diff --git a/Project.toml b/Project.toml index 47026efa..002ff480 100644 --- a/Project.toml +++ b/Project.toml @@ -1,10 +1,9 @@ name = "StableSpectralElements" uuid = "fb992021-99c7-4c2d-a14b-5e48ac4045b2" authors = ["Tristan Montoya "] -version = "0.2.6" +version = "0.2.7" [deps] -Arpack = "7d9fca2a-8960-54d3-9f78-7d1dccf2cb97" BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" DiffEqCallbacks = "459566f4-90b8-5000-8ac3-15dfb0a30def" Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" @@ -41,7 +40,6 @@ Triangulate = "f7e6ffb2-c36d-4f8f-a77e-16e897189344" WriteVTK = "64499a7a-5c06-52f2-abe2-ccb03c286192" [compat] -Arpack = "0.5" BenchmarkTools = "1" DiffEqCallbacks = "2" Documenter = "0.27" @@ -69,4 +67,4 @@ TetGen = "1" TimerOutputs = "0.5" Triangulate = "2" WriteVTK = "1" -julia = "1.8" \ No newline at end of file +julia = "1.8" diff --git a/examples/euler_1d_gauss_collocation.ipynb b/examples/euler_1d_gauss_collocation.ipynb index 0aa7e2cf..68887473 100644 --- a/examples/euler_1d_gauss_collocation.ipynb +++ b/examples/euler_1d_gauss_collocation.ipynb @@ -12,13 +12,21 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 1, "id": "8e08c28f", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36m\u001b[1m[ \u001b[22m\u001b[39m\u001b[36m\u001b[1mInfo: \u001b[22m\u001b[39mPrecompiling StableSpectralElements [fb992021-99c7-4c2d-a14b-5e48ac4045b2]\n" + ] + } + ], "source": [ "using StableSpectralElements, OrdinaryDiffEq\n", - "using TimerOutputs, Plots, Printf" + "using TimerOutputs, Plots, Printf, StaticArrays" ] }, { @@ -47,15 +55,33 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 2, "id": "d9b54e91", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "exact_sol (generic function with 1 method)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "T = 2.0\n", "L = 2.0\n", "conservation_law = EulerEquations{1}(1.4)\n", - "exact_sol = EulerPeriodicTest(conservation_law);" + "\n", + "function exact_sol(x,t)\n", + " γ = 1.4\n", + " ρ = 1.0 + 0.2sin(π*x)\n", + " v = 1.0\n", + " E = 1.0/(γ-1) + 0.5*ρ\n", + " return SVector{3}(ρ, ρ*v, E)\n", + "end" ] }, { @@ -68,10 +94,10 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 3, "id": "46b241d2", "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [], "source": [ @@ -90,9 +116,8 @@ "ode = semidiscretize(conservation_law, spatial_discretization, exact_sol, \n", " form, (0.0, T), ReferenceOperator())\n", "\n", - "results_path = save_project(conservation_law,\n", - " spatial_discretization, exact_sol, form, (0.0, T),\n", - " \"results/euler_1d/\", overwrite=true, clear=true)\n", + "results_path = save_project(conservation_law, spatial_discretization, exact_sol, form, \n", + " (0.0, T), \"results/euler_1d/\", overwrite=true, clear=true)\n", "\n", "dt=T/1000;" ] @@ -107,7 +132,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 4, "id": "13ddfd70", "metadata": { "scrolled": true @@ -120,11 +145,11 @@ "\u001b[0m\u001b[1m ────────────────────────────────────────────────────────────────────────────────\u001b[22m\n", "\u001b[0m\u001b[1m \u001b[22m Time Allocations \n", " ─────────────────────── ────────────────────────\n", - " Tot / % measured: 234ms / 84.3% 13.5MiB / 86.6% \n", + " Tot / % measured: 6.71s / 29.2% 0.99GiB / 36.2% \n", "\n", " Section ncalls time %tot avg alloc %tot avg\n", " ────────────────────────────────────────────────────────────────────────────────\n", - " semi-disc. residual 5.05k 197ms 100.0% 39.0μs 11.7MiB 100.0% 2.38KiB\n", + " semi-disc. residual 5.05k 1.96s 100.0% 387μs 367MiB 100.0% 74.4KiB\n", "\u001b[0m\u001b[1m ────────────────────────────────────────────────────────────────────────────────\u001b[22m\n" ] } @@ -147,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 5, "id": "ab9d5fb7", "metadata": {}, "outputs": [ @@ -156,7 +181,7 @@ "output_type": "stream", "text": [ "L2 error:\n", - "[3.5808560169673885e-5, 5.212982861269185e-5, 0.00012637647533981743]\n" + "[3.580856017198903e-5, 5.212982861193392e-5, 0.00012637647533692264]\n" ] } ], @@ -177,174 +202,166 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 6, "id": "198da88a", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydeVwU5RvAn9n7XlhuERBFFBRBxVvQLO8wNa88KrVMM7OfmplpmaaVWmbmbZ55kxeKd3KoeCGgiAqKgNywLOx9zczvj1mHYdkF5Fb3+/HjZ+add955ZneZZ97nfQ4Ex3GwYcOGDRs23lRoTS2ADRs2bNiw0ZTYFKENGzZs2HijsSlCGzZs2LDxRmNThDZs2LBh443Gpght2LBhw8YbjU0R2rBhw4aNNxqbIrRhw4YNG280NkVow4YNGzbeaGyK0IYNGzZsvNHYFKENGzZs2HijsSnCl+PChQvnzp2jtmAY1lTCEKAoahPgDRfgzSQvL2/NmjXUlib/ImwCYBjWtGk7cRyvhQA2Rfhy3LhxIy4ujtzFMEyj0TShPACgVqttArzhAryZZGZmHjt2jNrS5F+ETQCdTte0cwODwaDX61/2LJsitGHDRrPAaDSmpqYS20VFRffv31epVPfv329aqWy8CdgUoQ0bNpqepKSkn3/+efv27cTuzZs3p0+fPnLkyLKysqYVzMabAKOpBbDRUKBlUsBxup1jUwtiw0b1BAYG6nS6o0ePki3Xrl1jMplNKFIzB0eNCI0OCNLUgrwO2BTha4sm6aqxONdu9KymFsSGjdpw4cIFJpOp0+nCwsKaWpbGZsiQIWlpaVX3wXUaoDMQRoV3BRzHkSZVjU0uwCeffDJv3ryXPetNV4RxcXFOTk4+Pj4AcPHiRYVCIRAIRCJRz549m1q0uoLp1NyOr/xdNAtw3FD4nOni2dRyvA7ExcWpVCpqC4vFCg0NNevWr18/Pp9Po9EGDRrUvXt3FxeXRpSx6UlOTj569Oibdtd158CBAxkZGbU48Y1WhGfPng0PDx8/fjyhCO/du5eWlta+fftZs16HWZQy6jjvf380tRSvA0ZpvvTv5a6LdzS1IA0FiqIYhlmzQxoMBhqNRqfTaz6g0WhkMCo8W7RaLYfDAQAPDw8zpz6zngQbN2789NNPHRwc7O3t09LS3kCV4Onp6e7u3tRSvGI4Ojo+f/68Fie+0Ypw6NCh8fHx5G7r1q3nz5/fhPLUL85f/la8ZYnT7F/o9s5NLcurDcPB1WnmqqaWoqE4fvw4juMlJSUxMTHbtm0j1BXJ6tWr27Rpo9frURSdPHlytaOdPn367t27KSkphw4dIloePnx48ODB/v37x8bGfvnlly1btrR2rtFoNBgMxLZAIBCLxTiOl5aWdurUqQ73Z8NG9bzRitAMqVQaFRWVnp7u6en5zjvvNLU4dQLTqnAMFQ4Yg7A41fe2USWorEh164Jw4ASE/rr9vRQUFMycOTM9PZ3P52/duvXkyZPjx48nj964cSMvL2/hwoUA8Mknn3Tv3t3X17fqAbt37y4QCBISEsiWefPmHTx40M7OztPTc/78+Tt37rR44sOHD1NTU9u0aXPx4sWBAweOGzfu3LlzUqn0999/F4lE1i6HoqhMJiN3m3Z1ysary+v2h10ZlUq1f/9+s0ZfX9/+/fubNX7yyScA0Lt376CgoJSUlMYRr4HQJF3Tpyfbf/DSi8Y2KqOIOaGMOsbvOeT1c8F1cXGJiIjg8/k4jufn57dt25Z6NCIiglg1AIAWLVqcOXOGUITLly//9ttvCVMqjuOrVq36+uuvWSwWADg7Oz98+JAcQS6XJycn29nZAYCnp+epU6esSeLn5+fn50fuOjs7v/vuu1ULX1BQkJCQ0Lp1a7Jl+fLlU6dOrfHd1z8qlapelHHTJmd5pTEYDEqlkjQtAACHw7FofqfSZIpQq9WWlpa6urpWPqRWq+Pj49u0adOiRYtaj/b48eOSkpIePXrw+fwZM2ZUO4JGo5k4ceLx48dZLJZCoajhdZstnLZBLE9fXWqi6uYFyZSFlTtgaoXm/nV+j8GNL9srBz/4bX6PQa+fFiTo3r17UlLSv//++/3333fp0oV6KDMzk1SNAoEgKyuL2P7444/nzZu3du1aFov1448/jh49mtCClcnJyWGz2cQ28ZelVCoFAkG9SO7i4hIcHEzN9EQ4u9XL4LUDx/F6EcA2ta01TCZTIBCQv7oa0gQB9VKpdMOGDWPGjDl+/Hjlo8+fP1+4cGHHjh1jYmKoQUUvNdqKFStycnJatWo1f/58rVZr7VyDwSCVSgsKCnAc53A4EyZMAIC7d++OHj26VnfWnGAwmK5eDOeWdInlBUJcp9Gnv9qz3kaDJrTD9VpMJW9qQRoKLy+vvn37nj17ViqVUts1Gg2NZnpEMJlM0tuTMHIuWrRoyZIlo0ePrmINT6vVkiMAAIPBMHMZtWGjOdAEitDBwWHOnDmBgYEWj65evfqDDz6wt7efMGHC2rVrjUYjWDIUkOnsiNGCgoLIQ7m5uTdu3BgwYICbm1tQUNC2bdusSZKYmDh8+HA3N7fU1FQEQfr37x8ZGZmbm/vHH1adLVUqVXp6+qUX/Pfff4SEzY3izYuNhdl0O0fx8I8tdqDbO9t/8L/GFerVBMfzV32iuPKv9tGdphalQTAajXZ2doMGDeJwOD/++CP1kIODA2kdUSgU9vb25CEvLy8cx4uLi6n2zMpIJBJyBBRFNRoNdRAbNpoJzW6N8PLly//7n+kBzWAwEhISunXrlpubu379+l9++YV4u0xOTj516tTixYstjhAVFeXsbJoGOTk5HTt27Msvv7TYs1u3btRdFxeXYcOGVS1eXl7e1atXc3JyiF0Wi7V69WrqKkXjY3FZgh7UT8MWIEqlJmIHq/sgeqUYOMPju/obkbzJi+ruAFJf6yLNVAAc5/R/n9E+GOUJlUplTQRAEITP5zeUPPXKjh07tm3bduvWLQAQiUS5ubnUo0FBQXK5aR5cVlZG/r3gOL5s2bJp06bZ2dkRNlJrlih3d3fSDVUul/v5+VkzotqoC3K5/ODBg5GRke+99960adMAICkpadOmTSiKzpo1q2vXrrUe+dixY7/88kt4eLin5+scR9vsFGF+fj6PxyO2BQJBfn4+ALi7u0+fPn3BggWrV69+8uTJwYMHV6xYUcUI5GNIKBQSI9QXPj4+3t7e5IszUX2iaZ96FpclBIM/IDYwOweWUcup1EFl1KqzHvOZdBqvrksa9bUu0mwFEAydjOs0uNFA41u+SpN/ArWmU6dOU6ZMAQC9Xn/9+vW1a9cCwOrVq2Uy2c8//zx27NjZs2cDAIqiqamp5M9+yZIl48ePJyyiCxYsWLRo0dq1a4lAQ51O9/Tp04KCAqlU6uDgwGAwJk6ceP369d69e58/f/7zzz9vslt9rRGJRJ999llubu7ChQv79OnTrl27wMDAzz//XK1WW9OC4eHhY8aMqXbk0aNH79ixg+p78lrS7BQhEdtLbOM4Thoe27Vr9+mnn3755Zd2dnY//fQTdeHBDAzDqCO89l9hZXTpycrokw5TvwMA0dApFvvwewzi9xjUuHLVCWXsKRqHz+v2diNfV5N0Vff0PtPVy5D7zG7M7Ea+ekPTvXt3Fou1e/dutVq9Y8eO7t27A8AHH3yg0+kAwMnJacWKFREREQqF4q+//iKV/Zw5c0jHNC8vL6ptJjo6WigU/u9///vvv/9CQ0NdXFyWL18eERFx9uxZFotFqFUbDUS7du2WLl06adKkuLg4JpPJZrOtlSfUarXnzp2riSIEgDch42uzU4ROTk7UZQlHx3JXPaPRSKPRqq086ejomJSUZHGENwSEzmC3NS3BYiq54r+j4rDpZn3U8VfQ0iJu534MyauRs4MhcaaLnRr/ugiLw/Jqz/L0fV3zEgQFBVGX2AHAw8OD3G7Xrl27du3MTjFz9nZyKv9eBg0yf7ui0+kjR46sH1ltVMecOXNOnjy5Zs0as5WjCxcuyOXy4uLivn37enh4LFu27Pbt20ePHm3Xrl1lX6eDBw8iCEKn0zt16kR8+zk5OampqWlpaaNGjSJ+HufPn0dRNC0tbfTo0R4eHo8fP16/fv3gwYMRBNFqtTwej4h+yc7OjoyM5PP5LBaruLg4MDCwe/fuu3btcnV1ffbs2fTp05vJIkJzUYQymUwsFtNotJCQkJKSEqJRpVKR/tyPHj06ePDgn3/+mZaWtmDBgjVr1ljL+RQSEhIeHk5sS6XS3r17N4L8zQqWV3uWV3vTDp2hSbpaWRFqEmP1mY/odo6viiJktw/GFKWNf12OXzCxwXCy5buy0aiEXTBeK6g+oPD8EEY3J9MSNY1G27VrV3Bw8Lvvvksux16/fv2ff/7Zu3evwWB45513Ll++PHv27AcPHowdO7byaLt27crKyvrhhx8iIyMXL17877//AsCTJ0+mTZvGYDBWrVq1efPmvLy8RYsWJSQkFBYWjho16tq1a+3atevcufOOHTuOHTvGZDJ9fHwIRTh27Njw8HA3N7fAwMC4uDgGg/HNN9+EhoaGhYXFxsb+8MMPhDW+yWkCRajT6aKjo2/dupWenu7j4zNw4EAAeOedd5YuXTpy5Mivvvpq7969PXv2vHr16qhRo4j3hezs7D179qxcuZJGoxE20l9//ZV45SFHc3BwIEYjAhDT09M9PDwuX77866+/Nv49Ni2l4Rv5fd9lunoBAI3Dc12yq3If+0nzwWhAWNxGl66W5P/4IcPFw2l2Y3+bsqMbhG+PAwwr2b/Wee5vjXx1G28yRwYwtNXYvwAA7Cs6Knl5ef38888ffvjh3r17iZa///5bIpFcunQJAHAcz87OrmK0jRs3btmyBQAGDx5MziICAgIAwNXVtaCggNg4cuRIYmJiXl4emduTx+O1a9eOsKOy2Wy9Xs9isXJycpydnWk0mkKhwDCMzWbv2LGjb9++ly5dMhqN165de6kPpOFoAkXIYDB8fHy2bt1KbYyKiiJWIAIDA+fNm3fp0iU2m00uzrds2fLnn38mO1OTUBCjEd8cyebNm2/cuJGSkrJ27Vqq3eYNAS0rprHLNZz28V26SMJ0a0Xto3ucwPL2x2SFDBcP8/ObIRjK8vbnBjTB5B4tzqOx2EBjsDzbVt/bho36g8sAbq2e0J988smJEyeWL19OzBa0Wm1ISAiRNpL4/8mTJ0TPjIyMVq1aUc9VKpVEHhY6nU6kBAIA0iuYWJnKz8//5ptvFi5cOHToUGrSFmqiWqLnnDlz/vrrL7FYvGjRIpFIhKKoXq8fPHgw4RE5ZMiQ2txeA9AEipBOp1eONxAKheS2u7t7zdOuWxyNTqf36dOnLkK+0jhM/4G6q3+WAnS6mSKUHfpDNOxDfVaqZNKCRhWudtDoDlOX4GgThGw6zjKl27YbNbPxr27DRs2hOgZu3769Y8eOhCIcNWrUlStXPv74YwBITEz09vYWCARELFBiYqKZInz33Xdv3LhBLBtHR0f369evchj3jh07OnXq1LNnT41Go1arU1NTiT4WA77nzp1L+jbS6fSwsLBbt24RGS6J8evvA6g9TRBQb6NBQeUyxcVD1BbhgDGCkBFm3Rw/W8Hr0l8Q8mqUPNU+vKO8GpH/0zTcoK++d/2BymWKy6b0RtKdy3HjG+eBbOOVQC6Xr1y5cvv27WTRDzc3ty1bthBTtDFjxrRt23bz5s2RkZF5eXlisdjV1dXX13f//v3UGQjB8uXLnzx5snfv3hMnTnC53IsXLxYXF+/fv//Zs2f//PNPSUnJhQsXRowYkZ6efvr06cjIyEmTJp05c8ZgMFy+fDk5OTk+Pv7IkSMAsHHjRgzDjEZjv379Bg4c2K9fv/Xr1wPAli1bzpw5c/jw4RMnTjQfc11zcZaxUV8YC7P1WY+pLQiLo3twg9OBUqQXx2lcAY0vor8iT3ZjST4AcAN6NfZ1CzL1GaZEdJiyDDfqzQqC27DRHBCJRN999913331HbaT6wnz11Vdmp+zevdviUDwez8yBhXDjAACqvwW5APn+++8TG2Rdka5du44bNw4AYmJi7O3tY2NjAQDDsOnTp6enp7du3XrNmjUvdXeNgG1G+LrB9gmQfFQx5w6GSnetBIrVwpCfKd37M6qQFa4z//Nongj6vCvoG2Y3ehbCbNS8JGyfQPLDdPryNxqnWbh627DxSuDq6vr06VOiDrNKpaLT6c02mM2mCF83tCm3MGXFMAMa3fHzX4CSA4xu7yR8exydL65sMm2eyM/vx3Ua+dm9uvQHjXld3dP7mNxU7k5184JRmteYV7dh45XG19d30aJFkZGRkZGRMTExf/zxRxWlJZsWm2n0dUMZc1I4YCzdroLxnSFxwVEjmVaUxuZxA/sCjSZ820IgUTNEde2MoN8oYDBxjeVsnw2EMvoEr8cgrsQZAHSpCTSegOHg1pgC2LDxSuPk5PRKpFOwzQhfN+zHz2X7mKeKKD22WUcpnqC6dVF+ehcAFP25wFhS0Kjy1QqXxTtoHJ5o4AecDj1qeAqmkhty0ut4XfGI6WRAvf24L7nUdVYbDQCR2g0AjEYjkSiRMKzZqJaxY8cuW7Zs27ZtU6ZMmT59+rZt25YsWfLRRx8BQGJiIrmkVy/s37+/bdu2paXVJ7jAcXz58uVk6vZasGrVKrPqYA2BTRG+bhhlRVApESu/11CGqxe5y7B3Znl3AACWt3/zLwGKyksMWY8BwJDzVH3rYrX9ZYfXG/Kz1HejZIfXY8qyulwaU8nJaTRaJjXkPavLaDaqIDEx8bffflu6dCmxe/78eScnp759++7bt69pBXslwDCsU6dOy5YtmzFjBo/Hc3Z2njFjxk8//USUjCgtLc3Lq0+r/qRJkyQSSeVgicqgKJqZmVlFUdjKFBQUXL58mdjGcTwjI0Oj0dRS0BpjU4SvFbhOU7x1SeV2TvuuVGMp2zeI26k3AIjDpjVECk1UISv4td6i7rSP4tXxVwAAlcu0D6svCogbDQiTKQgZ4fzVurqs6qFlUumun6hiqG5dqvVo9Y5Go2mEB0SjERQUFBISQj5bcRzPysqKjo6ePt08O6CNykil0tDQUGIbQRDy7bZr164Gg6F///7ffPNN/V6RGkdfdbe///6brItXEyIjI8mASARBtm3b1rJly9qI+DLY1ghfKxAWx+FDC794zb1r2sd37ceZ6jLKz+xht+/CbhOgijtLF0lqbm+sIXSBnaBvvUUocjv24rTrAgAcv2AymXgVkCkCULlUumeV2/e1NArRBGL7CeVetbyub2GNu0JZNRcvXuTz+W+/3djlOBqN+Ph4rVbr7e3dtq0tp0812Nvb9+plIbho8ODBdDp96dKlWq12zZo1UVFRW7dunTFjhlKpzMzM7NGjh16vLysrS05O/vrrr4l82Tt27PDy8kpNTf3ss8/MiosZjcZ//vnHyckJQRCy+IFUKj1w4ICHh0d2dvasWbPOnz+/a9euuXPn3rp1KzAwkNBkP/30E5PJ3LJli1arnTt3rkgkWrZsWatWrebOnXvs2DE+n//gwYNp06Y5ODhER0evWrVq2LBhWVlZU6ZMuXPnzubNmxcvXmxvb79p0yalUjlnzhwXF5elS5e6uLh8++23//zzj0AgePbs2YgRI9q0aVPrD9A2I3y9QBCWd8fKzQxXT2YLb3IX02uIOARcr0NLi+tdClyvZbh6wotiWHUELSmg8UUAADiuSYiptn/psc1ErAhd7Gj/fh0K4GEYu035aiuNy4ca2IIaiEOHDg0fPnzAgAHBL/j888+tlcNtziiVSllFyGozVAICAjp16jRo0KAvvvjCWj3k157izYsL1n4BAGURO3O+GYVp1ZrE2Ox5w/RZj41FOTnz31VdjyR6MhgMixWPuVwujUabPXt2XFwcAPTv318gEMTGxoaFhQ0ZMmTixImenp7Dhg17+PAhEe33xRdf+Pn5hYWFde3adfny5WajzZgxw8fHh/gdEglLcRwfNWrUqFGjRo4cSaPR9u3bN2zYMAzDnj592r9/f6PROGDAAKPRqFAovLy83n///eTk5FatWkkkEm9v7zlz5kRFRR05cmTYsGG9e/cm6rET0fdDhw6dMWMGl8sNCQlhMBilpaXu7u6TJk2Kj4/38fERCoWtW7eeN2/evn370tLSRo4c+cknn8yYMaMuH7VtRthIoPISMBrpkoYt5WMseC7d94vLgo1m7UwXTyalSD2ZLUzQr0EcunRPk4u3LRW/O1X4zvi6j1ZyYK1k8kJmC28cQ2VH1ldTkhDH1fFXTDeIIKzWFl4Laoji8hGEwSRvwZD7THbkT+d5f9Z6wFpz9+7dzZs3Dx8+nMz9CADnzp3D6ulVozE5e/asTCajtvD5/EmTJpl1e/DgAZGFSyQSJSYm9u3bt9EkbD6Q6f3EYdPEYdMAgBsU0jIohGh0/+10DcehpgDlcrkdOnQAAGdnZyaTSdRUcnZ2Li4uNhqN+/fvHzVq1KVLl7Ra7f3796mDyGSyU6dOEVHzHA6HsHampaWlpaU9evTo0aNHNBotMTGRuISPjw9ZOIjLNeU9Dg4OVigUT548cXd39/HxYTKZ/fr18/HxuXLlSm5u7rNnlhfgydP9/f1ZLNaDBw/atm3r7u7OZrN37949cOBAIpm4QqGoS+lZmyJsJLQpt/XPHth/MK9Br0ITiPndLZXbxbCizd+SpRvKTu8SDZ6EMFloSaH2SRK/+8D6FYPl7Wc39gsazzx7U+0QDZlCZAZH6Izq9RCCuP24nwyaLFjzucu8DTSBuBbXZXm2ownLT2Q4t2yg94ZqSU5OPnv2LJGnmMTf379eKqZGRUU9e/bs6dOnPj4+RDpKKhEREWq1GkXR1q1b9+xZvdNsfn7+tWvXEhMTV6xYQbSUlpbu2rXL19c3Ozt7+vTpFkv/kJBrhDExMSEhIQCgVCrrYvKyCKYsVd+NFoS+V7/DviqQc0fqJJKoiI5h2KBBg4jfFVFHiUSpVFa2QBgMBpFIRE3nTWCtyuCMGTN27tzZrVu3wYMHA8C9e/dWrly5bt06X19fs8IJKIpmZGSYffWfffbZ9u3bBw4cSCS7MRqN3bt3HzBggNnVa4HNNNoYGIty6GIJr8fghr4QjS+y/OdNowFqJC176tuXAEMBAC0rUt+5XM2gOP6y2a4ROpPXuT+vc/2k02X7dCJdN4FGqzrhJ67TaB/cIHcFfcJqnYyG49+N5eFL7iIsDjcwpHZD1ZG2bds+fvzYrNHPz8/Hx6eOI6emphYVFU2dOnX58uVbtmw5duwY9ejTp0+PHz8+fvz4iRMnbtq0qbCwsNoBExIS1Gp1cnIy2TJ37txRo0YNHz48MDBw5cqV1k5MSUm5ePGiTCY7d+4cAHz88ccxMTF79+6dPn26m1s9x24aZYXV/+xfWXAcr+zPSfVCstbIYrHCwsJu3DD9+ZCumwQeHh4eHh6E9ymGYTKZDMOwdu3aCQSC/Px86ilmAlC3J0yYcOzYMbVaTbzVrVmzZvz48Z6ensXFxQBw4sQJHMeJhOAqlSozM9Ps9FGjRp0/f76oqIgIzB8zZgxh8gWA//77ry4GEtuMsDGQn93L9u3M8WsNGFY5tqEe0T9LUd28QHXxIHH6sryWnuvS3UTOTFYrf4ePLXiZUtHcu6pLTbIb+0XNxVDFnUXLivVZjx0+/o4msKv+BOvont5XXDzkONP0AC07vlU4YAzbt7O1/oaCLMWVY6TGqkvGgOLty+xGfkqtx5v/44euy/aVa+XGolevXtu3b9fpdN26dSPrUZ8/f97Nze2tt96qy8j3799fsWLF2LFjaTRaaGjo+fPnR48eTR49evQoWbzew8MjIiKC8OE8cODAxIkTyW7//vvviBEjiGnE0