-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnodaldg2d.py
executable file
·209 lines (195 loc) · 6.86 KB
/
nodaldg2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/python
# nodaldg2d.py
#
# Created by Travis Johnson on 2010-06-01.
# Copyright (c) 2010 . All rights reserved.
from __future__ import division
from pylab import *
from numpy import *
from KoprivaMethods import *
c= 1
class Nodal2DStorage:
def __init__(self, N, M):
"""docstring for __init__"""
self.N = N
self.M = M
self.xi= zeros((N,1))
self.eta=zeros((M,1))
self.wxi=zeros((N,1))
self.weta=zeros((M,1))
self.dxi=zeros((N,N))
self.deta=zeros((M,M))
self.d2xi=zeros((N,N))
self.d2eta=zeros((M,M))
class NodalDG2DStorage(Nodal2DStorage):
def __init__(self, N, M):
"""docstring for __init__"""
#super(self)UserDict.__init__(self)
Nodal2DStorage.__init__(self, N, M)
self.Lagrangeximinusone = zeros((N,1))
self.Lagrangexiplusone = zeros((N,1))
self.Lagrangeetaminusone = zeros((M,1))
self.Lagrangeetaplusone = zeros((M,1))
def RiemannSolver(QL, QR, nhat):
pL, uL, vL = QL[0], QL[1], QL[2]
pR, uR, vR = QR[0], QR[1], QR[2]
wplusL = pL + c*(nhat[0]*uL + nhat[1]*vL)
wminusR= pR + c*(nhat[0]*uR + nhat[1]*vR)
Fstar = zeros((3,1))
Fstar[0] = c*(wplusL-wminusR)/2
Fstar[1] = nhat[0]*(wplusL-wminusR)/2
Fstar[2] = nhat[1]*(wplusL-wminusR)/2
return Fstar
class NodalDG2DClass:
def __init__(self, nEqn, N, M):
"""docstring for __init__"""
self.nEqn = nEqn
self.spA = NodalDG2DStorage(N, M)
self.spA.xi, self.spA.wxi = LegendreGaussNodesAndWeights(N)
wB = BarycentricWeights(self.spA.xi)
self.spA.LagrangexiMinusOne = LagrangeInterpolatingPolynomials(-1, self.spA.xi, wB)
self.spA.LagrangexiPlusOne = LagrangeInterpolatingPolynomials(1, self.spA.xi, wB)
D = PolynomialDerivativeMatrix(self.spA.xi)
for j in range(N):
for i in range(N):
self.spA.dxi[i,j] = -D[j,i]*self.spA.wxi[j]/self.spA.wxi[i]
self.spA.eta, self.spA.weta = LegendreGaussNodesAndWeights(M)
wB = BarycentricWeights(self.spA.eta)
self.spA.LagrangeetaMinusOne = LagrangeInterpolatingPolynomials(-1, self.spA.eta, wB)
self.spA.LagrangeetaPlusOne = LagrangeInterpolatingPolynomials(1, self.spA.eta, wB)
D = PolynomialDerivativeMatrix(self.spA.eta)
for j in range(M):
for i in range(M):
self.spA.deta[i,j] = -D[j,i]*self.spA.weta[j]/self.spA.weta[i]
self.Q=zeros((N+1,M+1,nEqn))
kx, ky, w, c, x0, y0 = 1/sqrt(2), 1/sqrt(2), .2, 1, -.8, -.8
d= w/(2*log(2))
x,y = meshgrid(self.spA.eta, self.spA.xi)
for i in range(N):
for j in range(M):
self.Q[i,j,0] = 1*exp(-(kx*(x[i,j]-x0)+ky*(y[i,j]-y0))**2)/(d**2)
self.Q[i,j,1] = kx/c*exp(-(kx*(x[i,j]-x0)+ky*(y[i,j]-y0))**2)/(d**2)
self.Q[i,j,2] = ky/c*exp(-(kx*(x[i,j]-x0)+ky*(y[i,j]-y0))**2)/(d**2)
def SystemDGDerivative(self, FL, FR, F, D, LagrangeMinusOne, LagrangePlusOne, w):
Fprime = zeros((self.spA.N, self.nEqn))
for n in range(self.nEqn):
Fprime[:,n] = MxVDerivative(D, F[:,n])
for j in range(0,self.spA.N):
for n in range(1,self.nEqn):
Fprime[j,n] = Fprime[j,n] + (FR[n]*LagrangeMinusOne[j] + FL[n]*LagrangeMinusOne[j])/w[j]
return Fprime
def DG2DTimeDerivative(self, t):
xhat, yhat = array([1,0]), array([0,1])
N, M, nEqn = self.spA.N, self.spA.M, self.nEqn
Qdot = zeros((N+1,M+1,nEqn))
for j in range(M+1):
y = self.spA.eta[j]
QL_int, QR_int = zeros((nEqn,1)), zeros((nEqn,1))
for n in range(self.nEqn):
QL_int[n] = self.InterpolateToBoundary(self.Q[:,j,n], self.spA.Lagrangeximinusone)
