourceCode button.code-annotation-anchor,.reveal code.sourceCode .code-annotation-anchor{font-family:"Noto Sans Mono",monospace;color:var(--quarto-hl-co-color);border:solid var(--quarto-hl-co-color) 1px;border-radius:50%;font-size:.7em;line-height:1.2em;margin-top:2px}.reveal code.sourceCode button.code-annotation-anchor{cursor:pointer}.reveal code.sourceCode a.code-annotation-anchor{text-align:center;vertical-align:middle;text-decoration:none;cursor:default;height:1.2em;width:1.2em}.reveal #code-annotation-line-highlight-gutter{width:100%;border-top:solid var(--quarto-hl-co-color) 1px;border-bottom:solid var(--quarto-hl-co-color) 1px;z-index:2}.reveal #code-annotation-line-highlight{margin-left:-8em;width:calc(100% + 4em);border-top:solid var(--quarto-hl-co-color) 1px;border-bottom:solid var(--quarto-hl-co-color) 1px;z-index:2;margin-bottom:-2px}.reveal code.sourceCode .code-annotation-anchor.code-annotation-active{background-color:var(--quarto-hl-normal-color, #aaaaaa);border:solid var(--quarto-hl-normal-color, #aaaaaa) 1px;color:#fdfdfc;font-weight:bolder}.reveal pre.code-annotation-code{padding-top:0;padding-bottom:0}.reveal pre.code-annotation-code code{z-index:3;padding-left:0px}.reveal dl.code-annotation-container-grid{margin-left:.1em}.reveal dl.code-annotation-container-grid dt{margin-top:.65rem;font-family:"Noto Sans Mono",monospace;border:solid #222 1px;border-radius:50%;height:1.3em;width:1.3em;line-height:1.3em;font-size:.5em;text-align:center;vertical-align:middle;text-decoration:none}.reveal dl.code-annotation-container-grid dd{margin-left:.25em}.reveal .scrollable ol li:first-child:nth-last-child(n+10),.reveal .scrollable ol li:first-child:nth-last-child(n+10)~li{margin-left:1em}.reveal .quarto-title-block .quarto-title-authors{display:flex;justify-content:center}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author{padding-left:.5em;padding-right:.5em}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author a,.reveal .quarto-title-block .quarto-title-authors .quarto-title-author a:hover,.reveal .quarto-title-block .quarto-title-authors .quarto-title-author a:visited,.reveal .quarto-title-block .quarto-title-authors .quarto-title-author a:active{color:inherit;text-decoration:none}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author .quarto-title-author-name{margin-bottom:.1rem}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author .quarto-title-author-email{margin-top:0px;margin-bottom:.4em;font-size:.6em}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author .quarto-title-author-orcid img{margin-bottom:4px}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author .quarto-title-affiliation{font-size:.7em;margin-top:0px;margin-bottom:8px}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author .quarto-title-affiliation:first{margin-top:12px}/*# sourceMappingURL=f95d2bded9c28492b788fe14c3e9f347.css.map */ +*/.ansi-black-fg{color:#3e424d}.ansi-black-bg{background-color:#3e424d}.ansi-black-intense-fg{color:#282c36}.ansi-black-intense-bg{background-color:#282c36}.ansi-red-fg{color:#e75c58}.ansi-red-bg{background-color:#e75c58}.ansi-red-intense-fg{color:#b22b31}.ansi-red-intense-bg{background-color:#b22b31}.ansi-green-fg{color:#00a250}.ansi-green-bg{background-color:#00a250}.ansi-green-intense-fg{color:#007427}.ansi-green-intense-bg{background-color:#007427}.ansi-yellow-fg{color:#ddb62b}.ansi-yellow-bg{background-color:#ddb62b}.ansi-yellow-intense-fg{color:#b27d12}.ansi-yellow-intense-bg{background-color:#b27d12}.ansi-blue-fg{color:#208ffb}.ansi-blue-bg{background-color:#208ffb}.ansi-blue-intense-fg{color:#0065ca}.ansi-blue-intense-bg{background-color:#0065ca}.ansi-magenta-fg{color:#d160c4}.ansi-magenta-bg{background-color:#d160c4}.ansi-magenta-intense-fg{color:#a03196}.ansi-magenta-intense-bg{background-color:#a03196}.ansi-cyan-fg{color:#60c6c8}.ansi-cyan-bg{background-color:#60c6c8}.ansi-cyan-intense-fg{color:#258f8f}.ansi-cyan-intense-bg{background-color:#258f8f}.ansi-white-fg{color:#c5c1b4}.ansi-white-bg{background-color:#c5c1b4}.ansi-white-intense-fg{color:#a1a6b2}.ansi-white-intense-bg{background-color:#a1a6b2}.ansi-default-inverse-fg{color:#fff}.ansi-default-inverse-bg{background-color:#000}.ansi-bold{font-weight:bold}.ansi-underline{text-decoration:underline}:root{--quarto-body-bg: rgb(246, 244, 238);--quarto-body-color: #222;--quarto-text-muted: #6f6f6f;--quarto-border-color: rgb(211, 208, 203);--quarto-border-width: 1px;--quarto-border-radius: 4px}table.gt_table{color:var(--quarto-body-color);font-size:1em;width:100%;background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_column_spanner_outer{color:var(--quarto-body-color);background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_col_heading{color:var(--quarto-body-color);font-weight:bold;background-color:rgba(0,0,0,0)}table.gt_table thead.gt_col_headings{border-bottom:1px solid currentColor;border-top-width:inherit;border-top-color:var(--quarto-border-color)}table.gt_table thead.gt_col_headings:not(:first-child){border-top-width:1px;border-top-color:var(--quarto-border-color)}table.gt_table td.gt_row{border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-width:0px}table.gt_table tbody.gt_table_body{border-top-width:1px;border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-color:currentColor}div.columns{display:initial;gap:initial}div.column{display:inline-block;overflow-x:initial;vertical-align:top;width:50%}.code-annotation-tip-content{word-wrap:break-word}.code-annotation-container-hidden{display:none !important}dl.code-annotation-container-grid{display:grid;grid-template-columns:min-content auto}dl.code-annotation-container-grid dt{grid-column:1}dl.code-annotation-container-grid dd{grid-column:2}pre.sourceCode.code-annotation-code{padding-right:0}code.sourceCode .code-annotation-anchor{z-index:100;position:absolute;right:.5em;left:inherit;background-color:rgba(0,0,0,0)}input[type=checkbox]{margin-right:.5ch}:root{--mermaid-bg-color: rgb(246, 244, 238);--mermaid-edge-color: #999;--mermaid-node-fg-color: #222;--mermaid-fg-color: #222;--mermaid-fg-color--lighter: #3c3c3c;--mermaid-fg-color--lightest: #555555;--mermaid-font-family: Noto Sans, sans-serif;--mermaid-label-bg-color: rgb(246, 244, 238);--mermaid-label-fg-color: #468;--mermaid-node-bg-color: rgba(68, 102, 136, 0.1);--mermaid-node-fg-color: #222}@media print{:root{font-size:11pt}#quarto-sidebar,#TOC,.nav-page{display:none}.page-columns .content{grid-column-start:page-start}.fixed-top{position:relative}.panel-caption,.figure-caption,figcaption{color:#666}}.code-copy-button{position:absolute;top:0;right:0;border:0;margin-top:5px;margin-right:5px;background-color:rgba(0,0,0,0);z-index:3}.code-copy-button:focus{outline:none}.code-copy-button-tooltip{font-size:.75em}.code-copy-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,');background-repeat:no-repeat;background-size:1rem 1rem}.code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml,')}.code-copy-button:hover>.bi::before{background-image:url('data:image/svg+xml,')}.code-copy-button-checked:hover>.bi::before{background-image:url('data:image/svg+xml,')}.panel-tabset [role=tablist]{border-bottom:1px solid #d3d0cb;list-style:none;margin:0;padding:0;width:100%}.panel-tabset [role=tablist] *{-webkit-box-sizing:border-box;box-sizing:border-box}@media(min-width: 30em){.panel-tabset [role=tablist] li{display:inline-block}}.panel-tabset [role=tab]{border:1px solid rgba(0,0,0,0);border-top-color:#d3d0cb;display:block;padding:.5em 1em;text-decoration:none}@media(min-width: 30em){.panel-tabset [role=tab]{border-top-color:rgba(0,0,0,0);display:inline-block;margin-bottom:-1px}}.panel-tabset [role=tab][aria-selected=true]{background-color:#d3d0cb}@media(min-width: 30em){.panel-tabset [role=tab][aria-selected=true]{background-color:rgba(0,0,0,0);border:1px solid #d3d0cb;border-bottom-color:#f6f4ee}}@media(min-width: 30em){.panel-tabset [role=tab]:hover:not([aria-selected=true]){border:1px solid #d3d0cb}}.code-with-filename .code-with-filename-file{margin-bottom:0;padding-bottom:2px;padding-top:2px;padding-left:.7em;border:var(--quarto-border-width) solid var(--quarto-border-color);border-radius:var(--quarto-border-radius);border-bottom:0;border-bottom-left-radius:0%;border-bottom-right-radius:0%}.code-with-filename div.sourceCode,.reveal .code-with-filename div.sourceCode{margin-top:0;border-top-left-radius:0%;border-top-right-radius:0%}.code-with-filename .code-with-filename-file pre{margin-bottom:0}.code-with-filename .code-with-filename-file,.code-with-filename .code-with-filename-file pre{background-color:rgba(219,219,219,.8)}.quarto-dark .code-with-filename .code-with-filename-file,.quarto-dark .code-with-filename .code-with-filename-file pre{background-color:#555}.code-with-filename .code-with-filename-file strong{font-weight:400}.reveal.center .slide aside,.reveal.center .slide div.aside{position:initial}section.has-light-background,section.has-light-background h1,section.has-light-background h2,section.has-light-background h3,section.has-light-background h4,section.has-light-background h5,section.has-light-background h6{color:#222}section.has-light-background a,section.has-light-background a:hover{color:#2a76dd}section.has-light-background code{color:#4758ab}section.has-dark-background,section.has-dark-background h1,section.has-dark-background h2,section.has-dark-background h3,section.has-dark-background h4,section.has-dark-background h5,section.has-dark-background h6{color:#fff}section.has-dark-background a,section.has-dark-background a:hover{color:#42affa}section.has-dark-background code{color:#ffa07a}#title-slide,div.reveal div.slides section.quarto-title-block{text-align:center}#title-slide .subtitle,div.reveal div.slides section.quarto-title-block .subtitle{margin-bottom:2.5rem}.reveal .slides{text-align:left}.reveal .title-slide h1{font-size:1.6em}.reveal[data-navigation-mode=linear] .title-slide h1{font-size:2.5em}.reveal div.sourceCode{border:1px solid #d3d0cb;border-radius:4px}.reveal pre{width:100%;box-shadow:none;background-color:#fdfdfc;border:none;margin:0;font-size:.55em}.reveal code{color:var(--quarto-hl-fu-color);background-color:rgba(0,0,0,0);white-space:pre-wrap}.reveal pre.sourceCode code{background-color:#fdfdfc;padding:6px 9px;max-height:500px;white-space:pre}.reveal pre code{background-color:#f6f4ee;color:#222}.reveal .column-output-location{display:flex;align-items:stretch}.reveal .column-output-location .column:first-of-type div.sourceCode{height:100%;background-color:#fdfdfc}.reveal blockquote{display:block;position:relative;color:#6f6f6f;width:unset;margin:var(--r-block-margin) auto;padding:.625rem 1.75rem;border-left:.25rem solid #6f6f6f;font-style:normal;background:none;box-shadow:none}.reveal blockquote p:first-child,.reveal blockquote p:last-child{display:block}.reveal .slide aside,.reveal .slide div.aside{position:absolute;bottom:20px;font-size:0.7em;color:#6f6f6f}.reveal .slide sup{font-size:0.7em}.reveal .slide.scrollable aside,.reveal .slide.scrollable div.aside{position:relative;margin-top:1em}.reveal .slide aside .aside-footnotes{margin-bottom:0}.reveal .slide aside .aside-footnotes li:first-of-type{margin-top:0}.reveal .layout-sidebar{display:flex;width:100%;margin-top:.8em}.reveal .layout-sidebar .panel-sidebar{width:270px}.reveal .layout-sidebar-left .panel-sidebar{margin-right:calc(0.5em * 2)}.reveal .layout-sidebar-right .panel-sidebar{margin-left:calc(0.5em * 2)}.reveal .layout-sidebar .panel-fill,.reveal .layout-sidebar .panel-center,.reveal .layout-sidebar .panel-tabset{flex:1}.reveal .panel-input,.reveal .panel-sidebar{font-size:.5em;padding:.5em;border-style:solid;border-color:#d3d0cb;border-width:1px;border-radius:4px;background-color:#f8f9fa}.reveal .panel-sidebar :first-child,.reveal .panel-fill :first-child{margin-top:0}.reveal .panel-sidebar :last-child,.reveal .panel-fill :last-child{margin-bottom:0}.panel-input>div,.panel-input>div>div{vertical-align:middle;padding-right:1em}.reveal p,.reveal .slides section,.reveal .slides section>section{line-height:1.3}.reveal.smaller .slides section,.reveal .slides section.smaller,.reveal .slides section .callout{font-size:0.7em}.reveal.smaller .slides h1,.reveal .slides section.smaller h1{font-size:calc(2.5em / 0.7)}.reveal.smaller .slides h2,.reveal .slides section.smaller h2{font-size:calc(1.6em / 0.7)}.reveal.smaller .slides h3,.reveal .slides section.smaller h3{font-size:calc(1.3em / 0.7)}.reveal .columns>.column>:not(ul,ol){margin-left:.25em;margin-right:.25em}.reveal .columns>.column:first-child>:not(ul,ol){margin-right:.5em;margin-left:0}.reveal .columns>.column:last-child>:not(ul,ol){margin-right:0;margin-left:.5em}.reveal .slide-number{color:#26ac85;background-color:#f6f4ee}.reveal .footer{color:#6f6f6f}.reveal .footer a{color:#1d8265}.reveal .slide-number{color:#6f6f6f}.reveal .slide figure>figcaption,.reveal .slide img.stretch+p.caption,.reveal .slide img.r-stretch+p.caption{font-size:0.7em}@media screen and (min-width: 500px){.reveal .controls[data-controls-layout=edges] .navigate-left{left:.2em}.reveal .controls[data-controls-layout=edges] .navigate-right{right:.2em}.reveal .controls[data-controls-layout=edges] .navigate-up{top:.4em}.reveal .controls[data-controls-layout=edges] .navigate-down{bottom:2.3em}}.tippy-box[data-theme~=light-border]{background-color:#f6f4ee;color:#222;border-radius:4px;border:solid 1px #6f6f6f;font-size:.6em}.tippy-box[data-theme~=light-border] .tippy-arrow{color:#6f6f6f}.tippy-box[data-placement^=bottom]>.tippy-content{padding:7px 10px;z-index:1}.reveal .callout.callout-style-simple .callout-body,.reveal .callout.callout-style-default .callout-body,.reveal .callout.callout-style-simple div.callout-title,.reveal .callout.callout-style-default div.callout-title{font-size:inherit}.reveal .callout.callout-style-default .callout-icon::before,.reveal .callout.callout-style-simple .callout-icon::before{height:2rem;width:2rem;background-size:2rem 2rem}.reveal .callout.callout-titled .callout-title p{margin-top:.5em}.reveal .callout.callout-titled .callout-icon::before{margin-top:1rem}.reveal .callout.callout-titled .callout-body>.callout-content>:last-child{margin-bottom:1rem}.reveal .panel-tabset [role=tab]{padding:.25em .7em}.reveal .slide-menu-button .fa-bars::before{background-image:url('data:image/svg+xml,')}.reveal .slide-chalkboard-buttons .fa-easel2::before{background-image:url('data:image/svg+xml,')}.reveal .slide-chalkboard-buttons .fa-brush::before{background-image:url('data:image/svg+xml,')}/*! light */.reveal ol[type=a]{list-style-type:lower-alpha}.reveal ol[type=a s]{list-style-type:lower-alpha}.reveal ol[type=A s]{list-style-type:upper-alpha}.reveal ol[type=i]{list-style-type:lower-roman}.reveal ol[type=i s]{list-style-type:lower-roman}.reveal ol[type=I s]{list-style-type:upper-roman}.reveal ol[type="1"]{list-style-type:decimal}.reveal ul.task-list{list-style:none}.reveal ul.task-list li input[type=checkbox]{width:2em;height:2em;margin:0 1em .5em -1.6em;vertical-align:middle}div.cell-output-display div.pagedtable-wrapper table.table{font-size:.6em}.reveal .code-annotation-container-hidden{display:none}.reveal code.sourceCode button.code-annotation-anchor,.reveal code.sourceCode .code-annotation-anchor{font-family:"Noto Sans Mono",monospace;color:var(--quarto-hl-co-color);border:solid var(--quarto-hl-co-color) 1px;border-radius:50%;font-size:.7em;line-height:1.2em;margin-top:2px}.reveal code.sourceCode button.code-annotation-anchor{cursor:pointer}.reveal code.sourceCode a.code-annotation-anchor{text-align:center;vertical-align:middle;text-decoration:none;cursor:default;height:1.2em;width:1.2em}.reveal