-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinput.html
1920 lines (1803 loc) · 88.7 KB
/
input.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
<meta name="description" content="Sediment Transport Geological Scale">
<meta name="author" content="Tristan Salles">
<title>SgFm - Sediment Transport @ Geological Scale</title>
<!-- Bootstrap Core CSS -->
<link href="css/bootstrap.min.css" rel="stylesheet" type="text/css">
<link href="css/freepage.css" rel="stylesheet" type="text/css">
<!-- Fonts -->
<link href="font-awesome/css/font-awesome.min.css" rel="stylesheet" type="text/css">
<link href='http://fonts.googleapis.com/css?family=Montserrat:400,700' rel='stylesheet' type='text/css'>
<!-- Favicon -->
<link rel="icon" type="image/png" href="img/favicon.png" />
<link rel="shortcut icon" href="img/favicon.png" />
<!-- IE8 support for HTML5 elements and media queries -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
<![endif]-->
<link rel="stylesheet" href="http://yandex.st/highlightjs/8.0/styles/solarized_light.min.css">
<script src="http://yandex.st/highlightjs/8.0/highlight.min.js"></script>
<script>
hljs.tabReplace = ' ';
hljs.initHighlightingOnLoad();
</script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-28324363-2', 'lecode-model.github.io');
ga('send', 'pageview');
</script>
</head>
<body id="page-top" class="overview">
<!-- Navigation -->
<nav class="navbar navbar-default navbar-fixed-top">
<div class="container">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header page-scroll">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="http://tristan-salles.github.io/SGFM-website/index.html">SgFm framework</a>
</div>
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li class="dropdown">
<a class="navbar-brand" href="#" data-toggle="dropdown"><span class="glyphicon glyphicon-th-large" style="vertical-align:top; font-size:15px;"></span></a>
<ul class="dropdown-menu">
<li><a href="http://tristan-salles.github.io/SGFM-website/overview.html" data-toggle="modal">
<span style="font-family:Montserrat; font-size:17px; font-weight:normal;">Lecode Overview</a></span></li>
<li><a href="http://tristan-salles.github.io/SGFM-website/installation.html">
<span style="font-family:Montserrat; font-size:17px; font-weight:normal;">Installation Guide</a></span></li>
<li><a href="http://tristan-salles.github.io/SGFM-website/input.html">
<span style="font-family:Montserrat; font-size:17px; font-weight:normal;">XmL Input File</a></span></li>
<li><a href="http://tristan-salles.github.io/SGFM-website/GISinput.html">
<span style="font-family:Montserrat; font-size:17px; font-weight:normal;">GIS Input Generation</a></span></li>
<li><a href="http://tristan-salles.github.io/SGFM-website/visualisation.html">
<span style="font-family:Montserrat; font-size:17px; font-weight:normal;">Visualisation Tips</a></span></li>
<li><a href="http://tristan-salles.github.io/SGFM-website/cookbook.html">
<span style="font-family:Montserrat; font-size:17px; font-weight:normal;">Cookbook Examples</a></span></li>
</ul>
</li>
</ul>
<!--/div>
<!-- Collect the nav links, forms, and other content for toggling -->
<!--div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1"-->
<ul class="nav navbar-nav navbar-right">
<li class="hidden">
<a href="#page-top"></a>
</li>
<li class="page-scroll">
<a href="#grid">GRID</a>
</li>
<li class="page-scroll">
<a href="#time">TIME</a>
</li>
<li class="page-scroll">
<a href="#ocean">OCEAN</a>
</li>
<li class="page-scroll">
<a href="#sed">SEDIMENTS</a>
</li>
<li class="page-scroll">
<a href="#proc">PROCESSES</a>
</li>
<li class="page-scroll">
<a href="#param">PARAMETERS</a>
</li>
<li class="page-scroll">
<a href="#plug">PLUGINS</a>
</li>
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container-fluid -->
</nav>
<header>
<div class="container">
<div class="row">
<div class="col-lg-12">
<img class="img-responsive" src="img/input.png" alt="">
<div class="intro-text">
<span class="name">Lecode Input</span>
<span class="skills">XmL Structure</span>
</div>
</div>
</div>
</div>
</header>
<section id="xml">
<div class="container">
<div class="row">
<div class="col-lg-12"><br><br>
<h2>XML Input</h2>
<br>
</div>
</div>
<div class="row">
<div class="col-lg-12 text-left">
<p>
<strong>Lecode</strong> is using XML input file. XML language, compared to standard <code>ASCII</code>, is well formatted and has a controlled structured.
