-
Notifications
You must be signed in to change notification settings - Fork 0
/
airfoil.f
163 lines (154 loc) · 5.14 KB
/
airfoil.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
PROGRAM AIRFOIL
PARAMETER ( M = 12 )
DIMENSION XB(M+1),YB(M+1),X(M),Y(M),S(M),SINE(M),COSINE(M),
* THETA(M) ,V(M) ,CP(M), GAMA(M+1) ,RHS(M+1) ,CN1(M,M),
* CN2(M,M), CT1(M,M) ,CT2(M,M) ,AN(M+1,M+1) ,AT(M,M+1),
* CN11(M)
DATA XB
* /1.,.933,.750,.500,.250,.067,.0,.067,.25,.500,.750,.933, 1.0/
DATA YB
* /.0,-.005,-.017,-.033,-.042,-.033,.0,.045,.076,.072,.044,.013,0./
MP1 = M+1
PI = 4.0 * ATAN(1.0)
ALPHA = 8. * PI/180.
! C COORDINATES (X, Y) OF CONTROL POIN'!' PANEL LENGTH S ARE
! C COMPUTED FOR EACH OF THE VORTEX PANEL,. RHS REPRESEN'l'S
! C THE RIGHT-HAND SIDE OF EQ. (5.47).
DO I = 1, M
IP1 = I + 1
X(I) = 0.5*(XB(I)+XB(IP1))
Y(I) = 0.5*(YB(I)+YB(IP1))
S(I) = SQRT( (XB(IP1)-XB(I))**2 + (YB(IP1)-YB(I))**2)
THETA(I) = ATAN2( (YB(IP1)-YB(I)), (XB(IP1)-XB(I)) )
SINE(I) = SIN( THETA (I) )
COSINE(I) = COS( THETA (I) )
RHS(I) = SIN( THETA(I)-ALPHA )
END DO
DO I = 1, M
DO J = 1, M
IF ( I .EQ. J ) THEN
CN1(I,J) = -1.0
CN2(I,J) = 1.0
CT1(I,J) = 0.5*PI
CT2(I,J) = 0.5*PI
ELSE
A = -(X(I)-XB(J))*COSINE(J) - (Y(I)-YB(J))*SINE(J)
B = (X(I)-XB(J))**2 + (Y(I)-YB(J))**2
C = SIN( THETA(I)-THETA(J) )
D = COS ( THETA(I)-THETA(J) )
E = (X(I)-XB(J))*SINE(J) - (Y(I)-YB(J))*COSINE(J)
floatInp = (1. + S(J)*(S(J)+2.*A)/B)
F = ALOG( 1.0 + S(J)*(S(J)+2.*A)/B )
G = ATAN2( E*S(J), B+A*S(J) )
P = (X(I)-XB(J)) * SIN( THETA(I)-2.*THETA(J) )
* + (Y(I)-YB(J)) * COS( THETA(I)-2.*THETA(J) )
Q = (X(I)-XB(J)) * COS( THETA(I)-2.*THETA(J) )
* - (Y(I)-YB(J)) * SIN( THETA(I)-2.*THETA(J) )
CN2(I,J) = D + .5*Q*F/S(J) - (A*C+D*E)*G/S(J)
CN1(I,J) = .5*D*F + C*G - CN2(I,J)
CT2(I,J) = C + .5*P*F/S(J) + (A*D-C*E)*G/S(J)
CT1(I,J) = .5*C*F - D*G - CT2(I,J)
! For debugging purposes
! write(*, *) 'ID: ', I, J
! WRITE( *, * ) A, B, C, D, E, F, G, P, Q
! write(*, *) 'CN2 result: ', CN2(I,J)
! write(*, *) 'CN1 result: ', CN1(I,J)
! write(*, *) 'CT2 result: ', CT2(I,J)
! write(*, *) 'CT1 result: ', CT1(I,J)
END IF
END DO
END DO
C COMPUTE INFLUENCE COEFFICIENTS IN EQS.(s.47) AND (5.49),
C RESPECTIVELY.
