forked from chuanenlin/optical-flow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdense-checkpoint3.py
28 lines (26 loc) · 1.41 KB
/
dense-checkpoint3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import cv2 as cv
import numpy as np
# The video feed is read in as a VideoCapture object
cap = cv.VideoCapture("shibuya.mp4")
# ret = a boolean return value from getting the frame, first_frame = the first frame in the entire video sequence
ret, first_frame = cap.read()
# Converts frame to grayscale because we only need the luminance channel for detecting edges - less computationally expensive
prev_gray = cv.cvtColor(first_frame, cv.COLOR_BGR2GRAY)
while(cap.isOpened()):
# ret = a boolean return value from getting the frame, frame = the current frame being projected in the video
ret, frame = cap.read()
# Opens a new window and displays the input frame
cv.imshow("input", frame)
# Converts each frame to grayscale - we previously only converted the first frame to grayscale
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
# Calculates dense optical flow by Farneback method
# https://docs.opencv.org/3.0-beta/modules/video/doc/motion_analysis_and_object_tracking.html#calcopticalflowfarneback
flow = cv.calcOpticalFlowFarneback(prev_gray, gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
# Updates previous frame
prev_gray = gray
# Frames are read by intervals of 1 millisecond. The programs breaks out of the while loop when the user presses the 'q' key
if cv.waitKey(1) & 0xFF == ord('q'):
break
# The following frees up resources and closes all windows
cap.release()
cv.destroyAllWindows()