The XML input file has both constrains on the structure and content of the elements which are used to control the parameters of the simulation. <br>
The XML file is at the core of the experiment design and contains all the variables and properties applicable to the simulation. <br>
External ASCII files (formatted in CSV) are referenced inside the XML document and provide information on the basal node position, the geometry and composition of the initial layers, uplift/subsidence, rainfall and sea level...<br>
Along side the XML input files, we developed an XML schema (XSD) file, to assist the user in setting up a particular experiment as well as to give some informations regarding the definition of the parameters used in the input files.
<br><br>
The XML input file is not intended to work but contains all the elements that could be declared for any particular <strong>Lecode</strong> simulations (<a href="documents/input_all.xml" target="_blank">the complete XML input file</a>). To start with a working input file it is recommended to use one of the <a href="http://lecode-model.github.io/SGFM/cookbook.html" target="_blank">cookbook examples</a>.
</p>
</div>
</div>
</div>
</section>
<section id="xml2">
<div class="container">
<div class="row">
<div class="col-lg-12">
<h2>Header</h2>
<br>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre><code><?xml version="1.0" encoding="UTF-8"?>
<lecode:lecodeInput xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:lecode="http://subversion.assembla.com/svn/xsd/XSDlecode"
xmlns:xi="http://www.w3.org/2001/XInclude"
xsi:schemaLocation="http://subversion.assembla.com/svn/xsd/XSDlecode
http://subversion.assembla.com/svn/xsd/XSDlecode/LECODE.xsd"></code></pre>
</p>
</div>
</div>
</div>
<div class="col-lg-12 text-center">
<hr class="star-primary">
</div>
</section>
<section id="grid">
<div class="container">
<div class="row">
<div class="col-lg-12">
<br><h2>Mesh & TIN Declaration</h2>
<br>
</div>
</div>
<div class="row">
<div class="col-lg-12 text-left">
<p>
The first structure which appears on the input file is related to the definition of the stratigraphic grid and flow computational grid (TIN). <br><b>Most of the elements within this structure are required.</b>
</p>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><Strata_grid> element definitions</h3>
<br>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre><code > <struct-Mesh-TIN>
<Strata_grid>
<StrataGrid>data/gbr_N.nodes</StrataGrid>
<GridX>330</GridX>
<GridY>330</GridY>
<GridSpace unit="m">500</GridSpace>
<GridXo unit="m">305250.0</GridXo>
<GridYo unit="m">8220250.0</GridYo>
</Strata_grid></code></pre>
</p>
<p2><strong> <StrataGrid> element</strong>:
It refers to the name of the basement node file and its path.
The path is from the main input file location.
This ASCII file provides for each line the following information:<br>
○ node IDs,<br>
○ X coordinates in metres (this axis has a West to East orientation),<br>
○ Y coordinates in metres (this axis has a South to West orientation), and<br>
○ Z coordinates in metres.<br>
In addition the nodes should be defined in increasing order starting
from the Sout-West corner and going first along the X axis (West to East).<br>
<strong> <GridX> element</strong>:
Number of nodes along the X axis (West to East direction).
It should conform with basement node file definition.
<br>
<strong> <GridY> element</strong>:
Number of nodes along the Y axis (West to East direction).
It should conform with basement node file definition.