code.sourceCode.fragment a.code-annotation-anchor{left:auto}.reveal #code-annotation-line-highlight-gutter{width:100%;border-top:solid var(--quarto-hl-co-color) 1px;border-bottom:solid var(--quarto-hl-co-color) 1px;z-index:2}.reveal #code-annotation-line-highlight{margin-left:-8em;width:calc(100% + 4em);border-top:solid var(--quarto-hl-co-color) 1px;border-bottom:solid var(--quarto-hl-co-color) 1px;z-index:2;margin-bottom:-2px}.reveal code.sourceCode .code-annotation-anchor.code-annotation-active{background-color:var(--quarto-hl-normal-color, #aaaaaa);border:solid var(--quarto-hl-normal-color, #aaaaaa) 1px;color:#fdfdfc;font-weight:bolder}.reveal pre.code-annotation-code{padding-top:0;padding-bottom:0}.reveal pre.code-annotation-code code{z-index:3;padding-left:0px}.reveal dl.code-annotation-container-grid{margin-left:.1em}.reveal dl.code-annotation-container-grid dt{margin-top:.65rem;font-family:"Noto Sans Mono",monospace;border:solid #222 1px;border-radius:50%;height:1.3em;width:1.3em;line-height:1.3em;font-size:.5em;text-align:center;vertical-align:middle;text-decoration:none}.reveal dl.code-annotation-container-grid dd{margin-left:.25em}.reveal .scrollable ol li:first-child:nth-last-child(n+10),.reveal .scrollable ol li:first-child:nth-last-child(n+10)~li{margin-left:1em}html.print-pdf .reveal .slides .pdf-page:last-child{page-break-after:avoid}.reveal .quarto-title-block .quarto-title-authors{display:flex;justify-content:center}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author{padding-left:.5em;padding-right:.5em}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author a,.reveal .quarto-title-block .quarto-title-authors .quarto-title-author a:hover,.reveal .quarto-title-block .quarto-title-authors .quarto-title-author a:visited,.reveal .quarto-title-block .quarto-title-authors .quarto-title-author a:active{color:inherit;text-decoration:none}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author .quarto-title-author-name{margin-bottom:.1rem}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author .quarto-title-author-email{margin-top:0px;margin-bottom:.4em;font-size:.6em}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author .quarto-title-author-orcid img{margin-bottom:4px}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author .quarto-title-affiliation{font-size:.7em;margin-top:0px;margin-bottom:8px}.reveal .quarto-title-block .quarto-title-authors .quarto-title-author .quarto-title-affiliation:first{margin-top:12px}/*# sourceMappingURL=f95d2bded9c28492b788fe14c3e9f347.css.map */ diff --git a/docs/slides_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js b/docs/slides_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js index 5bffdc7..a69ca1d 100644 --- a/docs/slides_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js +++ b/docs/slides_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js @@ -38,7 +38,7 @@ window.QuartoLineHighlight = function () { divSourceCode.forEach((el) => { if (el.hasAttribute(kCodeLineNumbersAttr)) { const codeLineAttr = el.getAttribute(kCodeLineNumbersAttr); - el.removeAttribute("data-code-line-numbers"); + el.removeAttribute(kCodeLineNumbersAttr); if (handleLinesSelector(deck, codeLineAttr)) { // Only process if attr is a string to select lines to highlights // e.g "1|3,6|8-11" @@ -165,9 +165,9 @@ window.QuartoLineHighlight = function () { if (typeof highlight.last === "number") { spanToHighlight = [].slice.call( codeBlock.querySelectorAll( - ":scope > span:nth-child(n+" + + ":scope > span:nth-of-type(n+" + highlight.first + - "):nth-child(-n+" + + "):nth-of-type(-n+" + highlight.last + ")" ) @@ -175,7 +175,7 @@ window.QuartoLineHighlight = function () { } else if (typeof highlight.first === "number") { spanToHighlight = [].slice.call( codeBlock.querySelectorAll( - ":scope > span:nth-child(" + highlight.first + ")" + ":scope > span:nth-of-type(" + highlight.first + ")" ) ); }