DO I = 1, M
AN(I,1) = CN1(I,1)
AN(I,MP1) = CN2(I,M)
AT(I,1) = CT1(I,1)
AT(I,MP1) = CT2(I,M)
DO J = 2, M
AN(I,J) = CN1(I,J) + CN2(I,J-1)
AT(I,J) = CT1(I,J) + CT2(I,J-1)
END DO
END DO
AN(MP1,1) = 1.0
AN(MP1,MP1) = 1.0
DO J = 2, M
AN(MP1,J) = 0.0
END DO
RHS(MP1) = 0.0
C SOLVE EQ. (5.47) FOR DIMENSIONLESS STRENGTHS GAMA USING
C CRAMER'S RULE. THEN COMPUTE AND PRINT DIMENSIONLESS
C VELOCITY AND PRESSURE COEFFICIENT AT CONTROL POINTS.
WRITE (6,6)
6 FORMAT(1H1///11X,1HI,4X,4HX(I),4X,4HY(I),4X,8HTHETA(I),
* 3X,4HS(I),3X,7HGAMA(I),3X,4HV(I),6X,5HCP(I)/
* 10X,3H---,3X,4H----,4X,4H----,4X,8H--------,
* 3X,4H----,3X,7H-------,3X,4H----,6X,5H-----)
CALL CRAMER ( AN, RHS, GAMA, MP1 )
DO I = 1, M
V(I) = COS( THETA(I)-ALPHA )
DO J = 1, MP1
V(I) = V(I) + AT(I,J)*GAMA(J)
CP(I) = 1.0 - V(I)**2
END DO
WRITE(6,9) I,X(I),Y(I),THETA(I),S(I),GAMA(I),V(I),CP(I)
END DO
9 FORMAT(10X,I2,F8.4,F9.4,F10.4,F8.4,2F9.4,F10.4)
WRITE(6,10) MP1,GAMA(MP1)
10 FORMAT(10X,I2,35X,F9.4)
STOP
END
SUBROUTINE CRAMER( C, A, X, N )
C THIS SUBROUTINE SOLVES A SET OF ALGEBRAIC EQUATIONS
C C(I,J)*X(J) = A(I), I=1,2,---,N
C IT IS TAKEN FROM P.114 OF CHOW(1979)
PARAMETER ( M = 12 )
DIMENSION C(M+1,M+1),CC(M+1,M+1),A(M+1),X(M+1)
DENOM = DETERM( C, N )
write (*,*), C
DO K = 1, N
DO I = 1, N
DO J = 1, N
CC(I,J) = C(I,J)
END DO
END DO
DO I = 1, N
CC(I,K) = A(I)
END DO
PUNOM = DETERM( CC, N )
X(K) = DETERM( CC, N ) / DENOM
! Debugging
! write (*, *) "Denominator", DENOM
! write (*, *) "Numerator", PUNOM
! write (*, *) "GAMMA", X(K)
END DO
RETURN
END
FUNCTION DETERM ( ARRAY, N )
C DETERM IS THE VALUE OF THE DETERMINANT OF AN N*N
C MATRIX CALLED ARRAY, COMPUTED BY THE TECHNIQUE
C OF PIVOTAL CONDENSATION. THIS FUNCTION IS TAKEN
C FROM PP.113-114 OF CHOW(1979)
PARAMETER ( M = 12 )
DIMENSION ARRAY(M+1,M+1),A(M+1,M+1)
DO I = 1, N
DO J = 1, N
A(I,J) = ARRAY(I,J)
END DO
END DO
L = 1
1 K = L + 1
DO I = K, N
RATIO = A(I,L)/A(L,L)
DO J = K, N
A(I,J) = A(I,J) - A(L,J)*RATIO
END DO
END DO
L = L + 1
IF( L .LT. N ) GO TO 1
DETERM =1.
DO L = 1, N
DETERM = DETERM * A(L,L)
END DO
RETURN
END