<br>
<strong> <GridSpace> element</strong>:
Grid spacing (in metres), defining the stratigraphic grid resolution.
It should conform with basement node file definition.
<br>
<strong> <GridXo> element</strong>:
South West corner X coordinate expressed in metres.
It should conform with basement node file definition.
<br>
<strong> <GridYo> element</strong>:
South West corner Y coordinate expressed in metres.
It should conform with basement node file definition.
</p2>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><TIN_refine> element definitions</h3>
<br>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre ><code> <TIN_refine>
<HighRes unit="m">500</HighRes>
<LowRes unit="m">1000</LowRes>
<StepFill unit="m">0.001</StepFill>
<FlowAcc>10</FlowAcc>
</TIN_refine></code></pre>
</p>
<p2>
This elements defines the Triangular Irregular Network (TIN) .
The TIN is used to compute the flow surface evolution and is
automatically generated during simulation to ensure better resolution
calculation in places most subject to potential flow processes.<br>
<strong> <HighRes> element</strong>:
Highest resolution for the TIN in metres.
The value should be equal or higher than the stratigraphic grid
spacing defined above in parameter <GridSpace>. In addition this
value needs to be a multiple of the grid spacing.
<br>
<strong> <LowRes> element</strong>:
Lowest resolution for the TIN in metres.
The value should be equal or higher than the highest resolution
defined above in parameter <HighRes >. In addition this
value needs to be a multiple of the grid spacing.
<br>
<strong> <StepFill> element</strong>:
Parameter used to fill all of the depressions on the stratigraphic
grid topography and to remove the flat and hole areas. This is a
pre-processing step used to ensure continuous flow from each grid
cell. This parameter is an incremental step used during the depression
filling process and is expressed in metres. <br>
<i>Note: in case the depression filling algorithm is not required for
your simulation set the value to 0.0.
<br>
Ref: Planchon, O., and F., Darboux (2001). A fast, simple and versatile
algorithm to fill the depressions of digital elevation models.
Catena, 46, 159–176.
</i>
<br>
<strong> <FlowAcc> element</strong>:
Flow accumulation operation performs a cumulative count of the number
of pixels that naturally drain into outlets. This operation is performed
several time during the simulation to adjust and adapt the TIN grid
resolution depending on the areas of highest flow accumulation values.
This parameter sets the minimum flow accumulation value over which the
high resolution (parameter <HighRes> defined above) is used to generate
the TIN resolution. For areas with flow accumulation values below this
parameter the <LowRes> parameter is used.
<br>
<i>Note: the minimum value for the flow accumulation is 1. </i>
</p2>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><Boundary> element definitions</h3>
<br>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre><code> <Boundary>
<North>2</North>
<South>0</South>
<East>0</East>
<West>0</West>
</Boundary></code></pre>
</p>
<p2>
This element specifies the model boundary types for the stratigraphic grid along all sides (North, South, East & West). For each border the following values could be set:<br>
○ 0 for infinite flat boundary, <br>
○ 1 to insert a wall and prevent sediment transfer and fluid loss outside the simulated domain,<br>
○ 2 for extended slope.
</p2>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><Restart> element definitions - This is an optional element</h3>
<br>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre><code> <Restart>
<RestartFolder>path/to/previous/output/Folder</RestartFolder>
<RestartIt>40</RestartIt>
<ProcNb>2</ProcNb>
</Restart>
</struct-Mesh-TIN></code></pre>
</p>
<p2>
It controls of the restart functionality. Model can be set
to restart from a previous simulation step.
<br><i>
Note: This element is optional and only required to perform
a simulation based on a previously simulation. </i>
<br>
<strong> <RestartFolder> element</strong>:
Name of the output folder from the previous run.
