diff --git a/src/ConservationLaws/burgers.jl b/src/ConservationLaws/burgers.jl index afd47bc5..5246e66c 100644 --- a/src/ConservationLaws/burgers.jl +++ b/src/ConservationLaws/burgers.jl @@ -3,7 +3,7 @@ Define an inviscid Burgers' equation of the form ```math -\partial_t U(\bm{x},t) + \bm{\nabla} \cdot \big(\tfrac{1}{2}\bm{a} U(\bm{x},t)^2 \big) = 0, +\partial_t U(\bm{x},t) + \bm{\nabla}_{\bm{x}} \cdot \big(\tfrac{1}{2}\bm{a} U(\bm{x},t)^2 \big) = 0, ``` where $\bm{a} \in \R^d$. A specialized constructor `InviscidBurgersEquation()` is provided for the one-dimensional case with `a = (1.0,)`. """ @@ -19,12 +19,12 @@ struct InviscidBurgersEquation{d} <: AbstractConservationLaw{d, FirstOrder, 1} end end -@doc raw"""x +@doc raw""" ViscousBurgersEquation(a::NTuple{d,Float64}, b::Float64) where {d} Define a viscous Burgers' equation of the form ```math -\partial_t U(\bm{x},t) + \bm{\nabla} \cdot \big(\tfrac{1}{2}\bm{a} U(\bm{x},t)^2 - b \bm{\nabla} U(\bm{x},t)\big) = 0, +\partial_t U(\bm{x},t) + \bm{\nabla}_{\bm{x}} \cdot \big(\tfrac{1}{2}\bm{a} U(\bm{x},t)^2 - b \bm{\nabla} U(\bm{x},t)\big) = 0, ``` where $\bm{a} \in \R^d$ and $b \in \R^+$. A specialized constructor `ViscousBurgersEquation(b::Float64)` is provided for the one-dimensional case with `a = (1.0,)`. """ diff --git a/src/ConservationLaws/linear_advection_diffusion.jl b/src/ConservationLaws/linear_advection_diffusion.jl index 6cddb03b..327d8818 100644 --- a/src/ConservationLaws/linear_advection_diffusion.jl +++ b/src/ConservationLaws/linear_advection_diffusion.jl @@ -3,7 +3,7 @@ Define a linear advection equation of the form ```math -\partial_t U(\bm{x},t) + \bm{\nabla} \cdot \big( \bm{a} U(\bm{x},t) \big) = 0, +\partial_t U(\bm{x},t) + \bm{\nabla}_{\bm{x}} \cdot \big( \bm{a} U(\bm{x},t) \big) = 0, ``` with a constant advection velocity $\bm{a} \in \R^d$. A specialized constructor `LinearAdvectionEquation(a::Float64)` is provided for the one-dimensional case. """ @@ -23,7 +23,7 @@ end Define a linear advection-diffusion equation of the form ```math -\partial_t U(\bm{x},t) + \bm{\nabla} \cdot \big( \bm{a} U(\bm{x},t) - b \bm{\nabla} U(\bm{x},t)\big) = 0, +\partial_t U(\bm{x},t) + \bm{\nabla}_{\bm{x}} \cdot \big( \bm{a} U(\bm{x},t) - b \bm{\nabla} U(\bm{x},t)\big) = 0, ``` with a constant advection velocity $\bm{a} \in \R^d$ and diffusion coefficient $b \in \R^+$. A specialized constructor `LinearAdvectionDiffusionEquation(a::Float64, b::Float64)` is provided for the one-dimensional case. """