-
Notifications
You must be signed in to change notification settings - Fork 23
/
lef_util.py
400 lines (354 loc) · 11.6 KB
/
lef_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
"""
Data Structures for LEF Parser
Author: Tri Minh Cao
Email: [email protected]
Date: August 2016
"""
from util import *
class Statement:
"""
General class for all types of Statements in the LEF file
"""
def __init__(self):
pass
def parse_next(self, data):
"""
Method to add information from a statement from LEF file to the
Statement object.
:param data: a list of strings that contains pieces of information
:return: 1 if parsing is done, -1 if error, otherwise, return the
object that will be parsed next.
"""
# the program assumes the syntax of LEF file is correct
if data[0] == "MACRO":
name = data[1]
new_state = Macro(name)
return new_state
elif data[0] == "LAYER" and len(data) == 2: # does not have ;
name = data[1]
new_state = Layer(name)
return new_state
elif data[0] == "VIA":
name = data[1]
new_state = Via(name)
return new_state
elif data[0] == "END":
return 1
return 0
def __str__(self):
"""
turn a statement object into string
:return: string representation of Statement objects
"""
s = ""
s += self.type + " " + self.name
return s
class Macro(Statement):
"""
Macro class represents a MACRO (cell) in the LEF file.
"""
def __init__(self, name):
# initiate the Statement superclass
Statement.__init__(self)
self.type = 'MACRO'
self.name = name
# other info is stored in this dictionary
self.info = {}
# pin dictionary
self.pin_dict = {}
def __str__(self):
"""
turn a statement object into string
:return: string representation of Statement objects
"""
s = ""
s += self.type + " " + self.name + "\n"
for key in self.info:
if key == "PIN":
s += " " + key + ":\n"
for pin in self.info[key]:
s += " " + str(pin) + "\n"
else:
s += " " + key + ": " + str(self.info[key]) + "\n"
return s
def parse_next(self, data):
"""
Method to add information from a statement from LEF file to a Macro
object.
:param data: a list of strings that contains pieces of information
:return: 0 if in progress, 1 if parsing is done, -1 if error,
otherwise, return the object that will be parsed next.
"""
if data[0] == "CLASS":
self.info["CLASS"] = data[1]
elif data[0] == "ORIGIN":
x_cor = float(data[1])
y_cor = float(data[2])
self.info["ORIGIN"] = (x_cor, y_cor)
elif data[0] == "FOREIGN":
self.info["FOREIGN"] = data[1:]
elif data[0] == "SIZE":
width = float(data[1])
height = float(data[3])
self.info["SIZE"] = (width, height)
elif data[0] == "SYMMETRY":
self.info["SYMMETRY"] = data[1:]
elif data[0] == "SITE":
self.info["SITE"] = data[1]
elif data[0] == "PIN":
new_pin = Pin(data[1])
self.pin_dict[data[1]] = new_pin
if "PIN" in self.info:
self.info["PIN"].append(new_pin)
else:
self.info["PIN"] = [new_pin]
return new_pin
elif data[0] == "OBS":
new_obs = Obs()
self.info["OBS"] = new_obs
return new_obs
elif data[0] == "END":
if data[1] == self.name:
return 1
else:
return -1
return 0
def get_pin(self, pin_name):
return self.pin_dict[pin_name]
class Pin(Statement):
"""
Class Pin represents a PIN statement in the LEF file.
"""
def __init__(self, name):
Statement.__init__(self)
self.type = "PIN"
self.name = name
self.info = {}
def __str__(self):
s = ""
for layer in self.info["PORT"].info["LAYER"]:
s += layer.type + " " + layer.name + "\n"
return s
def parse_next(self, data):
if data[0] == "DIRECTION":
self.info["DIRECTION"] = data[1]
elif data[0] == "USE":
self.info["USE"] = data[1]
elif data[0] == "PORT":
new_port = Port()
self.info["PORT"] = new_port
return new_port
elif data[0] == "SHAPE":
self.info["SHAPE"] = data[1]
elif data[0] == "END":
if data[1] == self.name:
return 1
else:
return -1
# return 0 when we parse a undefined statement
return 0
def is_lower_metal(self, split_layer):
return self.info["PORT"].is_lower_metal(split_layer)
def get_top_metal(self):
return self.info["PORT"].get_top_metal()
class Port(Statement):
"""
Class Port represents an PORT statement in the LEF file.
"""
# Note: PORT statement does not have name
def __init__(self):
Statement.__init__(self)
self.type = "PORT"
self.name = ""
self.info = {}
def parse_next(self, data):
if data[0] == "END":
return 1
elif data[0] == "LAYER":
name = data[1]
new_layerdef = LayerDef(data[1])
if "LAYER" in self.info:
self.info["LAYER"].append(new_layerdef)
else:
self.info["LAYER"] = [new_layerdef]
elif data[0] == "RECT":
# error if the self.info["LAYER"] does not exist
self.info["LAYER"][-1].add_rect(data)
elif data[0] == "POLYGON":
self.info["LAYER"][-1].add_polygon(data)
return 0
def is_lower_metal(self, split_layer):
lower = True
for layer in self.info["LAYER"]:
if compare_metal(layer.name, split_layer) >= 0:
lower = False
break
return lower
def get_top_metal(self):
highest = "poly"
for layer in self.info["LAYER"]:
if compare_metal(layer.name, highest) > 0:
highest = layer.name
return highest
class Obs(Statement):
"""
Class Obs represents an OBS statement in the LEF file.