<br>
<i>
Note: it corresponds to the <OutputDirectory> parameter defined
in the previous XmL input file that needs to be restarted.</i>
<br>
<strong> <RestartIt> element</strong>:
The restart iteration number is informing the code on which file ID needs
to be ran from the previous simulations. Depending on how the <CheckPointing>
parameters were set (if set) the software is outputting a series of checkpointing
files at given time steps (See <CheckPointing> parameter for additional definition).
These files are located in the runfiles directory under the folder specified in the
<RestartFolder> element above and are named <i>checkpoint.<RestartIt>.pID.h5</i> where
<RestartIt> corresponds to a given <LayerTime> iteration number and pID to a given
processor ID number
<br>
<i>
Note: You will need to ensure that the restart iteration number corresponds to the
<startTime> value of the simulation that you are currently defining.
<br>
Note: In case you did not set the <CheckPointing> parameter in the previous simulation
the code is generating the check pointing files just for the end of your previous run
which means that you should have only one <RestartIt> number and that the new simulation
<startTime> parameter will be equal to the <endTime> parameter of the previous one. </i>
<br>
<strong> <ProcNb> element</strong>:
Number of processors used in the last simulation. This number could be retrieved by
looking at the check pointing files located in the runfiles directory under the folder
specified in the <RestartFolder< element above. The number will be equal to the biggest
ID of the <i>checkpoint.<RestartIt>.pID.h5</i> file names plus 1.
</p2>
</div>
</div>
</div>
<div class="col-lg-12 text-center">
<hr class="star-primary">
</div>
</section>
<section id="time">
<div class="container">
<div class="row">
<div class="col-lg-12">
<br><h2>Time Parameters</h2>
</div>
</div>
<div class="row">
<div class="col-lg-12 text-left">
<p><br>
The second structure defines simulation and processes time steps. <br><b>Most of the elements within
this structure are required.</b>
</p>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><Time> element definitions</h3>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre ><code> <struct-time>
<Time>
<startTime unit="a">-120000</startTime>
<endTime unit="a">-110000</endTime>
<layerTime unit="a">1000</layerTime>
<outputTime unit="a">2000</outputTime>
<riverInterval unit="a">250</riverInterval>
<rainInterval unit="a">500</rainInterval>
<SlopeInterval unit="a">250</SlopeInterval>
<samplingInterval unit="a">250</samplingInterval>
</Time></code></pre>
</p>
<p2>
It declares general time controlling parameters.<br>
<strong> <startTime> element</strong>:
Declaration of simulation starting time in years.
<br>
<i>
Note: the start time parameter accepts both positive and
negative value to represent time before present.</i>
<br>
<strong> <endTime> element</strong>:
Declaration of simulation ending time in years. Obviously, this
value needs to be greater than the starting time one.
<br>
<i>
Note: the end time parameter accepts both positive and
negative value to represent time before present.</i>
<br>
<strong> <layerTime> element</strong>:
Sedimentary layers are recorded through time and each layer
corresponds to a specific time interval. This time interval
is expressed in years.
<br>
<i>
Note: The smaller the layer time, the higher the temporal resolution
of the sedimentary record will be. However it will also impact the
simulation computational time so compromise needs to be made.</i>
<br>
<strong> <outputTime> element</strong>:
Time at which a new output is generated. The value should be at least
equal to the layer time interval and could be set as a multiple of this
parameter. In case of simulation creating large output files it is recommend
to set this value to 4 or 5 times the <layerTime> one.
<br>
<i>
Note: Consider increasing the output time interval to gain save some
computational time and space on your remote or local machine.</i>
<br>
<strong> <riverInterval> element</strong>:
Flow time sampling interval expressed in years. It controls how often
flow walkers are released from their sources. The sources are defined in
the <Sources> element and correspond to rivers or gravity currents flowing
within the simulation domain.
<br>
<i>
Note: The value should be a factor of the layer time interval.
In case the simulation has no sources declared set this value to a large number.</i>
<br>
<strong> <rainInterval> element</strong>:
Rain time sampling interval expressed in years. It controls how often
flow walkers are released from rainfall grid. The rainfall is defined in
the <RainfallGrid> element.