QR_int[n] = self.InterpolateToBoundary(self.Q[:,j,n], self.spA.Lagrangexiplusone)
QL_ext = self.ExternalState(QL_int,-1, y, t, 'LEFT')
QR_ext = self.ExternalState(QL_int, 1, y, t, 'RIGHT')
FLstar = RiemannSolver(QL_int, QL_ext, -xhat)
FRstar = RiemannSolver(QR_int, QL_ext, xhat)
F = zeros((N, nEqn))
for i in range(N):
F[i,:] = self.xFlux(self.Q[i,j,:])[:,0]
Fprime = self.SystemDGDerivative(FLstar, FRstar, F, self.spA.dxi, self.spA.LagrangexiMinusOne, self.spA.LagrangexiPlusOne, self.spA.wxi)
for i in range(N):
for n in range(self.nEqn):
Qdot[i,j,n] = -Fprime[i,n]
G = zeros((M, nEqn))
for i in range(N+1):
x = self.spA.xi[i]
QL_int, QR_int = zeros((nEqn,1)), zeros((nEqn,1))
for n in range(self.nEqn):
QL_int[n] = self.InterpolateToBoundary(self.Q[i,:,n], self.spA.LagrangeetaMinusOne)
QR_int[n] = self.InterpolateToBoundary(self.Q[i,:,n], self.spA.LagrangeetaPlusOne)
QL_ext = self.ExternalState(QL_int, x, -1, t, 'BOTTOM')
QR_ext = self.ExternalState(QR_int, x, 1, t, 'TOP')
GLStar = RiemannSolver(QL_int, QL_ext, -yhat)
GRStar = RiemannSolver(QR_int, QR_ext, yhat)
for j in range(M):
G[j,:] = self.yFlux(self.Q[i,j,:])[:,0]
GPrime = self.SystemDGDerivative(GLStar, GRStar, G, self.spA.deta, self.spA.LagrangeetaMinusOne, self.spA.LagrangeetaPlusOne, self.spA.weta)
for j in range(M):
for n in range(nEqn):
Qdot[i,j,n] = Qdot[i,j,n] - GPrime[j,n]
return Qdot
def ExternalState(self, vec, pos, mult, time, boundary):
retval = zeros(vec.shape)
p, u, v = vec[0], vec[1], vec[2]
kx, ky= sqrt(2)/2, sqrt(2)/2
k = kx**2+ky**2
alpha, beta = kx/k, ky/k
if boundary == 'LEFT':
retval[0] = p
retval[1] = (beta**2-alpha**2)*u - 2*alpha*beta*v
retval[2] = -2*alpha*beta*u + (alpha**2-beta**2)*v
elif boundary == 'RIGHT':
retval[0] = p
retval[1] = (beta**2-alpha**2)*u - 2*alpha*beta*v
retval[2] = -2*alpha*beta*u + (alpha**2-beta**2)*v
elif boundary == 'BOTTOM':
retval[0] = p
retval[1] = (beta**2-alpha**2)*u - 2*alpha*beta*v
retval[2] = -2*alpha*beta*u + (alpha**2-beta**2)*v
else:
retval[0] = p
retval[1] = (beta**2-alpha**2)*u - 2*alpha*beta*v
retval[2] = -2*alpha*beta*u + (alpha**2-beta**2)*v
return mult*retval
def xFlux(self, Q):
F = zeros((3,1))
F[0] = c**2*Q[1]
F[1] = Q[0]
F[2] = 0
return F
def yFlux(self, Q):
F = zeros((3,1))
F[0] = c**2*Q[2]
F[1] = 0
F[2] = Q[0]
return F
def InterpolateToBoundary(self, phi, l):
interpolatedValue = 0
for j in range(len(phi)-1):
interpolatedValue = interpolatedValue + l[j]*phi[j]
return interpolatedValue
def DG2DStepByRK3(tn, dt, DG):
a = [0, -5/9, -153/128]
b = [0, 1/3, 3/4]
g = [1/3,15/16, 8/15]
G = zeros(DG.Q.shape)
for m in range(3):
t = tn + b[m]*dt
phidot = DG.DG2DTimeDerivative(t)
G = a[m]*G + phidot
phi = DG.Q + g[m]*dt*G
return phi
def DG2DDriver(N, M, NT, Nout, T):
printHowOften = 40
x, wx = LegendreGaussNodesAndWeights(N)
y, wy = LegendreGaussNodesAndWeights(M)
X,Y = meshgrid(x,y)
dt = T/NT
tn = 0
DG = NodalDG2DClass(3, N, M)
for n in range(NT+1):
phi = DG2DStepByRK3(tn, dt, DG)
tn = (n+1)*dt
# if sum(isinf(phi))+sum(isnan(phi))>0 or max(phi)>10:
# print("whoops, got inf(or big!) quitting!")
# exit()
print phi[:,:,0].shape
print X.shape
if n%(NT//printHowOften) ==0:
close(),pcolor(X, Y ,phi[:,:,0]), title('time = %f'%(tn)),colorbar(),draw()
DG.Q = phi
#if n%(NT//100) ==0:
# print "boundaries at t=%f: %f %f"%(tn, phi[0],phi[-1])
# ndg2d = NodalDG2DClass(3, 15,15)
t=1
dt = 2.6e-3
DG2DDriver(20,20,int(floor(t/dt)), 0, t)