"""
# Note: OBS statement does not have name
def __init__(self):
Statement.__init__(self)
self.type = "OBS"
self.name = ""
self.info = {}
def __str__(self):
s = ""
for layer in self.info["LAYER"]:
s += layer.type + " " + layer.name + "\n"
return s
def parse_next(self, data):
if data[0] == "END":
return 1
elif data[0] == "LAYER":
name = data[1]
new_layerdef = LayerDef(data[1])
if "LAYER" in self.info:
self.info["LAYER"].append(new_layerdef)
else:
self.info["LAYER"] = [new_layerdef]
elif data[0] == "RECT":
# error if the self.info["LAYER"] does not exist
self.info["LAYER"][-1].add_rect(data) # [-1] means the latest layer
elif data[0] == "POLYGON":
self.info["LAYER"][-1].add_polygon(data)
return 0
class LayerDef:
"""
Class LayerDef represents the Layer definition inside a PORT or OBS
statement.
"""
# NOTE: LayerDef has no END statement
# I think I still need a LayerDef class, but it will not be a subclass of
# Statement. It will be a normal object that stores information.
def __init__(self, name):
self.type = "LayerDef"
self.name = name
self.shapes = []
def add_rect(self, data):
x0 = float(data[1])
y0 = float(data[2])
x1 = float(data[3])
y1 = float(data[4])
points = [(x0, y0), (x1, y1)]
rect = Rect(points)
self.shapes.append(rect)
def add_polygon(self, data):
points = []
# add each pair of (x, y) points to a list
for idx in range(1, len(data) - 2, 2):
x_cor = float(data[idx])
y_cor = float(data[idx+1])
points.append([x_cor, y_cor])
polygon = Polygon(points)
self.shapes.append(polygon)
class Rect:
"""
Class Rect represents a Rect definition in a LayerDef
"""
# Question: Do I really need a Rect class?
def __init__(self, points):
self.type = "RECT"
self.points = points
class Polygon:
"""
Class Polygon represents a Polygon definition in a LayerDef
"""
def __init__(self, points):
self.type = "POLYGON"
self.points = points
class Layer(Statement):
"""
Layer class represents a LAYER section in LEF file.
"""
def __init__(self, name):
# initiate the Statement superclass
Statement.__init__(self)
self.type = "LAYER"
self.name = name
self.layer_type = None
self.spacing_table = None
self.spacing = None
self.width = None
self.pitch = None
self.direction = None
self.offset = None
self.resistance = None
self.thickness = None
self.height = None
self.capacitance = None
self.edge_cap = None
self.property = None
def parse_next(self, data):
"""
Method to add information from a statement from LEF file to a Layer
object.
:param data: a list of strings that contains pieces of information
:return: 0 if in progress, 1 if parsing is done, -1 if error,
otherwise, return the object that will be parsed next.
"""
if data[0] == "TYPE":
self.layer_type = data[1]
elif data[0] == "SPACINGTABLE":
pass
elif data[0] == "SPACING":
self.spacing = float(data[1])
elif data[0] == "WIDTH":
self.width = float(data[1])
elif data[0] == "PITCH":
self.pitch = float(data[1])
elif data[0] == "DIRECTION":
self.direction = data[1]
elif data[0] == "OFFSET":
self.offset = (float(data[1]), float(data[2]))
elif data[0] == "RESISTANCE":
if self.layer_type == "ROUTING":
self.resistance = (data[1], float(data[2]))
elif self.layer_type == "CUT":
self.resistance = float(data[1])
elif data[0] == "THICKNESS":
self.thickness = float(data[1])
elif data[0] == "HEIGHT":
self.height = float(data[1])
elif data[0] == "CAPACITANCE":
self.capacitance = (data[1], float(data[2]))
elif data[0] == "EDGECAPACITANCE":
self.edge_cap = float(data[1])
elif data[0] == "PROPERTY":
self.property = (data[1], float(data[2]))
elif data[0] == "END":
if data[1] == self.name:
return 1
else:
return -1
return 0
class Via(Statement):
"""
Via class represents a VIA section in LEF file.
"""
def __init__(self, name):
# initiate the Statement superclass
Statement.__init__(self)
self.type = "VIA"
self.name = name
self.layers = []
def parse_next(self, data):
if data[0] == "END":
return 1
elif data[0] == "LAYER":
name = data[1]
new_layerdef = LayerDef(data[1])
self.layers.append(new_layerdef)
elif data[0] == "RECT":
self.layers[-1].add_rect(data) # [-1] means the latest layer
elif data[0] == "POLYGON":
self.layers.add_polygon(data)
return 0