<br>
<i>
Note: The value should be a factor of the layer time interval.
In case the simulation has no rain declared set this value to a large number.</i>
<br>
<strong> <SlopeInterval> element</strong>:
Slope diffusion time sampling interval expressed in years. It controls how
often slope diffusion algorithm is used to smooth top layer newly deposited
sediments.
<br>
<i>
Note: The value should be a factor of the layer time interval.</i>
<br>
<strong> <samplingInterval> element</strong>:
The sampling interval is expressed in years and controls how
often sea level fluctuations, displacements are updated within the simulation.
<br>
<i>
Note: The value should be a factor of the layer time interval.</i>
</p2>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><CheckPointing> element definitions - This is an optional element</h3>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre ><code> <CheckPointing>
<Frequency>10</Frequency>
</CheckPointing>
</struct-time></code></pre>
</p>
<p2>
The software is not able to restart a simulation from a given time step using the
output files generated. To make it possible the <CheckPointing> element needs to be
set. This element enable the creation of a series of restarting files located in the
runfiles directory under the folder specified in the <OutputDirectory> element. These
files are named <i>checkpoint.tID.pID.h5</i> where tID corresponds to a particular time
iteration step and pID to a given processor ID number.
<br>
<i>Note: This element is optional.<br>
Note: By default the code is going to generate a checkpoint file at the end of the
simulation.</i>
<br>
<strong> <Frequency> element</strong>:
Frequency at which check pointing is performed. This integer is directly linked to the
layer time interval element and corresponding simulation time for a given checkpoint file
is retrieved by multiplying the frequency ID number (defined as tID in explanation above)
by the layer time interval and by adding the simulation starting time.
</p2>
</div>
</div>
</div>
<div class="col-lg-12 text-center">
<hr class="star-primary">
</div>
</section>
<section id="ocean">
<div class="container">
<div class="row">
<div class="col-lg-12">
<br><h2>Ocean & Geodynamic Structures</h2>
<br>
<p>
Follows two optional structures which define ocean and geodynamic processes. <br><b>Most of the elements within
these structures are optional.</b></p>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><struct-ocean> structure definitions</h3><br>
<p><struct-ocean> defines ocean characteristics
and hemipelagic processes.</p>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre ><code> <struct-ocean>
<SeaLevelFluctuations>
<SeaLevelFile>data/sealevel.sl</SeaLevelFile>
</SeaLevelFluctuations>
<HemipelagicRates>
<HemipelagicFile>data/hemipelagic.rates</HemipelagicFile>
</HemipelagicRates>
<WaterDensities>
<enteringFluid unit="kg/m3">1.000E3</enteringFluid>
<seaDensity unit="kg/m3">1.027E3</seaDensity>
</WaterDensities>
</struct-ocean></code></pre>
</p>
<p2>
<strong> <SeaLevelFluctuations> element</strong>:
Declaration of the sea-level fluctuations.<br>
<i>Note: This element is optional.<br></i>
<strong> <SeaLevelFile> element</strong>:
Name of the sea-level fluctuations file and its associated path.
The path is from the main input file location.
This ASCII file provides for each line the following information:<br>
○ time in years,<br>
○ sea-level elevation for the considered time in metres.<br>
In addition the defined fluctuation times should be set in increasing
order starting from the oldest time.
<br>
<strong> <HemipelagicRates> element</strong>:
Sedimentation rates of hemipelagic particles.<br>
<i>Note: This element is optional.<br></i>
<strong> <HemipelagicFile> element</strong>:
Name of the hemipelagic rates file and its associated path.
The path is from the main input file location.
This ASCII file provides for each line the following information:
<br>
○ contour elevation in metres relative to sea-level elevation (should be negative),<br>
○ hemipelagic rates in metres per year for the considered contour line.<br>
<i>Note: To work correctly an hemipelagic material type is required in
the <Material> element with the following Material named <i>Hemi</i>.<br></i>
<strong> <HemipelagicRates> element</strong>:
Sedimentation rates of hemipelagic particles.<br>
<i>Note: This element is optional.<br></i>
<strong> <WaterDensities> element</strong>:
Water densities declaration.<br>
<i>Note: This element is required.<br></i>
<strong> <enteringFluid> element</strong>:
Density of fresh water entering the system in kg/m3.
This is the density of rivers and rain particles.
<br>
<strong> <seaDensity> element</strong>:
Sea water density in kg/m3.
</p2>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><struct-geodyn> structure definitions</h3><br>
<p><struct-geodyn> defines the vertical displacement rates.<br>
<i>Note: This structure is optional.<br></i></p>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre ><code> <struct-geodyn>
<Displacement>
<nbDispInterval>1</nbDispInterval>
<disp>
<startDispTime unit="a">-163000000</startDispTime>
<endDispTime unit="a">-150000001</endDispTime>
<dispFile>data/tectonic.disp</dispFile>
</disp>
</Displacement>
</struct-geodyn></code></pre>
</p>
<p2>
<strong> <Displacement> element</strong>:
Definition of the vertical displacement fields within
simulated spatial and temporal domain. <br>
<strong> <nbDispInterval> element</strong>:
Total number of displacement intervals that will be simulated.
The displacement intervals need to be declared by increasing
time and should not overlap with each others.
<br>
<i>Note: this is not required to have the displacement start and end times
continuous between each others or within the range of the sampling interval
values.<br></i>
<strong> <disp> element</strong>:
Definition of an individual displacement field.<br>
<strong> <startDispTime> element</strong>:
Time in years at which the considered vertical displacement
will start.<br>
<strong> <endDispTime> element</strong>:
Time in years at which the considered vertical displacement
will end.<br>
<strong> <dispFile> element</strong>:
Name of the displacement file and its associated path.
The path is from the main input file location.
This ASCII file provides for each line the following information:<br>
○ The node ID (which should match with one defined in the basement grid <StrataGrid>),<br>
○ cumulative vertical displacement for each considered node in metres.<br>
<i>Attention: the file defines the cumulative displacement during the duration defined
above and not a displacement rate.<br></i>
<i>Note: the nodes have been defined in increasing order starting from the Sout-West
corner and going first along the X axis (West to East).<br></i>
</p2>
</div>
</div>
</div>
<div class="col-lg-12 text-center">
<hr class="star-primary">
</div>
</section>
<section id="sed">
<div class="container">
<div class="row">
<div class="col-lg-12">
<br><h2>Sediments Properties</h2>
<p><br>The next structure defines sediment types and characteristics
as well as initial deposit layer composition. <br><b>All of the elements within
these structures are required.</b></p>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><struct-sediments> structure definitions</h3>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre ><code> <struct-sediments>
<Materials>
<NbSiliciclastics>1</NbSiliciclastics>
<NbCarbonates>1</NbCarbonates>
<NbOrganics>1</NbOrganics>
<MinSlope>0.00001</MinSlope>
<si>
<MaterialName>slop_grav</MaterialName>
<Diameter unit="mm">0.5</Diameter>
<Density unit="kg/m3">2620.0</Density>
<SlopeMarine>0.007</SlopeMarine>
<SlopeAerial>0.00016</SlopeAerial>
</si>
<carb>
<MaterialName>car_grav</MaterialName>
<Diameter unit="mm">0.5</Diameter>
<Density unit="kg/m3">2600.0</Density>
<SlopeMarine>0.0141</SlopeMarine>
<SlopeAerial>0.002</SlopeAerial>
</carb>
<org>
<MaterialName>org_coal</MaterialName>
<Diameter unit="mm">0.05</Diameter>
<Density unit="kg/m3">2400.0</Density>
<SlopeMarine>0.05</SlopeMarine>
<SlopeAerial>0.002</SlopeAerial>
</org>
</Materials></code></pre>
</p>
<p2>
<strong> <Materials> element</strong>:
Declaration of material classes present in the simulated domain.
The definition of the material classes starts with the declaration of the
siliciclastics, then the carbonates and finally the organics. <br>
<i>
Note: The total number of materials is equal to the sum of siliciclastics, carbonates
and organics. It is not required to set some materials for each type but it is
required to have at least one material defined. <br>
Note: The total number of materials is set to 10 in the default version of LECODE.
If the simulation requires more grain sizes you will need to change the default
value (called max_grn) within LECODE and recompile it. <br>
Note: Each 3 types of materials needs to be organise by decreasing diameter size. </i><br>
<strong> <NbSiliciclastics> element</strong>:
Number of siliclastics defined for this simulation.
<br>
<strong> <NbCarbonates> element</strong>:
Number of carbonates defined for this simulation.
<br>
<strong> <NbOrganics> element</strong>:
Number of organics defined for this simulation.
<br>
<strong> <MinSlope> element</strong>:
Minimum slope of deposited sediment taken into account for slope diffusion
calculation. Below this threshold value, slope diffusion is not computed.<br>
<strong> <si> element</strong>:
Collection of siliciclastics classes. <br><i>
Note: it is possible to defined two classes with the same parameters as long
as they have a different name. This could be useful when looking at
provenance problems.
<br>
Note: This element is optional.</i><br>
<strong> <carb> element</strong>:
Collection of carbonates classes.
<br><i>
Note: it is possible to defined two classes with the same parameters as long
as they have a different name. This could be useful when looking at
provenance problems.
<br>
Note: This element is optional.</i><br>
<strong> <org> element</strong>:
Collection of organic classes. <br><i>
Note: it is possible to defined two classes with the same parameters as long
as they have a different name. This could be useful when looking at
provenance problems.
<br>
Note: This element is optional.</i><br>
<strong> <MaterialName> element</strong>:
Name of the considered sediment class.<br>
<i>
Note: chosen names are not predefined and could be anything but should differ
between each class.
<br>
Note: in case the <HemipelagicRates> element has been set, it is required for
one of the sediment class to have its name set to <strong>Hemi</strong>. <br></i>
<strong> <Diameter> element</strong>:
Grain size diameter of the considered sediment class in millimetres.
<br>
<strong> <Density> element</strong>:
Density of the considered sediment class in kg/m3.
<br>
<strong> <SlopeMarine> element</strong>: Angle of repose of the sediment siliciclastic class when deposited in
marine environment. This angle is used during the diffusion process to
define the stability of the newly deposited sediments.
<br>
<strong> <SlopeAerial> element</strong>: Angle of repose of the considered sediment class when deposited in
above sea level. This angle is used during the diffusion process to
define the stability of the newly deposited sediments.
<br>
</p2>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><Init_deposit> structure definitions</h3>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre><code> <Init_deposit>
<LayersNb>1</LayersNb>
<dep>
<FileName>data/gbr_N.dep</FileName>
</dep>
</Init_deposit>
</struct-sediments></code></pre>
</p>
<p2>
<strong> <Init_deposit> element</strong>:
Declaration of initial deposit layers prior to the simulation starting time.
This element allows the user to start with a predefined sediment architecture.
This architecture could be composed of several layers with various thicknesses
throughout the spatial area making it possible to set up initially complex
geometries. <br><i>
Note: if your simulation starts without any predefined sedimentary layers, you will
not be able to erode the basement and it is in any case required to set up a initial
layer of null thicknesses.<br>
Note: in case of a restarted simulation the initial deposition layer declaration
should not be changed from the original definition. </i>
<br>
<strong> <LayersNb> element</strong>: Number of initial deposit layers defined.
<br>
<strong> <dep> element</strong>: Declaration of a specific sedimentary layers.
<br><i>
Note: the layers will be arranged one over the other based on how they were
declared. Which means that the first <dep> layer will be the bottom one
and the last one the top one.
<br>
Note: the layer will add up to each others starting from the basement topography
defined in the <StrataGrid> element.<br></i>
<strong> <FileName> element</strong>:
Name of a specific deposit layer file and its path.
The path is from the main input file location.
This ASCII file provides for each line the following information:
<br>
○ node IDs,<br>
○ thickness of first defined material classes on this node in metres,<br>
○ thickness of second defined material classes on this node in metres,<br>
○ : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : :<br>
○ : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : :<br>
○ thickness of last defined material classes on this node in metres,<br>
○ sedimentary layer hardness.
<br><i>
Note: the hardness of a given sedimentary layer is a parameter (always positive)
which defines how easy a specific layer can be eroded. A value of 1 or below
means that the layer erodibility is high for this node whereas a value of 10
or above will means that the layer erodibility is low and can be seen as a
cemented rock.
<br>
Note: In case a particular sediment is not present its thickness needs to be set
to 0.0.
<br>
Note: the nodes have been defined in increasing order starting from the Sout-West
corner and going first along the X axis (West to East)
<br>
Attention: this is a requirement to defined the various sediment class thicknesses
by following the same order as the one used in the definition of the different
materials. If not the initial sedimentary layers will not be set properly.
<br></i><br>
</p2>
</div>
</div>
</div>
<div class="col-lg-12 text-center">
<hr class="star-primary">
</div>
</section>
<section id="proc">
<div class="container">
<div class="row">
<div class="col-lg-12">
<br><h2>Processes definition</h2>
<br>
<p>Follow several structures used to define the forcing processes such as rivers, rain,
mass movements required to move sediments around and build
up the sedimentary architectures. <br><b>Most of the elements within
these structures are optional.</b>
</p>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><StreamClass> structure definitions</h3>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre ><code> <struct-processes>
<StreamClass>
<NbClass>2</NbClass>
<cl>
<BedSlope>0.0</BedSlope>
<WDRatio>30</WDRatio>
</cl>
<cl>
<BedSlope>0.2</BedSlope>
<WDRatio>10</WDRatio>
</cl>
</StreamClass></code></pre>
</p>
<p2> <strong> <StreamClass> element</strong>: For each flow walker, the continuity equation is solved
using a semi-empirical technique based on stream classification
approach (Rosgen, 2003). <br>
Definition of the stream parameters is dependent of the type of
simulation which is set. The classification sets the width to depth
ratio based on specific slope angles. <br>
<strong> <NbClass> element</strong>: Total number of stream classes required to define river
characteristics over the simulated area.<br><i>
Note: the element variable should be equal or greater
than 2.</i><br>
<strong> <cl> element</strong>: Parameters collection for the considered stream class.
<br><i>
Note: the number of classes needs to be equal to the number given
in the <NbClass> element. </i><br>
<strong> <BedSlope> element</strong>: Value of the local topographic slope (dz/dx).<br>
<strong> <WDRatio> element</strong>: Width to depth ratio for the considered slope.
</p2>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<h3><Sources> structure definitions</h3>
</div>
</div>
<div class="row">
<div class="col-xs-10 col-xs-offset-1">
<p>
<pre ><code> <Sources>
<totalSourcesNb>1</totalSourcesNb>
<maxDepth unit="m">6</maxDepth>
<sourceVal>
<ts unit="a">-128000</ts>
<te unit="a">10000</te>
<recurencePerc>75.0</recurencePerc>
<x unit="m">310709.3</x>
<y unit="m">8325284.0</y>
<xRange unit="m">55</xRange>
<yRange unit="m">32</yRange>
<streamDepth unit="m">6</streamDepth>
<Vx unit="m/s">2.0</Vx>
<Vy unit="m/s">2.0</Vy>
<Q unit="m3/s">100</Q>
<Qs unit="Mt/a">0.07</Qs>