KFDo6OjyUM6nS4mJoaobxAYGPjBBx/88EOF0igk/v7+/v7+5G779u3bt29vsSdJQUEBUUuB2KXRaAsXLqQKZg1Dfg7Ot7O4NllH6ms5syaRCZVJTk6OiYnJz88vLS3duHHjoEGD2rZtazAYNmzYwOFwIiMjhUJhbm7uuXPnOnbsuH//fpFIdOjQIU9Pz4yMDJVKFRwcvH379jVr1uTm5rJYLKIGIZXDhw9v2bIlODhYo9GIRKLly5evXbs2PDx8/fr13bp1Q1H0rbfeunDhglwuP3DgAIvF6tChw8WLF+Vy+aFDh/z8/DgcDo/HGzFiBGk1/fTTTwlnGaFQ6OfnV1paiiDI5MmTN23aJJfLJ0yYEBUVVVxcfPz48aCgIIFAwGKxxo0b16mTaeV+9uzZv/76699//+3i4iKRSIgaFwaDQaFQUMNPORxO9bYT3MbL8OOPP37//ffkLoqiSqWy2rOMsiIcw4p3r1QnxtS7SHK5nNzWZT0uO7vPYjdFzElDYTaO45hep74bTbar78dVPb4+95ki6ngNBTCJ8eyhNjWx9PhWQ3FuNcJfOiLd92sVHQyF2ao7/5G72scJqEJWhQCY0UDcJoHsyAbtk3tVy2CNkoPrUEUptUV2fCtmNFTuWfkTqF8wDFuwYAGXy2Wz2fYvoNPpsbGxdRwZRdGSkhJie9SoUb///jv16EcffbRjxw5ie9WqVQsWLCC2o6Ojf/vtN2J79+7dBw4coJ4VFRU1cuRIYjs1NdXb25s8xGAwNBpNHWUmiYuL69y581MKhYWFNTkR1ajKIvfWlxhU6uuX4O7unp2dXX0/GxXZvHnzjBkztFrty55omxE2IDjAexfQf+yiBf5dAEEEfcJoPEH1p9UBlocv1ZpHxZD9lC52ZDi5G4tz5ZcOcTuHAgDgeMmun1qsPlF5ljM9Bl0RTGvBQ5Sxp142JSmrVXsAqEmoA7u1v0kSKzCc3KlzMlabjio9NuiUUU+xgqAoi043GW+FBjnfiP8yBO9ojwAA3d4JkFpOwStPrO1G1skzrdZERUXJZLKjR49SF2lOnz5NurDXGhqNZm9vDwBxcXHFxcWzZs2iHlUoFOQyEpfLLSszZScgQtbWrVvn4ODAYrE++OADa+NTRwAADodTVlZG9d2oI2w2m1qOtIaTPFyvU0YfFw2dUl9i2HjVsSnCBiRTgZ/L1Jde2SLosDa5PqkAACAASURBVAMA2D4BDV1OT5eWaCwp5Pew4C9jN24OQqMDANPFw+HDb02tCOL0xa8WbX2nsrB3PZFRrRBMJS89tsVp9i81F6Ps1A6mR1uWexvV9UixFeWhuHQY4fAEfcMwtVIZfcKaH0rJP6v5vYexXzh/qm6cK8oryEc/Ovo2HQDYKdGog4dc6MrjmZ62vNuxtx5l3y+ZRSjCGrqtFm9fJggJ47TvSrbgBr3s8B+SyQup3UrD/+L3Hk4NRGkcsrKy/vrrLzP94erqSppJ64hUKt2xY0dERITZJUQikVqtJraVSiU1Y3JoaGhERMT9+/fJ4jsWEYvFpLUQx3G1Wt0c0i5rk+M4ft2aWgobzQibs0wDkliCGxBG9MQdpjA4gPwVH+O6BswGYpQWoCX5Fg+hpcW6p8kAgGk1CLN8YkG3dyYcZ6gYMCjRQVIJDgCSyQtftiAtXeLCsHNCODxDfqa1PpiyjBcUAgAIk6W48i+mspyNkC6wq5ATx6u9VNLaSwBdHZGujoiXobAdFAXZY8RuV0ekbdeu+e0H5r/4jLUpt9QJ0RZHpoIgoIw5SW3BdRpjwXPzbgwWrtdVO1q9ExwcfPXqVbNGPp9PepbXBY1G8/fff2/atEksFt++fZt6yMfHh5xjKRQKqm/Onj17unTpMnXq1HXr1lUxeIsWLchpq0qlcnNzqxeZ6wirdceamCtsvDnYFGEDcq8EvpUejFeVexLzQ8LwSlqnHuH3HCwa+qHFQ4acp8prEQCgvhuluBJOtsuO/KlNTTTrXKjBMRySpICWSRWXDjnP/Q1eBkHfMJa3P10kIZ1czDBK88UjZxB+NAiT5bpkJ/muYIZ45AyGxIXcZbb0SW/Vz5lrio4Q9B/NqZgIm27niLi1LtCYfA1QZZkht/oEofaTFgj6VnAWpwnEzvM3VBaGsPoCAOA4pq5/bwuLdOjQQaVSHT58+NGjR+kv+PfffzMyMuo4Moqic+bM4fP5e/bsWbduXXx8PAAcOXJkx44dADB27NiUFFNd4rS0tBEjTBbyPXv2EBbRkJCQ4OBgM12o1WrJ3JJcLvedd94h5ExISJgwYUIdBa4XmM4tyyL3Wnv3svEGYlOEDcjDQs1HJWeSpOUOYKKBH9C4tVkmVCdEo2XVp2DXpScbsp9YPMTx7y5+dyoAcHyDeJTAQUGf4UxXT7POBRqwY0FSCW4syjXkZ8nPH3ip7GJlJ7cbi/MAQH37sv55auUOhb9/iWlV5C7CYMrP7q1cBwPTqkv+WU1tQRUyn2NLXLkAANpH8QW/fEYm1yAo/XdzQN7VfJM9D/jdB4qHf1yNtBF/G7KfstsGURuNRTmaxFizntqHd7QPTXMmzb1rsiONFFy/Z8+ekSNHTpgwwc/Pr80Lvv7667rHESYkJNDp9Hv37sXHxz969Cg4OBgA3NzciDhrX1/fESNGRERE7NmzZ+bMmS1atCDO8vb2JtcFQ0JCevXqRTrpHT58OD4+vnPnzhs2bMjJyQGA9evXR0ZGnjt37ubNm2RwYdOiuBLObNEK4fCq72rjzcC2RtiA3Cpll3y+IzEaxwGIKYwh91nZmd2On/5IdKDWCKwKDJVH7hWHTScyZVeB9n4c3d6Z2dJCeBnCYGKKUnBwo4sdGKzypSCOf4/KmcPyNNDLBbmaj2s8AyQf+hX9tZDbqTdVhRvys2gcHt3Ocr1pY3EuoEYAMJYWosrSyv47oqFTaOwKjyGExdU+uGnmlYNrVWblI2gsjpzOd+UhAICw2Ow2HXVPk5kB5eF9rNb+HE7rgjzTHWHKUu3jBF7XqmIMMI2K4dQi74eJLX46DDTTqpv+WYruWQo3qELgoLEoB1OWEstLdIlLo0VkOzo6zps3b/bs2dTGY8eO1SWVBgGRrc2skYhkJ7BYTI7M70xADbQfP958UVYikXz++ecAMGTIkDpKW18wnNwFzh6NHwZjo9li+yk0FAoD0OTFnVEpl+H7XIl7ChAAoEtc6GIHooP+2QNZ+Cbneeur/YNE5TLAMY5/9cv7wnfGEwGCFsCwor8Wuq85JQvfyA3oxe3Uh2hWXj+DlUlFwz6i9i3Q4G5cpIM9PL0ZF+jv7fT5L2Zh6cro43Sxg2jIZIuXcphuihUTvT0ewEJEFL/XUKhY/sliwB/dzsnMuIqwuXu7LurLBQBgt+7Ibt0RR41KdfmyK7/HYHspnp9usj8bZYXK2FNVK0IiFzm/1zBqI7dzP05H8yzGgr5hOG5yV2W6eOT/NM1t+YEqRq4vAgMDvb29qe6RAPD+++83/xJazRNupz5FGxcxHFwb3+/JRvPEZhptKJKk+ETjbe3dK4EShPA6AQAah0eWgMBxnO3TqbSSea1k/1ozxw26naPjZz8Z87OqvSgqL8GtudTTaJKPvgUEYXv7M91akc2sFt50R5PJy5D9RH5mDwDkq8GVB4ESBLkZgZbkG3LTjUU51ME47bvontyzJobi0mGTAw6NprxqnhHRkJdhsVaU/PwBwqBKos94WLnuUujd7S1Bges0hb9/CRhqVqGweOsSZ6OMXCNktWzr8PF31uQEANW1M5p71wFAHDaNnA4CgLHgOW40d/HFNErdo3gA0D9PLd6yhOPXrXHScLds2ZIabE4glUoboWDpa4ni8hFAjTSO5TRgzQE7O7uWLVsiNl6SWbNmicW1yadomxE2FEkluKJtL0GX7kFPkSQphL1YhlPdPI/Q6MBg8oJC6WIH8wc9jmuSYjkVM6cYsp9qkuMMBVkOHy2u+qLys/t4wW9bs6CyfToBjvN7V5j6sLw7EEV6AYAmtEeVpQBQoMHbiJCWfNjfae5vPs5lp3fS+GLhgDHlZ3m0sx/bypoYiv/CBaHvISw6sc0NCqGLJORRhMnmWEoNY5TmGYtzGY7l+bS0qYkIjUbWiCdwKnvmgpViWgHL0xc36MtO/S3sWJ6RGWFxnISsYi2gONARAAQxFudaM+ECgCE/k+fhAwClxzZzg0LZrU0fheJKOKdDD16X/hUkLMqRXzrC6dADYbAEISOqjoCsR3Jych4+fEhtwTDswIEDAwYM6Nq1q7WzbFgD06qF74xv6Az4dYGaow4A1LcvyS8ddv12O7GrfRSvjD7h+NkKwHEcQ6kmJYVCIRTWT47f2qHRaFgsVn0F9tQCvV6P1+L1tL5D+19zap5Z5tNY4+7rWZhBf/AJOuaSkWzXpNwqXD8v/5fPcBS1eKKhOM+sRXb0L/nFQ/rnTyz2r5BZJv0BqrKa26J490pN8o3CDV+jagXZaJQVSff+guO4oeC57lkK0TjusvHQU/R6ruGTXbdxHDeWlZjlc8ldOkGTcruyAASosow6Po5h1kSqGkyvwwx6s0b3A4ZsZfmAhoLnlQVw/kdfoCaGwJ7/b1hNBJBfOKhNTSB39dlPqZ+SCRQ15GeReyUH1xGpcxo6s8z+/fsZDAaZU4YIxfP29t65c2eDXreZExcX17NnT2pLzb+IsrP7tGm1TDlUBQ30S0A1SkyvK99VyXXpyTiOo4pSzYObjSBAzVGr1Uajsfp+DYZOp6tFZhmbabShSJLifa+tNzxPC3QoN40CAMevm+Osn53mrCGSjhaun0+NLMSUZbhBV7RxEdXmJhgwht83jMav/kWP4eJRRc0HXlAIXeKCsNgIo3zBD2EwMa0GAMrO7DEUZqtunNPcu16gwV25iL8+c/zjv1EcaBweplVThxK+PU52eD1aWmThMjiuzyrPEI0b9WZl4lU3L6hvWyj1bizK0abcorboUhPMYhxxAO/i+xLpU9mhdUQlRUyrInOC46iR8OR05SL5hHUUQRw/WQZW1tK0KbfU8f+Z7mjgBKrjKI0rsODfS6PhRj1aJi34dSYA4BiKaxujRryDg8Pq1atLXlBWVpaZmTlnzpwqUrrYqALVtTPGwmxc3xjfXb2Qv+xDTUI0+UxA2Fxmi9YAYMjPVEQdb1LRXhNsirBBwHB4WIrbDxjJbOHtK0ZyVbiS4t+HMFmkumI6tcD0WvKQ+m6U6nokAE6NYceUpTQ2N//nT6stdVu8dakhJ93aUW5gCNOtleOMFVTPF5pA7PjpMgCwGz2T3+0dGldgyHtGrBGK3FqubzsnrQzXpSeX/ruZOpSg3yi792fR+BbM8ai8RHboD3JXcz/OLMIB16qompjEWJitunGO2lIW8Tcqq6BrpVoI0SQbHt82FucRn2Fp+CYsP8M0sk6je3ofAFy4UPDiKcds2cbaSp7uaTIpiT7jEVXOwj/mWogzw/HC3+fiei2vxyAAkEycz3Rvbd6nAejRo4dZLmlPT89p06adOHGiEa7++qFJucXvPYzj372pBakp/D7DSk9uJ0OY1Hcul53eBQAsb3/7l8mGb8MatjXCBiFNjjtzEfuA7giTRQfws0Puy/BezhbmJfYT51N3Of7dAMep2TVxva7or2/cV58QvzvN2syGhNf1rSpWPrQptzVJVxEu3yxnZtnpXQiLIwgdAQjCDezLDexbsNfgwkVwvVbY0iupBPf1bCcICSP7G3LSy87scvh4icVKGnShvYSylsnrOgCnhAwCgKDfKIvicfy6MT3aUlvsJ85nOLektuRr8EutRv7UFxENNE2GxGHTdPamZUUaT0iso7yYESIAIN210m70ZxZTsBLFTgkwrUr3LIVcQBW+M8HC3BpB7CctYDi5C/uPBgDtg5sIm8f2MU/SX+9Q6/GS8Hg8lUpVud1GtUimfKPPeKh9fJfTrktTy1IjxGHTecFvl789t/CmE8kokGqqktmoITZF2CAkSfEQvqxg7WLiuRzkgCRJLStCTfINMBrIeDWEwaKLHbQptwAxOYkgTJZk4nwAqEnUWtV96GIH3Kg3ZGabtWuTb+AGHRnAUBK5T6QdJGa5yI5uf5fTOUnaf3xrQYV4czqD3bqj4r+jCItD9aAhYTi4lvcV2aNohb9VxaXD/J6DLZRnotEMOenlbjU4jrC4Zrq/QAOOXJriv6Mc3yBCJJZXe90LfYDKS/TPUriBfV24UB5T33MQXewElcANesWlQ2QiHk77rtRco9Y+SU67LgW/znT5ZgsAGPIyAMcbQREmJSURVfqoREdHr1q1qqEv/Vqie3LPkP0EEOSVUISYWiHd9ZP9mC9wo8FUPe3FW52xOFe6e5Xrt9uaVMDXAZtptEFIKsHbOzB5wQOIXbNlQiq4XktdUSva8DVaVozKZbo0U9ozHDUSNhzZwd+1KbctDkJS+NuXVeQyZbq3lkz5pnK+NOf5G1wW7yB9z1TFxSHYEwSAG9DLvn2npBIcMDTvh3LTHNPVU/jOeE67zhbDsHTpybID5ZdA5SWFfy6gdlAnRGNWMnaW7P2FtP8YCrJK9pln+s5X4wHoc8Wlwy9SFIDi8hF9nMmkaXieqo6/AgAuPISMoOD3GEwX2Ve+FqqQEYETJnBcGXuK2DQW5RT9Ob/yKQAg3b2K6epFbAveel/Qf7TFbvXLo0ePVq1aFR4efukF169fnzx5Mlks0MZLIY/cw+3YUzig9rUqGxUcp9s5lh7fQpj9AUAZfZxYRKA7uIqHWU6paOOlsM0ITSiVyiNHjri6ugLAsGHDqu1fNUlS/NP2IlFPk/kuUIIceGJ5eY/XpT9QfPQF/UbSRQ78HoPIlKTKqGO40SAaMpnl3YHGrSYpFN3BBawF1AMAjkt3reD3Hk6d+gCAWbB87pCv0uJQAOB06OGvoSfdQ4FG5/cYDDhOzM9UN87R+CJugOUgDYaTO79neQ4RutDebNbo/NUf1qrGO0z9jozuots5Vg7YL9AA5uLt9PnPZNJkdrsuqNyUfYbt24Xp4QsArlxIehFiJz+7j+HgSs0qZ5JT4uI09/fyzwZDyyJ2EqltEDrTLOMaCTewD7m2hGtU+pynjTCrcHBw+PPPPz/66KPqu9qoAfYf/I/GE+mfp5JVTZozNL5IMulr7aN48r0TYXOJ5XmEzmC/CpPa5o9tRmhi5syZQ4YMGTZsWF5e3smTJ6s/oUoSSyAo4yI5wwh0QO7LcMzinBDHFZcOk3uC0PeARgMEIR03mO6tCRspv+dgMuDPGg4ff1dVnhoE0Wc8NPPMrEyBGpuacwhTKwp+nuEpQNRGvFAD4vc+Ja2UaEkBAKClxcWbLcQ10sUOFQLsEKRC4jQM1dy7Zu3STPc2ZKUqGovL7dDDXDYN7sSvoKXYrTsw2piMk5iylEjt5kJ6jQIwnN0RS6HTxsJsapYAhM4gTUx0ibO1YnWCvmFkEnBD3jPF5aPW7qUe6d+//2vvIPr48eNt27b9/rvp1SQmJmbIkCGff/75pk2b6v1aCIujy3yoqpTqoXlilObJLx5ktw2kv/BN4/ccwg3oBQC4XlewcnqTSveaYFURXr9+/ejRo0TxlwsXLowdO3b27Nm5ubmNKFvjUVpampKSQuQUDg0N/euvv+oymlQHSgPuwDDShSaLnIgJjhzkqdyydVR+8RARAKB9FF+yf42p8fwBTK0EAI5fN5ZXewDQZzwiXMWsgqElB6opE+H63U7R4ElV98nXIv2en8VUcl7XtxCAAHvkvgwv2bearKkkGvYRN6A3jcunCSx4japvXy6LqFCjrnjrUjIVuFFWJD/3j7VLyy8eUt08T2wr/juquHLMXDYNuFYs42PIfqo+YnJSVV6PVN/5DwBcKV6jvK4DLGYYUCfEaB/cpLagilKiypLm3jVV3FlrQpKwWne0e39Wtd3qBYSyVnrw4MHw8PDCwsLGuXTj4OnpGRgYmJdnirSRy+WLFi2aMWMGkae0finasJDt5SccPLH6rs0AtKzEkP1UcfGQIsbkJKyMOanPSgUAhMnidXu7SaV7TbCqCGNjYzMzM93d3ePj44cPHz5ixIjPP/989erVWHUe/K8iycnJZJk0oVCYlJRkrSeGYVqtVvaC0tLSUj0i0wH1X1wB3kmCCPoMp6ZsDpIgcYU40UFlpIyIIG7f7yGmcQiLzfYxWfxc5v1JlLPP//lTYpKEMJmYQlbFXeBGgz7jYRUdAEBxL06m0BBiaIyW+xRqIHzEJoaTOzErCnRAkqQ4TSCGF+F6istHjDotyuRKpnxT+XSa0I7ZohW1hd02EF7YQhkSFzITqRk6FHhBoSyvdqaeTu4sb/O8YoUanKzBZLocT4i8KOHE6/oWt0s/IGaEatNrhz7jkeLykcqX4/cczOoVRm2Rn92rS08GAFQhq0nuNITOqDagpV64fft2REQEuTts2LDevXuHh4ffu2c1y90rB5fLRSo6Rrm5ucnlcrIycO3AlGX6ZylmjeLhH9HEEoTWZNlPXgp26w4OU5ewWvkxXUzpqQzZT0wlwBBEPOKTphSuATDkPC3eUlVaxIbAqhnNw8ODCF36/fffQ0NDp0yZAgBDhw7NyckhSrS8TpSVlZG1uXk8nkxmVd88ePDg9OnT27aZbGi0Vl3QL08jdPOklHPaoUXh29ghI5EXHs99HRlz4+hz40wdMkbqaC/+6tG8DIQnpIkdwckLnLyIUqiYUgHyUprEFXFsqdTqQKsDkTPj3U/JQqkkZAVwAODPWVe5A5VjN9L33xTdEdljOLTi41cHm0sOAM/lzAC2rmD3z0zfzsyAPu149GsFtE/fmagF0CoUAKCIOfk7Y4Cahc9//jen93AVvUJZc3D3BYAKYnQbTJ6La1RgQLWWhPSPYJ8d0NKLj+uIo60DAUBfsWeuii3EtAoFRUsxuWi/ccTlcDobYfJAoWDjUKbnyMoUDBoYFWWGvCyodEVjcUGH695xw5QS1gsjauhovcTNoFBAp3642S1YAkeNit+/FH2/n/oVAACCIAJBbYpt1RCxWCwWi8eNG3fw4MFOnTo13IWakJYtWwJA9+7dP/roowMHDtQ6ZZcm6ao6IcrpizXURl73gYbcZ6XhG53/94e1E5sPxoLnaJmUuq5Pjbkq/OMrpzlrm1slDbRMSlYXeFkQJtvaCn3DYfXjY7NNRcyvXLlCllZBXtNs93w+n3zxVKvVPJ5Vn5SAgAB/f/8ffzTVUcIwTKPR8PkWim7n/5coGDqZTAczvzPMf5Ffs/VhYyEuaCsyfZhlUbdpPJHw7bGyQ+uEb48jggiVSVHG/CzhmNnCT8vnT2Unt4tHfFI5mpDILojrNOqEaKqjSmV+cvn4zGB6OzGix8B+r4HJE3IqPWGkRtRboDbevybuNZgjFPZ0x7c/RRmZiYDjxMoE/9ttt6PZqAboGjkH1SFiR2p6Q+W10wx7F2qtDG3KLUPBc+Fb7wOAMinaWPjcbrS5RTFfA9lqQ1Zuicu1DU5z1gCAdOdyuzFzzBw+C7SGNk4CYcXPW330T+HUxYAgxQd+Fb49ju3TCQAcOAYNU9CCh0BADwgwX2sEgOd/ruPaLylDPL2Eps8Tb9MBRw00rkB5NYLr36MmuSgZY+fwhEJ48RXUL3fv3t2/f79SqSwoKFCr1efPnycPaTSaq1evnjp1qt4v2tAcPXrU7EWTx+NNnmzuFSWRSFq2bEmj0fR6/Z07d3r0sPAN1gS2X3DZmd0VmjA0f9kU1yU7Bf0sVJhqhmifJBkLngODoU2+Qcz/1Hf+4/gFE7WsaVwBYBg0s8lt8ZbvHKYtpcZD1xy6vbMmMdZiOZqGw6oiLCoqUigUDx48ePjw4fDhwwFApVLdvXt30KBBjSheI+Hp6Um+/isUCi8vr7qPWUVwD1GPoq34RZn1kPcICxumUiAvqvTxgkLR0mJdaoIhP4uMaVPfjRINmYywLehdADCWFKiunalCESoMkK/GfUQIALBo0EaEPCzFOzuYq9V8NS7u4OXyzRYimL2jPZImx3WlxTSFjBvQC9frdE/uJ5UEozhOJAHXVZw5YWVSXFhBeyFMNiYvIbY5bQNxssg7BaJ88V29Xe8XMfU4itHYFeaaKA4lOnBkm5+L5j7FDXqExeYG9GY4m8wVrlykQAMteIAb9MqrEYQappLebVJWlksBJdhEfeeyIT/TbvQsTWIsy7NdTRQht2JW7vqlS5cuXbp0uXXr1ocffujpWaF4soeHx969ezt2rB+nx+zs7KioqMraCADS0tISExMxDOvfv7+Li0stRsMwLDw8XCAQ0On0wYMHjx1bowfc0qVL165d6+TkZDQaLeYTqCGYstTl640V2xBOQC+EzSUrkTVz+MFv40YDKiskC8soY08xXb0IRej42U9NKp0FdI/v4kaDxbRTNUF18zyONnqWAGtJSIuKisaNG+ft7b127Vocx1etWuXv79+lS5cmT+raQISGhup0OhzHz5w5s3TpUmvdaph0G1UpVLcuWhvkh3jjkjuUvLQYRk3lTGKQ5iuvnVFEHSvvSEm8S1L+jWCYsbTY2kVxHL+Wj3U7YSB3J18x7nxsIfF32yOG1NIKWar9jxoSi1EcNeI4rnuWkrtunniPXrJXn/8kTfPg1kv9JDCt2mIK7NVJaKtDhhEXqkrXW6DGnf8xz8GNW0k0PPScITILw3EcVZblfj+xcoeVNxSwXb83rfwTMORnqZOu4TiOalTV3YeJwj8X6LOfNPQfRVxc3L///ttAg+/YsWPx4sUjR46sfEgqlY4bNw7DMIPBMGXKFJWq+o+l8mjff/99bGwsjuNHjhz5559/rJ345MmTpUuXDhs27MqVKziOX79+PS4uLjIy8scff7R2SrVJt43ykpzvxltMro1p1bk/Tqn2dl6WhvglGIrzzP6ujbJC8o+o9NQOVFWeHb7Jn89qtVr96K7qzuVaj1B2dp8mOa7Wp9cu6bbVGaGjo+Phw+Vu/d9+++23337bKKq5aVi/fv2WLVvatGlz48aNRYsW1XE0Q+4z1e3LvG7vWDwaKEF2ppY7WaAKWdHmb52/+kMdf4VqECha95XLoq20F54gAKDPfMRwcKXbW56pYDoNpiitwjSfVIIHSsrnf9bC/PPVuAuvwjQx0AFJyVO0zUzgdenPdG/zbMDsgCyEgUDGs+e+hXcZHhVmeKob5zjtgytUPsKwstM7CatOyf41gr5h7EplmJJK8Ck+yN40vGT/GvHwj4HOUMacFA//uIJgGtyVa8E4b0iKRTt2o9s5FayZ7fzVOiJI0YVLxNQjNL7IZeFm81PyM0PP/e7V7jfqjJDh4sFw8QAAbcotXs2metyAXjRug1e96dGjh9Fo7tp0+/ZtOp3epUtdw8imT58eHR2dkmLuUQIAR48e7d69O4IgDAbDzc3t7Nmz77//PgAkJCR07lz+DT548MDX15fJZFYeDcOww4cPE0sJQ4cODQ0NnTTJstNymzZtli9fTu726tVLKpUajcahQ4dak7y0tDQ9PX369PL4gbCwMKrJCscQ/uhZxTuX283fhHBNITS4RqU69pfggwVMv+519MSpjEajqfcKRJorxxCRhN1toOZKOG/IFAAw5GYymTxiiUTzOJHW+S36C7fHhhDg5aTVaFgtfHTn9+lRjNXRcqhx1TBCRysjdqAt2lozfVUNUYYJpZRlZbFYDEY1a6hWDx89ejQ9Pd3Ly2vChAkbN27cunVrixYtfv75Z+ofwOtEUFAQkaeDsAPXAvn5/ezWHYhlXnZrf8mkBdZ6BjogSZSKqnShvWjwJEN+JhljQCB6d6riyr+igRPIH4QmIYbp3prMh4mWFtHtypOH6Z7cU988b80nEwASpXgQxRAaKEHOZJk7PaqMgOEgqhiUHyhBMrOLlA/+5XXpj2lViXr7IAnCoME1Xt9ufburDBUGUcdHMV1bVVCECKK6cV4cNh0QhN2mE8OlgpWPIKEYnx9A//OBUU9nYhoVbtQbcp6a9akcO0FgTI3Xi8RcOyeGgwvyIp+AKxfyXyg5fdZjTvtg6toqjcM/add/cEukQF3+KoCp5EWbvnX+ap3s0LoaKkJTZpnq3GrqCIIgpaWlsbGxSqVSqzWlaL969SpVBzQEd+7c6dbNtNYrEonu3LlDKMJr165lZ2eHhYUBwN27dyMjI5cssVBpB/qQqAAAIABJREFUGQCeP3+u0Zi+Bj6ff+/ePaPRWO1TicDBoRpvCx6PJxAISAkRBGndujXp3AAAqE7NCejFZHPYYnvy28cMGjVqZHN57EoL1XVHr9dTBagX6D0GAYdHYzIUKTfY730CAKUH1jot3GwyjX5ZwVOmIQR4KTAUVf39PS/4bTpfVDtJlOf/QZ8lM1E9nV0bkziCIDiOUy9Ns5QS2Qyrv8iCggJ/f//BgwdfvHhx/vz5sbGxgYGB33//fUBAQA1/x28OaJm0eNv3okET9M+fEIrQUJhD41j1uPEWInIDLtWBA/FlIQiv2zsInUFmSyHgdx+Y9/1E4TvjyOe3cNAHZE4WHDUW/PKZ67J9ZH+2tz9dWNVPJ6kE/7Bt+W8iyAFJlOI4mawMAIjpYKVZV5ADsjbba8HUJQCgjDrOLBAGhrzPQOByLk3/9D54Vgjzd5i6hAj8KAdB3H7cTzyJLHoo6FDIUOId7JGO9sjj4Ln93BAAqKzR89W4K8/CjJAzfDrH0RkAHKZ9Tza6cJFMpUnJlR79y+mLNdQ1PxXfcYvduxtdkIs55YoQ4fBYLdsgTJYzJeNM1ShjTtIEYmjbsNVxi4uLO3fuLBQK+fzyzAAZGRkzZsyo4qy6U1JSQoYV8fn8rKwsYvuLL77466+/IiIi3N3dq9CCZiMgCMLlcktKSpyd66ciLovFcnZ2njlzJtmiUCio86GSfb+IR0zntPKjUR5ZdLGD08yVQDh0TP/BWpKj2kGn0+t9QoY4udHYPEAQl2+3I3Q6AEgmzmMK7UwzwuQ4tk8n0m7UEAK8FDTMSOMJhX3frfUI6tuXXb7ZTLOUBKMm0Ol0HMdf9kOwqiqdnJzCwsJYLNbBgwcHDRrUrVs3Fos1ZMiQzMzM2sn3GoPKCgUhYdzAEDKXmDLqmPZRvLX+CECABLlPMUvKDv4uO7oBU5RSu6luXuB06k39QdC4ArI2EEJnOM39nXoUYXPJNJiVwXBIkeEBFNOoEwe4DMhWVbCOFmjAtZIGD3RAEkqAqP/HDeh1gtcjUIIEOiDJUqN010qzkDt9Rkrl6Drd0/uoXAY4XrBmdmXZkmW4jwhh0SDQAcl5cE9z75r+WYoxL8OsW4EGXCwaSww6Y1EOpiwrPb6FbHOhzAglU76h21WYXmScDZ+t+8+NV56ABgAQOsP+g3m40YCwKgaEWAdhc8lUOA3H5cuXT5069fDhwzsUtm7dqtc37KV5PJ5OZ8oKq9FoyBAjAPjiiy9iYmI2btxYhRYEAC6XS84IAUCr1ZJ6sRHgBQ9gurcp3rrEkJdBNqJymeK/cAAAHDerdtms0KIw+hJqxEB2cJ320R0AUN++RAjMauVHTnBVcWczUp92P2kMPmEMPmHsf5H1qPTl67PXgZlX0XRKOBPC4kim/6B7cl8ZXaNCiWaFTgHAdfEOXWoiUet0/k30vpUszdZ4sGXVxesPXuoUqEIREhZ/AIiOjg4NNWXMKisrawg38VcaY+Yjlqcv4aupunFenRANAPw+w4hIA2sESpBEKaVab4ce2vtxZgVsWV7tWC19qC36zEeyoxuIbV1akv5ZClpWbmNV3TxfdnYfWCFNjjtxkMo2T6oYYGUdzpULDBoUbf8B0ygRtzZRercO9oi/HfJYQRPP+sUsnKPkwO9k4mwS9Z3LuidJOIYyLLliJpWYbLaBEqSgQKp9fFedEK3PfGzWrUBjYbYKAIbUBGXMSUyjNORmlMvMKzd70h1c8YraOkdDkzg6UBPQEJSG/6W+eaHs5PbKV7EIv8cgfo8G96Om0+ne3ub5zQcOHBgcHNyg13V3d5fLTS9eCoWCiO0jiI+PF4vFXbp0OX26qkRlbm5u5DqcRqMhjJkNJ3AFcJzXYxDCZPF6DCovaQKAlhYSesVx1qrarUI1Dv/l4sczsKsFOMe/G7GaID9/AFWU4gZ9/k9TyW52Y744jHfoYI9s7Uvf2pceYIcfSm+8nCdFWtjxGAt/Vv7Hpb1+xpD5CDfqjcV5VZxIkr/8Q2olKVyn0T68rU6I1melqYywKQU7+PTlbue20ZUIZX4prCpCqVT64MGDffv2PX/+fOTIkQCQmZl57969+jJrvB4Y8jJUB9eScwKmS0tDVioA0IUSqpNLZYgICnKX16W/87z1ZimAmW6t+L0qeAqwPH2F/UYBAI4apX8vV9/5z5BbXoaX5eFrlk2bSpIUD6wUKWG2WgnWZ12dJEjG0K9pHH7ub192YxbxGMCmQxshkg6OZlMih2lLK9+7+N2pHP/uCJ1hcQkzSWry4gmUIPt5IXajZ4kGfVDZ1cjaGiHTv4cg9D2Gk7vT7PJqFdQ1wrIT27TJcdRTjrV4T+TXxZVXnoCGAFMr6fZONY8wMxY8JzPKNhxDhw7dvXu3WVKn69evJyQk1Mv4OI5TB4+Pj4+NjQWAsLAw0hyalZVFJqOPj48nLKKzZ8/OzMw004XU0cRicVBQUFlZGQBkZGQMHz680WKRlddOK87tBwBBn3epP0iWZzvChK64dBhTllo9v6k5lYl58JFTmRi/x2Aiva3TzJV0kQShMwTUWCDUeOGZ+qO2tK6OSFdHZJI3ejKz8WaEp7OwFjzkZGb5j8eQfh9hMDntu9q9X31uPO3D2zRehWeFITddGXPCbvQsjn+389mYEwd5qdsp1sI3jtNDW1ovPGAFq4pw8uTJu3fv3rdvX3h4uI+Pz4oVKyZMmBAVFVVtuo03CoZjC8GMn8j3SpZ3B/F7nwKRFw21ksEMAF7kLSN3DflZZad3VVt3F2FzWW06AgBCZzjOWukwbQm19AHLs0pFWNFl1CSGxNxx1NqsK1CC3OT6AUC2R3cPF3vyLnQX9hofVsjibdFtFeHw0bJiQ0GWxSzVSSUmJR0gQR6V4so7VwyFOZUXbyyuXwIAwhPSODxDQZbmfrm2e+E1CgDA6/Y2s0WFUvI94zYGiXQObCjTA9XXR/LhIna7Luw2NU3XgmmU2od3ati51jx58iQnJ6dXr14zZ85c9IJVq1bVxAugWsLDw48cOaJUKjds2JCTkwMA9+/fJ1Rsnz59nJ2dz507d/jw4eDg4A4dTIvBd+7cWbp0KbE9e/bsoqIig8FgbbR169Zt3LgxNjZ2586dq1evrrvANYQutGP7dQUA2dENuifluehQuczwPA0AtI/iCWt/MwQHOP0cX9eTdjwTL966hLAT4hiKG3RAo5FVqQGg4PwR7+ybfV1MfxfdHbB8Nf5M0Ui68EQmviKY9qgUJ186hZMXMdzb4DqNMso8UXBlaHyxaMhkhFIwh+nhaz/+K9ygxxSyk5n4okCa3ACpZTW9naK1s8fYFbFffpHUqtsLl8tds6Y8L1G/fv24XO5bb71lM41SQZgsusSV2qJJvoGWFIiHfVh10qMAe+RxGW7AgEkDAKAL7WqYkajg5xkui7Yai3KYLX3Q4jxMpwGWydYkv3iQLpTwew62eGKSFP+kvYUZ4Q93K8wz8tXQ2REqE+iA2B3foOG+fcL3ow4c0ziBEiTWfaCvW/nSEaZRFq6b2+Knw2an69OTldciBX2GUQs+kNwrwQPsEQDgMcCLj5ce3UDncF0XbTNL6m1x/RIAsLLior0rhQPGGHLSSYu0PRtURtChwKYDx68btT+Kg3/xXT97Og0BBw4UafEWL3xwdE/ulZ3Zw+/2NumaWzWsVn4O079Xqq3WgKwXHj9+fPz48a5du5aUlJSUmFITENOsujNmzJgxYyrUyfr444/J7cWLFxsMBhzHWazy95LPPvuM2n/q1HJLXeXROnbs2LFjR5VKFRISAo0IN9B0OYa9M/WlSp+erEm6ym4b6PjZT/XrKVOP3CrE7Vnwvjft61uYnG0vYbIBQH52L6/bQJaHj+zgOsdZpprMsZ5DhE4Sxos3IhoCwzxop7PwOR0afOatMUJ0HrY7lHkuGz+ThU1vRzMW5+pS7rD6DMd0GmXMyWqrdbI8fXVpSerbl0jzD6ZWIBye6nokjuFnpeNXBjPulSARWfj8gOpvBzcabgs79fF1BHjp94CavlGGhoYuWLDgxIkT1KVvG5VhOrfUP08T9BtVdTfu/9k7z4Aorq6Pn5ntHVi6dEUBRbCgUcHeTTQxdmM3GjWxJJaYHs2TvImmqIlJNLHG2DXYMBbsFVARRQURkV62sH13ZmfeDwPDsuwuHdTw+zR7586du7C7Z+655/wPE/yEyKPyJx1UIK6heC6lMlPy28ekXqu7fYEqtkDBEDoxJC72LkyWQ2SVFWE7CZKnJTUWMg4FdlyjkVLkqLgXwmT1iv+GXllGSpFjjA6IRV4jwuZKhtsom8cODBPGvMYN6+Y8YbHVqSwNyWMg7uU37eDKTBq/3mXSB1VLW9jLI0REzsI+b/C79BdbFClFANy5SJGBBADt1RMqi93TtFJyatc/JHw2lAvQ0GB5maRBy/KttDXrCJLU3ThV0851RSqVrly5cl9lVq1a1djBMhQsFsvSCtYNy3jXJsCskhdvLMsGFg0cT9VvoeCEdBG/Oh0ATFkPLbfYnytis4hR/ggAjPRHdkcuoVy7wj5vsP1DAEGZrt50z126wL7tKj1Dj/Kv5KtsPE7lEl1dEWcOjPIrc2AaH6fgBVkAwBC7uH+wodoRSmM3Wwnca84f0ied43fpn+rb21+I+AiQUf7okZq9HQOw3nOaOaQusm4ODeHWrVtjYmK6ltOlS5f9+/fTQTQt2ITp7sPv2l++a221PSNcKnlHa4howDiUJ5TO/gIVSgTdB/O7VhRhEfQYZrX0oZEbQWUiaVFNGgYCoU7IPUXFNArtGJsQCbKL0wtz9sox8yPKv3eRUoT5LEW/r0K5GGEwba6lUJ6Q7d/OmHbbMn6PIllGRlh8kSNckDQFYeXJBACcAJUJXGwlJiEMpjD6VVyWb7Vb6cmHAh0AANPdl+FSIQ+Wmi2fabhg1YdC0GuE+5Kf2L413WwnCbNlqGojMWDAgNmzrZ+TRo0aNWBASwke25B6LR1opks4W8l9TRIIkw0A2hv/WrpMnytis8iR/igAjPJH/U5+T5kKtl87lCdgSKROY9+lumkwCE85EJNZaY92UCs0sYRUGBt9kkeyyFH+KAAM80UvFhBaHATdBvGHT6fOmrIeVlvChTAZBK8MtSyazesYzQ3vyXRxj1U4UX+B/t5IioIsMVQzGdJkzF81tZuUkNYpi9KuITxx4sTWrVvffPPNDh06zJkzZ9asWb179968eXNLEmG1oGwup0r9oKrYE3ZxjOrfXaqTf3ECQgEAFbsgrIp/u/rMXlN2us2r7sjICKntHcgIaaXAUXsBKUwUZhkvPjx/9gv/92hHohsXCrjeGo+K9ZODEioF/5ulvXbSMrqHIlkOVno3AXcOVi2sWGQgXbkIasdBUrh2QemRP61SVjzKg0I5bcItYztLnqT3Lrlc3qdiKxEAgCBK/viy5gsFhMF0X1qv6pU15OHDh+PHjw8ICLh+/ToArFmz5urVq01w3xcUpocv7WIxl5ZQpaQpdAln1ecOAoB42FRu+27NMz+HZKhIpQmi3BAA6O2JdJDfpnKcNBf/UccfwAqeqU/voXqeyCYwnxCRb6WIYh4T+nkQpzNUjTpJgoQT2cSrfggASNgQ5YacziW010/SW0KKfRuq/R45j32P4SRV7q/4BjE9fZlST8ODhA4X1lNrYg4DBnijx7OrWRQSBu1l3yGvBtRxnWbXEN6+fTs+Pn7x4sUxMTGzZs2aN2/ejz/++PDhQ1rYogV7sAPDarLDVDV1oSYwnFxV/+4ya1UAYHx0S3mgwv+AFWaTRtv/HZuRMvQ0LO1x1YJ/NM7ubpr0lFnEdctGby/prdCKPSGEw2cH2VaCFvUdLXltFr1zY29uES7wq9OIqjkJBTrbG4QU3LadhL1HWVW09yyvU4+X5CsPVaisHWNHqoa/V96nIrgUAMzKYtPTVMvHi2ohTQbHgVH1Jzs7e8qUKT169Fi7di2VjbBs2bIHDx68rIWy648qbieWW/bIJRo4XtCrQi6K07YTv1NvAECYbKgiXPc88E8W+Zpf2WMrA4Efhu88ngMAwAnqwPYLJtQKrCib6hmbRQZ36WopWKg//CsuL3xXdazj9rmN6vi9VkR68pHAcifTKH/0ZIam9NhWehUonbbSMmulKqQZV+zfgDBYhvQ7dGPRj4vNypIn/MArkqiOLvTg1ceOIiKXDwXjRvrXcWfUriF0dXWlFn/BwcF0eHS7du0yMzPrdqcWrIhwgbu1XxEKug12nbOKIXIGAFar1rxOfehTLpOXctqE27zqrpzsaM8QWsSvqjBgIMC3s+Z3Cu4Qx2jfnlGphk6kFGkV+xWdOMh09RIPnmjrahANHI8ri6rGEN2Vkx0t8jp8BEgKL1gd1s+qW6Ee3O2nuUtGzmZ5B1qlbdArQkAQyzWBNu9ZqJgs71NpRch09XZ79ztrZRyHKA9uJPIb90tx/vz5EydOLF68uEePiuTUSZMmWVbrbcESvCiHPsZynxjTKn5qWe6tKNe39upxzZXjNR2RJLGCGmmJmBVFZnlRLeZahdgsgnI5AgCJY2+rTlJ7fuzAMG5oFCc4wmXyMgDACDiZQ4xQXlKfqYhNIzRKhMkKf/XNV9rvwJBG3MaidzEp3vBHDuVypUs20KHvDKkn6VCvgNRrTRkpCIvt+dEfdCM/IhoVOR0udeNYZE8N90XP5hI6+w8tZmVx1jfz3LgVhrm22DWECILs2LHj3Xff7dmz56pVq86cOaNQKDZt2uTp6WnvkhZqRSsBQkKl5UiNQBB6I5AhkfItDKH26omyutVVuCMjO7naXRGmKEiCBAAo0JFetjTMKLrw1e6mErR7JS3WCBekGET0StSYdlttJ2xadWJ78c/LaWWcsjnjkKcl20kq3dSm07hA72humgv/FH7zNv2kTEHXqWdKPaWzv6AaZUaYmHPArfBeeZ/K/wIEYfu1s3cXm4iHTkHdfKrvVw9UKpWzs7NVo1KpJKvbg/nP4jJtJatV2TazKTtNf/cKfUp1arfm8lEA4HXsZeVCcABenFv88wqrT69NFAc2Fv20qPZTLkNmhBQ52c+77KNuVsnb3D10pYBUY2DKeqjY8xOW/9SYdhsALhaQwRJEKuaDxcOlYMpKhtjFnQf9eEW5P71f52lUy5EscqRfhfloJUCmaeJv4hVxc6X/bDLcv27r0jJQocR92UYA0CXG4+XPqeLh0xAG82J6yfxrH9E9XTjQ2RWJz7P7aScMuisBw+q8HAQH6ROTJ09esmSJXq9nMpkrV64cNmwYjuPTpk2r+oVsoc6EOyO/PTC3d7b7/2stQjrbMWBAiUT/soI/ryw3S3stjh0YhvLL8lueqMmkkrKPTlopGeZkexwJG1y5yKaHhJQLaaXgbl9qI8wZEakSUKEBoCICsKMLMsznA5OCCQoCAKRZaq7ckJtpw6HvRnpxoiZeKxZBccXZTDWEOiGMylOLcEH2ZBClpkqt5/JIb/uBh6QZ54Z1Y1auy+HJh71PyP2ZBAD4XdvxrMdUAHikhLS2Y2aFtirvgxTq6hVixwnqYGroIgZWRERELF261DIJTy6Xz5o169dfratqtAAAQJKJ+3dt9i7zTDDNfVjO3fWXy1YnoaV+ep3o6WUzQvqipNn8tEYqaxxcPJHj9c/hq8kBgxx0wzBWO+lrvkTQhct1FG/L0ZIDWqF0uWyms7vH/G963kTeOm/ugHE7y3jyU8nOmoLTRR3vyMhR/ig3LIougk3imOH036LRcwEguo3r7vzB2fanIWDCmu4MRnW2o9QEHyWa8cpfERMBWhwsn62x3IwZ+fvfThgQIkYZDBJBzK35/ZX5njJ1xQQkbPi2W8UNsfynhFbFadPRmJ4MCBwudUtMyx+SvGl3j88eajkubm6Wdxzljx55RrzqVylD8K6c/CWVmpnPMWj1j1/d02rtGkKBQLBpU1lp2TFjxnTu3Dk9Pb1///51vlMLVZkbiu5/QqYqbD/paHAyTwt3Rtv9HyFsrmVcuHT2F5ZO+dW3iUdK0keAAMCSDqg9hycAvN8BpZ+2ZrS1+2GSOovzhaJghsrSEIY4Ie+gCY+umO969QIAQHuBK8ATG+8I4fQXieWqKqcWdrC+4/gg9PsUYn/lnigCI3ztzo1WebWkuxviK0Socf53+9iPbhMJlAkAk8PEtEar9Yqw9qhO/Y2z+TB4fL1GcUh0dPThw4e9vb3btWvHYDC++OKLxMTE9evXN0gF6ZcPwqjnJh53Hz/RV4AAANOEC5X5StfybBzXaD6AFMDr8WVp3p17vd+ryZgMnPVk8PsCFr+LfbcEAKCyIrRNW01Yp5qosKNmjInpTdxK/vwurgglOk9BYiaztnRtd7crhSSAnyzobQZuUJvxLhykiyvyZiBKLRCpfC1Cq8IeJADMBYCZYZz9vDEOZMB+vEeM8ict72WTI8+IOzJyWrD1V29m20qBayyvANeFa6eVMDCMYDAARRFw7eoEEGDR59tkYmwgSQUBAYAh9SZp0HPadHQa/Q4wWZ8cIt7zIFiu3lFuyITWYlfvStV7Rvoj3yabiV4My7tuTCUMZhjMzu54cUP0m2vokeuCZXHC5ORkx9UL7961UeLyP0UNC/M2CAac5G81GW2Uzq0EXYpT/yDRsuZtxEEsodhGCdz6gMkKqjbKLh5THP69bA6pCcYn921ea8p+XPjjooadD4VKpcIKs/NXT3fQx6wv/zeZzTnLRtJ/KJmBdNlho9hvzTGk3ZYn172OaM05derU1KlTo6OjJ02adOHChSa443OOvcK8ORoiaKscK//i6FMTin/7hO5TenKX4dFtkiRNuU80107W8F7y3T9ok86Z8p867pb/0xL9g8TiXz/CS2XVjqm9cUq++wfHffQPk4p//Yg6JkxG+d51WHEeriimOxge3ZZt/5p+WSqrKOFbsGaBWVNqb+RVt8zvX3dUB5vizTP49rRqfoNMuU+0t85TxzqdDsdxkiQ11+JKj22z7PbhzUoFyc06tVmnpg4e3b7jtxuz/LWS/fUdVQmcJvwgdq2wogtBkq3+xtKUhDHzgebqCbq9boV5K9n5jRs3OraamzfXVIy4hfrDYUCAEHngUEtevv0bwIz0MWEs89FhBKSp7LpD6wzTIhuPhhURI3ltJnVsfHSraqZg2bXuPjUUDagDZmUJYr/uFQCYSwpUJ7aTOAYIInl1Jr2lTwvQ1BlOcCQzsH31/erNoEGDtm/ffunSpV27dvXu3TsnJycnJ6f6y/57nHwgn+SUT4utcILaiwdPoM+SuIkqPMbyDrQnw1QVlm8w061V8YZljrtxol/nto1kuHhULcBSFV5kb8mrMx33Yfu2FQ+ZRL80PkzSXj6qv3Ox4o5tI50nl83KLC8y52VYXBvsYOSahGIazXA2lxhu3xNDobnwT9UaLEx3X4a0UkDJKH/U8o54UQ4Vno0X5+mPbRnljxjuXtGnlCUFmZ6lkZVjeq2EAijxnWAJwg4IsdJkrgOV/GU3btxYsWKFA1Xc06dP1/N+LdSKSClCC1LbxKxWME1lhtBl2kra4/dASQYKEQfu0IZFe/WEMGYkAIiHTwU72nIIm8Oxk1lRfzjBEW7vrnHQgeHqSWjVZkUR060Vpc5TNqtyARrKjVYHTJn39VdPiiZ/ULfL60x8fLyvr69lRYgWKPLu3BxNPgQoy+VFODxLHUTJiOnUAV6YrT53wHnCkpqMKez1KgA4vT7XQR9cXsgIbA8ow3ncwpqMieVmEAYdN9RRCRGEw6XFJRAW2/Oz7Vj+U8tap4ReY0hN4HfpBwCGh4l41iPoUJYc6TzeUcxORxeEIOG+gqRjFHB5oSpup2VF8bN5ZEcXxLW6omRO496rGg3OCWrPCar0gNjNDSkxkE/UZJAIAQDF7h9dZnzM8vBj+7ReGzh3uj+KJWfQwheeK60XXaP80annzd+US4bEZhEj/RFTdroqbqfrnFXVTLE6Ks1eo9E4XvPhz2XazUtMtUn3bu9+R8ugs7wC6HZaxropIMnSo38Ke70KKGp6+pDVKghxWHmjUUAQB5WQAQDlCig9DuXh30mTwfI3woMHBTrwrasEGMITNXY1H4IgFixYsGvXLivJ+8uXLzfqfV9EVBhsRboufDWSbsGLc2VbVnusKBMA0lyM5XXowXBxBwaTNNfIFUBolLJtX7u9+x0vIpo04/ZkhGV/ruKMmAkuUu2V46xWrdkBITa70SiP/IkX53p/tcdBH13CGSwv02n0POql9uoJbngPhsX3yywr1Fw4TBlCXkQ07l9he9TxBziBYWz74h4j/ZHYrApDSGhVhvs3CK2KTkM6YpHIYY/SfzYJ+7zOcLbejsTlhZqz+2kRHABAEXjVDz2SRS7ugACA5PU5LDcfACg0MlJ1vBgPYA+rkEjUXovjdexlmRDVxRVRY5BWSraVIABw5Bm5pTeDkKv5Xfo6nmFNqPQf3bVr1/3798Vi8bBhw/h8Gz8rM2dWs5BvoWGJcEHW3HXkY9HePE14BoFIRBr1hd/N8/7fPqrd8TqygUFRzw83A4oCgDp+v6j/GMsM3+cN8aDxhF5r2eLJt65KWCtYnn7cIVPqOy2HnD59WiwWnz592lLX6ciRI3TNhxZo4rKJGFeTWFoRc8iQSKlyoRSG1Jtsv3YMF3emq5fl6scBpMnE8g4EAPXZfQiHZzMyCwDEgybgPsEAgMvyETa3WkPoNGq2ZSk+m7BaBTHEFQqE6gv/aK/FiQZPosXlWa2CXKasoI4Jg9ZqsWhWOcqpH+mHrkwwfxRZZurYvsHckC5k+VYLCXA8m/wg3JEhJHQa49NU8Ws27AKCorjCOp9ypB/6fYp5cQcUqAd3FAWAI1nEz7k/Qt672twn/E59qMdK3a0LLE8/tsWmAwLwmh9y5Bm5NBzJUJEKI0S5IYhbZ2gIKhnCbt26devWTaVSHT16VKfThYdjBqr8AAAgAElEQVSHW1X+bNE2bGKs9M+qYnyYCAgT/FojLLZowDi6/Y6MXNqxAWr01BBCr0Y0HFQokbw2k+nu22T3rQOo0AkVOlm2lAvQ1PG5gTTj+sO/iqYub4jZ2aawsPDLL7+0LBAPAEKhsEHKML1kxGaRHzzZZHz8Kp1ui7C5lgUmpbM+p4pOkJhJdXKn5LVZ1Y7JcHGn1mTcsChCaztV1/Qsjdexl1qrBYAa7oUzxFJAESBJB/XXrGRv3d75yphxj06RpKCzh0v/2YxGxIC0TIyCdgLbo7cn8kRN5mjLYss1F2PFw6YwnMqeIRKKSQkbgiUOo2T5QvfFP9k8xXByq+qxHNQKmXKeLDGARJ6p2P2j+wfrASA2iwiImcR08ZRv/4Yb0pXB4QGAy5TllGyIJSP90f/dMS8NR2OzyNf8EFNGivbGKZdJDbArYeOLJBaLx48fP2PGDIFAsGPHji1btpSUlFXtmjx5cv1v2ULNoUrD52rt2kKncYtYbTsDAKAMywfVFEUTrggBtNfidHcuAQDCZFtWF3sh8KhSp75WIAiCZzSudnPPnj3/U9vzKpXq888/P378+Nq1a58+fVrzCzEC/s0hvHoNrKSKQJgLvqpYshgeJJRFdhBmXdL5mgyruRhLyXOz/UPopL1K9815LPvzS8JUJiuBFTyjct4dgJfkF//2kWzLV1ieI1ki9dl9upsV/3rCoOO272YZs2ZWK2VbVlPHgp7DGb4VbxzLy9Tfs53SThh0ysO/MxFyiA96PLvs50WffFl36wItRG6lHVMVffJlx4rzpUe3WOlucxjQzxuNyyFQkZMgegQAaHG4VEBGRXdHuHy3d9cwnMqKwBGaUrNaYTVgPy/knpws1JeJ75CYiRsc4WACNcfRE2VoaOjUqVMnT5589erVHTt2xMXFmWvmUm+hAYlwQZLlds8SpTJCXgAAuCy/+OeyRUmejiRJ8HK0ZdbACHu/Tv1AFP/+sVllf7rPJda627UFZYiWNm5ie5s2bbhc7rp16y5fvpxUzq5du6jKty8fX3/99aBBg0aMGLFgwYIFCxbU/MLLRWhbCeLV+ZVKYnsIymrVmn5VenwbVecW4fA8P9lSk2GxvCdQvvgu+N+sqtKyTLdWbgu/p92SWM5jy/poNkEFIvGgCcI+r9M//ba7cQWoqMKBoT6zN//zyZZFPRkiJ6fR71DHnDYdEX5FvVis8Jk+2fYusllRpLlwWJd0zjIU03X+NwiTZcp6SL2MrawdY2OQUhm1N2kPXcJp0mStfkxFqzJEzoLuQwDg3xziFXeEff+Ccu86S2E87bU4Sz2gsjfIgEGt0J2Pibtysp83wg3pwrdQYqsX1SZYYBgWGxs7cuRIJpM5YsSI2uZnvGQ0ZR4hxbIb+Nd37ObxqE7tLj60iSRJXFGsOPQr1XjiGTHoBNaos6o0B5WKJAgqt0lzLc4q+6eJJlAP9j0xjz1TrzmXnP+nIk+xEdDpdFFRNhYily5darybNiNt27YtKiqijwsKbGSvkrbyCN85r/vmljHvkwkOBjflZdJZpNqbZyxTb2uC/O8fLP/XZp26+LdPCGNZ4hr1USRMRlwlr9WwNLrky9rEeHtnjc/SZNu/sUpSpOeTu3KMSqmwOIE7+Fjq713TP0xSmUjxNpPaRJo1pdrEeNJspr6/GSrCa5fJbP9vQ6UA2ph/eR6h5cQsKdaTTttNsuM7NdfiSJKcfgH/+b4ZK8qR711XsGYB3c1UkIXLC6te/le6WbTNNPo0TpKk7K/vqiZK1i2P0FF8fXp6+q5du7Zu3Zqbm9uvX7+///77jTeqqTfbQoMT4YIcfWZ3vcLvNogoVQIAw8nV6Y2yB0MHtSYaCawwW77z/zyWbeRHDQSUUf0FzxMePKRAXy+VNVPSOTwotOZVDGvLyZMn58+fP3bsWMvytn/88cfLGiyTmZkpFJbpngsEgqdPn3p42EhgNRqNhYWFv/1W4Z2L5U/9dyjB69zXynel3P295M0FCJsLAARBmMuT/JT//M4K7YryHGmsk5hJe/EfYfkGvHjcQhKAHh/Lz2L6hxAMJpjNAGA2m81mM0mSeHEe8B3FTmvO7EXYXBIzImyuIGYk3W4qzEGFEnp8zbmD3Hadmd5lhZZQNx/x2IXA5li+wYLP3/L8334A4HcfbCYr5kaacdOTVE47G+EkhnvXmN5BTBcPFph7uMMniXif0nu+Dy8mo53ccm7ntY65VgQjfBGSqPR3xHIey39dKZm0lN26Q8n/zXVdthGtEh9O/QWoY2PGfZZfOysJe2cWhDvDcbmEw/OWp+LHnpGfRyKIwFP02mwsN4O+FhG7ErgJqvggh3iDwQyv+ZJmsxkryiEYLKvQX+rvb/n3QVHUQU5gWR8bfyODYf/+/YMGDWrXrt2ePXvmz5+fl5d3+vTpsWPHthQjbHocZ1CgAjGVt4flZapO/kU1NmnuBAAAMF29hD1HkDhWsMpGefrnHM/67RECgOCtFWwfR8nL9USr1Y4bN86qyPvQoUODgxvxps2FyWTCMIzBKHucYrFYGo3GZk+9Xq/VahPLSUhMGsh+GiwG7rBpmBX5zzC9jjqUbVhm0qqpY/Hbq81MjnXnyhgKc/TJV+iX2pTrqouxZafys8AzgNv3TatLjEW5ir+/rzRIQbb2/k3LFhA6IV4BiLsfCCSW7ewew8HJjX5pepaG6dT0S/XlY8VrF5h0WstLeNGvYRiG4Th3yBTLdpOiWLl3nc03pbnwj0lWWLx2gcmgfz+M0JiIk5yInWHzn+QUeyXtTywmWAgxpw1ePpBJtvV/qlO7wcPfacUmNCgcN2H84dPNbJ7NwSvucumI/sm9qu3LOxAXfIecQkMSi4kF7UhPNo5hWMmvH4KLZ8W1ifGq49urXitEsa87EcO8cAzDJPO+xQFxPAcMw4gaiBtUco3euXNn7ty5EolEKBTOmjXr6tWrVuvHX375pbZLzpeMpneNYmaSv9WktePp1D9IzP/lQ5IS+iqXawrZj92VNbC4mgNozySBY4r9G5rsvlUnUDdKTaR4W71U1uo5gWopKCjYsWOHVeP169eTkpIa9b7NhVAolMnKvH+hoaH23qZNiTVDRory6BYHg2tvnKLdoab8p7Qn35SXWRq30+Yllm5AQ/pdxYFfSJI0a9W5H4/HFUVWEyBJkjTj+tQEy3bNleN5n04k8Oo3LJRH/sz/+m17Z03Z6XlfTCFMRhuncp/Idq2t9FEkCENGis1xcGUJSRDyXWvpt2bISCEMOpIgsMLsqv21t84TWI2+I5auUVP+U8Kgs9mtZMtXVu+iaN37paf+rng7BVm6u9YGyBJT9mPtzdNV2xtAYm306NF37979/vvv8/Pz//jjD8viZ9ST2u7du+v4mNdCXWGiEOKE3LMjzM32acOO7AsAnOBISiNDj0OWhmzX0OJq1VLy+6d4/lOnMe9W3/U5Q8wCnAQH1c6aHRzHCwsL586du3nz5v3lbNy40Sq//qWhQ4cOKlVZwSOj0VirhS9p0FeVVtBePUFXUOJ17kunKyj+/p4O2iQxE13L1xLT0weWiaecNuFOb84HAITNkU5bSScbVAJlsP0q+cl5nfuyWrUmLcYp2fQZadTjxblWgZe6pHOWaQ/a6ydJY4W/guXTxuvzHVT6B03xz8sJnYY04wxRpbwgQBCb0yNNBrw4FxDEedIHtFtYefBXvCQPEITQaSxDPbG8TM35Q/xOfeoQDc4QSqpKr1HgJXlWugTi4dN5Yd3olywPPzpX0ibGzPuWQUP1pPJUxOJhw4aVlJT88ssvVbvm5+enpKQ01I1bqDkRLkiyjOxmS1sdFUqYYd0AAMt5bFYruKFR9xRkiARhN3mCGaddJ3OpTHMx1rkh0nqaGHceUqgn61zVs7G5cOHCZ5995uXldebMGbpRJpO9/fbbzTirxmP27NmXLl0KCAh4/PhxdHS0SCSq/ppyLMsS0ehuX2B5BbADw0jMVLB6uteqv6l20eBJDFdv6lh75Ri/++CqA6ovHOZHxlhmLKjidnLahAODybEfu1/wzRzPT/6kJQ/N8kKXaSstLTRp0AGTBSjDqoqvx/JfLSMt1ecOcdpEMMuli7DcjNKjW1zf+Z/lJQyJFADYvsFs32CrZ6OSjR+6zf+W4VJJ9sX4+K7m8jFOm46mzFRjRopo4HgAcHpzPssrEADkf33rOv//6PeL5WealSX23qZjtNdOkrhJbKEXU/E2l1mbGKui4lj+09Ijf7rOXW1vcGGvVwEarB5nJUMYFRX16aefOugtl79gkfHVguM4hmE8Hg8A1Gq1UChEEEStVtfqu9fYRLjY3SYkDFrN+iXiz7YZn9w3K4u5oVFNv0FIIeo7Gi/MrhpZ/kJAbRMGPkf/80q4urp+++23771XqWDQgQMHTCbbj9svOjNnzjx8+PCpU6eys7MtY2Fqgvb6SbZfO1Z5dAmFy5QPy1ZLKMrv3Jdu54Z0odclTK8A/d0rvA6vWA0oGT7Nal1lzLyvuRTr8tYKB9MQ9R+DMCvWbaVH/2QHhFpq3LgtXAtUyehZn9HdSKMey0lXHvnTZfJSSjHRbd7/LO+OcPmmnMdW96KUZfS3LyJcPvhUKistGjQRFVh/rNkBoRIXT2o0akFMmnGmiweVIuL05gLLTHZ+l/7QpY7V97jhPaqmTwAALss3Prwl6DWi6ikalC9ieTmqMqa9eZofNaChfukqLRzefbcav9YHH7x4D/sOiIuLmzFjxqVLl6iXq1atcnd3HzZsWEZGhuMLmxgH8TIIi8NsHQ4AgleGigZPhCYWV7PAmJGiu3WeVnt6sSgXl3lO6dmz51tvvWXVOHjwYCvhp5cGBEFGjx49ePDgWbNmUQ+pNceQmkDorINrzKXFlGsUYTAlr8+h2xV7f6JTzkV9RxvuXbN25ZEkaTJYuSJd56z2/GyHzcx6GlH/MZa+RNGAcWzftobUBOolXpyruXSEOi49tpUuVWHKeqQ+u1/UdzRtivCSfMthmVIvj2XWNYJUJ7abS2Wm7DRCU2p1StB9cFUhXEKrYrm3AgCWV4DL1A8BwJB6U3n4d+osp3UHsFAs0iWcob3KtYXl6U8rhluC5WQYy7MV7cGQSB0L9JT+swka7rG7kiHs2LGj494REQ2Txv+cMGzYsHbtKh6gevbsWVxcHBcXFxkZ6eCqpidSityVkTZ/pxEGkzdyDgDgikJSpwWAO820IkQ5PGP6HV3Cmeq7Pn/UU1ymsREKhc7Ozg8ePFi2bNmIESPmzJlz/fp1sVgsFje5uPlzj8u0lVZONgDQXIw1PEwCALNaIdta4VfkBkcyXdwBgDBoSzZ96vnJViubh5fkybZ/YzUawmQ5VngHAPnO70yZqfRLlncgNyxKOrPM34blP8Vyy5629bfOE/oyy832byd5fQ6/a39UWFZGuHjjSitxFsoRaokp6xGhUUpGzuZHWUtgKg/8rE++ZNUo27IaKyrbXdNcOoIX57I8/YXl6zPVv39rrxynO6vP7qcl3GqLKTNVtsVGXQheeE/nMdXpJBBmy/9UVdyX/ULlwzQILekQFajV6gsXLpSUlPTv39/Z2VrmrhlxYoMTB5l+wcxlAAAM8EbGBVk8su1ekzp0Wc7RE6V89xvBo+7IyI7NsSJk+bQR9BxhykxtMK2HJsSTD1seEbdKrB82ZrdD61X2uuHYsmXLhx9+2KZNG4FAkJycPGDAgPXr18+aVb1O5n8N3fV/q/rcRH3fZEhcAMCqTCC/2yDqgDToUa4AL8xmeviiFuIsDLGL06i6bMSyPP2gPNmMxLGCVdO9/++g7uZpbvvuqEDMC+/Jbd+dOuu+/FfarBIGHcPZTXPpCGnUU1t3rrO/cKBESuE672ugXIUR0Van2H7tUIHEqlE0YBy1IgQAvDjXxBXwOvVmupW1cEO7Wuruus77uqrprSEMF4+qldd0ty/g+U/Fw6vLs0JQvDDL3kmzWgHV6ZXXipffEBIEUVpq7THgcDhVy2v06NEjODi4pKRk6tSpR48ebaoJ1ojtfRhppSQAZKrJ9fcJS0NIYtjhdKMhYHgnL34XPjLMlyHlNM8ksZzHkpEv5E/zrHaoN9/aCh7JIk7lks+DIUxPT799+3ZWVhbtJ1SpVLNnzx4yZEhLPUJLSDOujN1c1RAypB4IggIAQyKVzviYbtdcOYayefyoAQwnV5epH8p3fMML78Xr1LviSgTlhHSpw0xEgypKASMoKho4DgD0KVdRoRM3LMqQepPl04YyMFjOY6ZbK+pYdXwbJziS5RWAywqoa9n+7WwNXwl9yjW2b7D69B5umwhgVXKE0pa+ApLkRcbQqhdOr88BBC36YZHLtA+Zrt4AwGlT4Rek4kvrbgglUsqcW4IXPONZbNPaBUE8Ptxk76Qu4SyhLa2JYHoNefkNodFotIy1owgICLDSrDKbzVevXg0ODnZ1dU1KSmrCCdaIvl5IXy8EAJQm2JiKWdZKEEz96MoF3tchaHSgGGE0ZzkCw6Nb3I69rKpxvhD4CpA5IdYGT405kjtvSuLj49euXcvhVDzgiMXidevWHTt27GUNHK0bCIPp8cGGqu2a84cRJks0cLxZWay/c0nYd3RZfxaHJAmgIk34QtGQyYzKlUlKT2xnufsIeg6v7Uz0yZdJM14WmIMyKHvgPH4xwhMAgOZirGjgOMrA6BLOcNp0pPwovC79WJ7+DImUskZmZUnxz8urFUTV3ToHJOE672uGiztUjho1pt0xPXtkaY10ty8Y0+44T1hc9hpBNZePctpGMiRlkqdY/lPVqb+l0z4CAGPGPc3FfyxNY+0giOJfVri9twYAgCTlf30nHj5NPKymNcvU5w8Jew636f/kdXgFGA2pYNUMhhDDsHv37h06dCgsLGzixIlWZ3EcX7duXUhIyNOnT0eOHOnrW01NH5ujXbt2LSUlxd3dXa/XT5w4cezYsQ5GIEmSum96ejoAaDSaNm3a1P3tNTKUmzSzvMozAJgSz2jyOrUp3GU0DuC2t455a0q4YVGmpw9eRENoEykHUp6PKGmj0Vi14pJEImkpw2SNyUASNgoDcEO6AkkAAC4vMqQn04ZQUL5gMmbc5bTuyAwMs4py5ASEMj396jARQq81l5bVAjQ8TDKk3nQaPQ/h8IzpydyQLk5jFjClntRZ8dC3EE6Zd4rTOhxhsgi9RnngF5cpK1CeQGihvmYPpzfeQbl8U06GZY5HGShqVistGxgSaaX8PJIsPbbV++v9dPQsyhfRhX/Z/iE1LCllGxQFkqDqTJnVSkAQZpX6vQ7Q3TjFa9+d9tlagrA5tjM460ozfJF0Op1Wq9Xr9UqlsurZ33//3cfHZ8SIEbNnz54/f34dRjMajZ9//vmcOXNef/31rKys+Hi7MvDnzp1TKpVJSUnJyckcDmfYsGFxcXGbN2/eunVrnd9dExDhUqlIYemTtI5YllOX3pYS+82CMGaUwFYm1guKlAsy43OxIuzateu2bdusGr///nsryYsWTA8T1adtFHxnB4RQhdo5Qe2l0ytco6ash7qEswAgeeMdXqfe+rtXS49WWn7xImNYno6C+O0heGWIeMgk6hhhMKlfc0KtVOxdBwCEppR2TiI8IWnQAQCQZP7nk4EkESabChZFODzLSor2IE0GLDdDsfuHqqc4bTo6vTG3UkvrcHp7EgAARZ3HLLB81wyJlJbFIDGjTTtUc9wWfk/tcTLEzi5vLYfaPLq5vbfG9t1JsvD/5tpL1a8bzbAilEgk0dHRcXFxNs/u27dv06ZNAMDhcAoLCzMzMwMDA3Nycu7duzd0aFkKDoZhe/bsmTJlCj3ayZMn6REuXrxIS/SGhYXt2rWrf3/beTD9+vXr16+ijEivXr0AYNiwYQ4mn5KScuzYsfXr11Mv2Wz2iRMn2rZtLLVlm4SKmAn5MEhaFjp8Ofyt4hIXvDWOA0BzSI1USEEyOEA0wxzsaVHWE54ZLdIy1erqw0mtJoAgCK0Z3SD07Nlzx44de/bs6dy5s0QikcvlFy9e7NOnT1hYWAPe5SWA6R/K87PhztEnXzJlPpC8PsesLMFL8mhfn1lZbMy8z48aoL1yXNh7FKd1B5RXKXSgcM0C9yU/1UFUxVwqMzxMop4LOcERVOo9w8VdOm2lWVki2/6N1xc7qZ7GB4n6e9dcpqwAkhREDQQEQVhs9yU/AYApO019dr+l5baJ5tIRhsTVeayN5DfSZFDHHxAPrci9KfphkduC/7PMqUD5Qqabt+VV8l1rnMcuRNgcxe4fRP3HcNp2qu3bp1Gd3i14ZahZWaI+vVs687PqL7AAL8plunlX1fUGAPHwaVbxvfXkudsjfPToEf0jIhQK09PTAwMDfXx8YmNjjx49+tprr2EYtmzZskWLFjkYgZYnpkZowOm1b98+KCjoww8/pF6SJMnhcKzUkBubKE/ir8ekSFT2US5S5A9i6Q07/nAe9149H9/qTLPrDzTGBHwJUombazhyY/8Ffvvtt507d27cuDEtLc3d3X3u3LkLFy5s1Du+iKA8AdvZpWo7Q+LKcPUCAGPGXcPDW7Qh5HWM5nboQRr1qpN/CXuPYji7o+JKlzNdPOpWaNpcWqK7cYoyhOqz+zltwtn+IUAlPzAYzuMrfr7YrcOpjUNAUTrHUXP+EK9zX4TJZnlUszcEAIJXhiIow2ZdQxLHtDdOWRpChkRqtetWdT8FL84lDFoGm8OPGsjyrZewu+lxCrddF7NKzuvUp7bXai4c5nUsi10iDFosL5OOQRVGv1qfWVXluTOEGo2GxSr75HE4HFpycMGCBT///HNsbOz58+eXLFni72/XX2E5ApfLpUdoEFAU5XK5dHIFQRBZWVlNXD28yEBevkduyixzMiRcSGzN0e/iAm/PfnqzoSkxGAxcbl0SekQi0YQJE6qtkNJcSDmIzPBcuEYppkyZQnlBWrCH7sgmZuc+vKpZBAGh7IBQAOC2784OrNjDJvQa45P7vA6vUIpfpFFf+N18z08rdkYsZV9qBdu3rcv0j6hjvCiHE1S2dtdcOoJw+KJ+o+meDLEzygsHAGP6HWNasnjENAAwZtxjeQdx2kZS+jKOYbq10lw+alaWOFloBVCgfJHHikrSPDV5R+6Lf6IOeBHRdXsOqLjd21/WeQTRkEkVwgKF2Yq/v/dYthHh8DSXjxJalaV1rz+NYghTUlJOnDhRtZ3L5TpYyVE4OTlptWXStBqNRiKpSIKZM2fOkCFDJk+e7MAKUiOkpaVRx2q1urGTjo8fP75x48aYmJhGvYsVQ82QmFQWOMrmQjGDJzMjcO9BU86h/uzcuXPAgAHu7rXYP29KnDlQigFBAtoclvqjjz76+uuvHXSIj49HUbRv375NNaMXAFbrjjarQuKF2dqEM5JXZ4DZbKn1jBflaOL3s31aEyYDAwBhczntKtyAWO4T/b3r9FZf7UAQLCeDEeYCAM4Tl9DN/O6DVXE7Ld2VpMlQ8NVMr1V/kyYDUl66z+WtZQiba0y/gxXlCHtVs/rRXD5qSE0QD7JOVKAwPkriduhBvWv9nUskZqqad2+F4f4NhpMrwuHJd/yf+/vra/aGbYPlZKgvHOIEthf2HlXbay3XuGz/EM9PtgL1JMHmcDys0xPrSaMYwvDw8PBwa3GHGtKuXTt6DafRaOjtN8ojumXLlri4OMpH6mCEs2fPUsdqtdpSO6YxIEkyJibm999/b9S7vJTExsaStgVzngsYCAiZoDSBS3PkZZaUlFy/ft3BU8KlS5darKAVrE59GbZ81KQZx2X5AKC9cYrQqSWvzqDa2X5tnScs0V7/FwBYQ98CBHEeV+FwxuWFhK6u/iSCkP35Zau1RwFBVKd2iwdNoGJGWB5+vIhoy/BOhMWhsiy47V/hli9WzWoFoVWZlSWEqvrAZY5/CMvDjxNsWw+r9MQOllcg090HAEw5j6mVsWOMmakMkROvYy9eZO9qOztGf+8aXpxH1wyvFdrLx0jMRKVbyHetcR7zLsLh4YXPGE5unO5D6jkxK5ot/Fqr1ep0OvrlggULbty4AQBTpkyh0vhKS0s9PDyoxR+GYUuXLl28eHFgYOD8+fOzs7OtEt41Gg09WkxMjEKhoCoUJyYmTp48ucneVAsvGVJuc3pHe/To0do+X3zxxUtWKFur1d66dYs6zsnJOX369OPHj2kp4Jqg2bAEbD1asbwDqcQ4bmhXfqSF8wZBCYOO36kPHe2s2PMjLe/JC+9Rt19wAAAUdZ33DSAIEIT67D7LM8r9P1dyeCIItTWoPrsfL8qh2kyZD7RXjvOjBtos3WAFOzBMlxhvyrxv86x0+sdMVy/qWPLqjKqq4lURD54k6DmC4ewu6j+m2s6OEfV9w+2d/zHENjZuq4Ub0qVsgU6SWPZjhMUBAKcx71ZN0q8/zfBF0ul0W7ZscXV11el0v/7667x58wAgJiaG0siYNm3a9u3bT548mZGRQacxyOXyDz74wM+vLKFn/vz5iYmJ9kZjMpnr16/fu3cvl8vt3Llzy1NzC3VGygG5sXluPWDAAKPROHDgQC8vL5sddu/eTT3tvRzcvn371KlTJSUlnTt3BoA7d+5s3rxZLBavWFFjGXeSRN18bAqSkSaD5uoJUd/RTHcfSmKGwqxRyv74wn3xT4zy/DaEwSKNZY/UuqRzbP8Q2orUFqarF5AkoKjX5zssZyUaON5SwwwA5LvWigdPNDy6xQ0tU1HndezJDgwzpt1BuDy2XzU+LcODBGP6HXuJ6iiXT5iMKJePF+caUm8K+7xR7cxJAsfyMo3pd9m+wY61xasFrSxQUCtYPuUBwAji8WHjutyawRDy+fyqZS4mTChTJEIQZPr06VZn6XQIGlp33+ZoYWFhLZHlLdQfKRdkzWQIx48fP2bMmNOnT2dnZ3t6eg4aNMhq/Ydh2MtUhqlTp04Yhu3fv59uOXDgAB31ViMQhIqyBJMAACAASURBVD/BdnkcQq/VXjoi6jtaFbeT6exOa7AxhE6SN+YWrl3g+dl2SvDTySIJQZd4liFxrbMhlG37n9Ob85hSb6zgmaXKRNVlFsoTkDjmNr9C3Rvh8MiSfH3qTaarV7WGEOXyhTEj7c1TdXoP2zdY0GOYKTO1hpUF8fws1bGt7IBQWvu7WTCm3dHeOOUyZbn+ziWGk2tNnLp15qVyrbTQQsMi5SAyI2n1/N5kMBgMKne2oKBg9+7dOI5HR0fT5doHDRr0PO+w1p9Tp06x2ezCwsKqJahqC0MipYI+2D5tKiVIIAg3NEo89C1a9trw6BaYzdQyyGXKCrqAex0QxoxkOrsbHyfrks47lltyGj2PNOOaK8fouBjSjBf9tNjry12UP9Ax7MD26nMH7Z0VdB9M1Qe2oTtqB5ZfW8mot6l8j2aE4eTK8vQDAN3tC4IejtK760+LIWyhBbtIuSCzUVi0qfH09KQSJ5KSkjZt2iQUCkeNGtXE2asNRVxcnJX+AIfDGTnSWkhs0KBBlLbq4MGD+/btW39tcVPWQ25YN16kdXR3wVczvD7dRr80ywpwWT5lCKnMijrfkd+lHwBw2nRkuleTC2i4fwMvyddcPkobQoTBdJ6wGC/OZbr5VJs5jhfnmp7aLe/H9mtHEmbSjGvOHazh7hrCYKI8oWLfesvQoaaH6e5DaZe7TFlRzyyOamnRKmyhBbu4lK0Inxe6dOkyZ86cVq1adevWbd68eTZFCuuGg3TboqIimUxWn9FMJtPTp0+pHc2YmJiBlbFUd6L55JNPioqKAMDZ2Tkry245nppT8seXQJKlx7cZM1Is29n+oaVH/qRfCnoMoyoEmdUK5b56ZQ6UHt+mvXEKCDNV8tAB5lIZoSm1dI0CAK9DD9W/f5ueVp8TRRh0LB+78or6u1eU+zbgBVn6lGs1nDkAFP+8zJT1qOb9GwNCp5bvWmNWyQ33rzf2vVpWhM3A/fv38/PzxWJxt27dqJZr166x2WyDwUDJvNUNjUZz/vx5qVTaIkHZUEg5cF/R3JMoR6lU7tq1a8uWLbdu3erevXvnzp1rW73dJtu2bUtPT3/48OHBgzbcaytXrhw6dKher3/8+HHVzfiajJaQkHDixImxY8d++eWX77zzjre3t71rDQaDwVC2AA8ICHB1dcUwTKVSdepUd4kvGrf5/wcIAmYcQStVLRD1GWW2qMBOYkbDg0ReRDRD6FRbSTAr2N5BCIerPPInt10nfhfbKo8Ugh7DcEURWbneumLPT+xWrdk1kLBn+wa7zllt7yzT04+tKWV5B7nOc1Tn1grx8GmO59wUIIhZVmB4mGR6co8X0biJ2i0rwmbAzc0tMTHxjTfeoCVpGAzGp59+aq+YgFarLSwsrHZYFouVkZHx66+/NuRc/9s0Y9SoJUlJSXPnzvXx8fnkk0+6du16+/bt69evv/3225aFmerM1KlTBw8eTFSuWEsRHx9PEESfPn2GDh169+7du3fv1mG05cuXf/DBB2FhYbNmzXr//fftXZiampqZmRkeHv7vv/9S48TFxe3fv3/Tpk1VS4fS6HS6JAv0ervCsEypBwBIRs6m1LdpNJeOcvwrojDMKkXp8W0AQBj1DOd61TfgderNDevGj+jFaV1NUjVh1Cl2/6hLrFQegNvhFXZgKL15WWdYHn6CXiO0N0/XZLvR4ipfLD+znreuJyhP6Lbwe35EtGRko9caa1kRNgPu7u5BQUGbNm2aNWvW3bt3nZycunXr9tZbb9lbyd29e5ckyaqhs1ZwOJzo6OjnsJjii4uUi8iMNixE05Cbm7tt27atW7dmZmYOHDhwy5Yto0aNoo1fQUEBgiDVfiqqxUEtp5MnTwYEBFDHXl5eJ0+e7NixIwCsWLHis88+ozYpMQz79NNPV69eTUV4Wo2mUCjS09Mp9WBvb297UvtQJdJbJBKNGGFdX9eKoqKijIyM2bMr6gTNmzevamU3CvXPK4TTPzPdu8oK74lKKiRLzCyuRqtB6Xq2bAF33BK1Wm28eozUKLmDaxenY7n9aX72CM+8z44eiTGYjpXoiZI8rCCLPXKO2rJb266lG97nC5xRF8+6TYCC1Gt1+37Enz0yB3epuVC1IfE86u7Ddra7fLeHXq9ns9mMBioWaIjfx/AKYIV2q7mUv8lkIknSMqCay+VWG37cYgibjSFDhgwfPnzx4sVVK+yUlJSkpaV16NBBLBbr9frVq1cvWrRIoVA4OTlVVebMy8t78uRJZGQkLVZuMBioqh20BOiTJ0+KiooiIyOpFplMJpPJ2rZtm56e7uzs7OpaXpMTwzIyMvz8/AoLC9VqNfWr9+jRI61WGxkZ+R+sfifl2A2WSZGTo8+YCRIAgCQ58SPIAFFDBpf++OOPy5Yta9Wq1YwZM2bMmFFVVjAuLi4gIKD+htABOTk57duXueZEIlF2djZ1vHTp0mXLln377bd8Pv+TTz6ZO3euvR+avLw82n/LYrGMRqNKpWoo1UN3d/fw8PBr1yq2vtRqtT31c3TgOL6HV8mRu/yOr7As+oimLrfqial5LKGQE9YFAGHXXkudnoCRx9PpSrU/vef58ZZqLJCwLW/mJ2yfQMt0Q2P6HQRBxF5+CLt2636rvwDJ5ZiYTNcVvzFdalFoXjh6LoIybCZlOobJZDagIdQkncUwk0u3ajThLKEMYW2dJS2GsGEo0MORrOqXDv5CZIhPxWfr+++/j4yMPHjw4Jtvvkk3HjhwICMjY8aMGUuXLl2xYkVBQYFarU5ISFCpVKNHj7b6hP3www8CgWDUqFHvvvvud999BwAymezMmTNt27YdPnz4yZMn2Wz2li1bvLy8IiIipk6dumHDBg8Pj/j4+IULF65bty4iIuKjjz6aOnVqdHR0UVHRokWLPvvssw8++KB///46nS48PHzBggVvvfWWRCKZMWPGtm3bnluB7EbChWM3j3DzI2J0ADI3FAUATKcPEDVkURgAePDgQVRU1MiRI1EU3bPHusaeXq/ftGnTvn37bF5rCUEQT58+tXnKx8eHzXY0bcvHahRF6Q08Nze3L7/8cuXKlSwWa9GiRfSqsSoYhlm+pAZpbPlfm1Dx965zv6o2/lC2/WvXOatYXoH1jFTkBLXnBLVX7Ftf/ToMQeR7fnKds5qu1gsAqNCJ1+GV2lpBG2Oz2Jb5ITW9ivFcmAaPFb/hJXlNcKPn4t2+BKhN5K2S6rO6zCRYJqUJBIJt27aNGTOG1uzW6/WLFi169uwZg8GYOHHiL7/88sMPP/j7+/fv379nz55Woz148GDfvn3Xr18HgICAACoqr7i4+NVXXwUAoVD45MmTkJAQk8nEZDK9vb07deoUGxs7Z86csWPHfvzxx127dg0KCurdu/fZs2ejo6MPHDgQFBQUGhoaHR19+fLldevWxcbGqtVq6r4CgeDGjRuvvFL3aPIXEVc7EmsYAXufENdGMoNECAA0UgHG48ePu7jY1aZSqVQ1UZYxGAz2vOUSiUQqdbRKcHV1pZ11KpXKcjJOTk4MBsNoNLq5OdpIk0ql9Ag4jhsMBrpySxMj+3OVaNAEXJbPC+/p2MJJXpvFEEuLf17uMukDSqKzbpAmo+biPzXMQBBGv2ZVR4nlFaC/fUHy6ow6LMusUB7+3emNuWxbhf2ec7DcJyy/etWBqiEthrBhCJYgv0XXxRvQq1evSZMmzZ07d+zYsQCQkZGBIMi5c+cAwGAwONaHS0hIoD1mX3zxBQDk5eXRGVdsNpuKHZg0adKmTZvUanVWVhbtPiVJ0tfXl+pGPelHRUVRwnWpqalU8GpSUhJBEGfOnAGAV155xcGP8suKkAU4CQYzcCv/b09kE6FOSFCD+kKt6NKli+M/+Lhx4xyv5yj4fD710ao5JEmSJImiaFRUVEFBAdWoVCr79CkrKUdp/y5atEgkElE+UnsOyVatWolEIpIkEQRRKpWRkZG1E4tpONh+bREOV3VsKycglBZUswm3XWdgMDjBEQxJLXyJVSFxk+rfXWZFsZOtkrlWCGOsMykBgOXbtv5WEACcJyxmeTqq2PPcorkUKxowrlE1ZShaDGHz89VXX3Xp0iU+Pn7SpEk+Pj4YhvXv35/akCstLaW7KRSKx48fR0VVSP/5+vpaRpNSyVtVvZcxMTF//fVXeHh4RkYGAKSlpdE1PSxxcnLq0aNHbGzs4MGDqZ+8wMDAgoKCgQMHUh0sJ/PfwZkNciPpza/0V92RTk5p07g7pnPnznXcoaFW59nZ2YmJiVlZWffv3w8KCuLxeJ9//rlSqVy/fv2YMWNmz55tNpsxDMvKyho2rEzdY8WKFZQCPgB8+eWXH3300Q8//EBZuKqjvf322//+++/QoUMPHz78wQe2JdCaACo1Wzr7C4ZTNbGgqn//Yjh7SEZMr+cdUb5IOvNTY9qdOo8gnVFNbfoaUpOihs8n0lmfN82N/nPhD88DGIalpKTcvn2besnj8bZv304lRzs5OS1cuHD79u0AkJOTc/nyZQBo167d48ePMzIyrCIj+vbtK5FIqKodFy9ezMvLk8lkSqUSx3Ecx5VKZWlpKUEQRUVFPj4+BEEoFAqtVnv37l2j0ajRaKgs6ZKSEjovOz4+Pj8///Hjx9TScNKkSdnZ2dQO07Fjx+g6kf8ppFzEKl5GboT4POLNwJfku5Obm9upU6eff/45Pz+fciEsXrz4448/BgCJRLJhw4Z///336NGjf/zxBx17tXr1asoKAoCbm9u3335L66BWHW358uUcDufkyZOtW7duxlIwmvOHjOnJQJLVrrE4wZEImyPf/o3jbjWBxEyS12bWf5wWGhvk5ZYrbHBWrVplNpu//PJL6iVBEL/88su9e/dqVY/w3Llz2dnZJpNpwIAB9A9Keno6LSN57ty5kpISHx8fKqHCYDDs3r2b2im0GgrH8cOHDzOZzLZt23p5eR08eJDL5Xp7e5MkmZ+fbzAY3nzzTbVafe7cOQ8Pjz59+uzfv3/w4MGXLl0ymUw6nW7QoEHx8fFMJjMsLCwrK0ulUolEIgzDzpw5061bt3feecdoNB4+fJjP53fs2NFBTETd8PT0TE5Orn/co4NYwfrT5xi+qgujj1fFr+fGVOJKIbmrX4W3tFEn0II9rl+/vmTJkhpGjaridrK8AuS71nj/36FqI0Hwwmz1hcN1EBizmkDBVzOcxrzLDelS23HqTLN/FBs2faIOtESNvjDY1JSirWDVDlwud8aMGTaHYjKZljtAb79tI/PUxcWFLugxbdo0ABg3bhx9dtasWdTB2rVr9+7dSx2//vrr8+bNe+eddzgcDl0Y5L+JlGutu73jMfFF52b7nrdQN6gqRc6YqVoriOU81lyMdZ7UAF5cTlAHQtdIoVQtNCQthrCFMpYuXbphw4aAgACSJNPT0+lV738cq1TC9FIyS00O9P5vpZG8BBif3AOzuarodlUQntD49IHh0S1uu871vKnT+EVWim4tPJ+0GMIWyoiKirKMxGmBwqok4fZ04q02KPMl2R/8D2HKemRWFMl3rfX6YqfjnkypJzekC6FpgNCw5yQbr4Vqafk/NQPFxcXPnj2r2h4UFOTs7GwymWoSFl9DZDLZ6dOn/fz8qqYhVoUgCLPZXOcAd5IkcRxvrvj4RsKFgxTrK/bRz+eTX3VtecZ/8RBGv0ZixhrqbRI6Nb9Tn8aeUgvPDy1Pts3A9u3bz549S5Jkbm5u165dNRoNQRCHDx8+dOgQAAQEBNy8ebOh7sXn8589e1YTCRIA+Oabb+gtwxpCpWRQrFu3zp7S44uLpe42CZAiJyNcWvyiLx6EXouX5NcwhtOU9YjEngO19RaaipYVYTPg5uZGBa3k5eUBQI8ePdhsdteuXSnR0WvXrlGp7g0Cj8eLjIykblQtCxcupGW0asiBAwdWrFhBHc+ZM+clNIQWrtEMFenMQZwboORDC02NMeOu5uIRppOry7SV1Xb2/PjPavu08DLRsiJsBkJDbQglIAgSFhamVCrVarVGo6EiVtLT000m061bt+RyOQBkZ2ffv3+fznghSTIpKenKlSs4jlcdkOqfnp5u2WIyma5cuUKlMOI4npaW9vTpU5lMlp2dTRBEQUEBlZWvUqkUCgV1rNVqFQoFJTt58+bNS5cu0QKS586di42NVSgUOp2OJMm8vDzqErVabXW50WgEgIyMjPj4eAc1YJ9DpBa1eZNlZIS0ZTn4QsIN6SIeOA6aL6y/heeZFkPYMJhLZeqz+/CSPBIzqc8dND65DwDa6//qky8DgCH1pubyUbozXY/Xiu7du+fm5s6aNevGjRs4jh88eHDmzJmHDx/28vIaN25cbGysXC5/8ODB8uXLAYAgiJkzZ3K5XHd39+nTp1vlgxIE8f777z969IjJZNK1b0pLS2fMmBEUFFRaWrpixQqj0bhjx45FixYlJib269dPq9Xu3Llz6dKlAHD16tXQ0FDKVXv8+PEpU6bk5OR8/PHHEonEz89v3LhxBoNBq9UWFxeXlpYmJSU9e/aMIIi9e/cuWLAAAG7evBkREbFz504AOH/+/Lhx47KystasWZOQkNCpU6f58+cXFxc3wj+hUZByK6JGk+VkxH9OZu4lAeXwWa1au7xlXWuihRagxRA2FCRuInQaEjMBSZA6DWkyAAChUxMGLQAQBh2h00ANtAvat29PJdGzWKzZs2dnZmaOGzfOy8srLCwsJycnIiJi4MCBlBLpnj172Gx2+/btg4ODuVzurVu3LMfZvHkzl8sdOHBgYGAgrei9Zs2aqKgoLy+vvn37Xrt2jSTJqVOnZmVlDRkyJDU1VSQSTZkyheo5dOjQBQsWUFIyUqn0jz/+oOSyEATx9/cXi8UJCQkCgaB3794SiWTgwIEhISEMBoNOdhwwYMCiRYuoy52dnTdv3sxms7dt2zZhwgRnZ+chQ4ZQNvKFoNKKUA4tG4QvKKacx0U/LdFc+Ke5J9LC80iLIWwYmFIvyWszWV4BCJsrHjGN0pIQ9R8j6D4EAPid+4oHT6yDfq6npyelHcpisby9vaG8qBsA3Llzx2g0njlz5syZMzExMVZFAK5cuRIUFEQd03UE79y5o1AoqEumTp1KLSL9/PwAoGqc6uzZs7ds2QIARUVFnp6eADBx4sQDBw4cO3asuLjYskCPTaZPn759+3aCIJ49exYQEHD//n0Oh0PdWiAQdO/evbZ/iubChQMKI1CWMFlGRra4RhsTSvYPALRaLVW2gm6pJ0w3b25IZ+OTew0yWgsvGS3BMi8qwcHBWq2WUsQmCMJKETsgIIBWEKVp06aNu7s7dYlWq6X0Ie2JIXl5efn7+x8+fJgywHK5fPDgwYmJic7OzpTLNC0tTSKRUNb0xIkTw4cPt7xcKpV26tTp0KFDVNXf1q1bYxhG63dTW54vBCwUuAxQmYAEkBnJwMasOPFf5u7du8eOHVMoFGvWrAGAc+fOzZ49OygoaPHixZZCSHUG5QmdJywhcaz6ri3892hZETYbSqXyyZMnAJCRkUGbMb1eX1RUlJeXh+N4dnY2JZyt1+sLCwvz8/NNJlNWVpZarVapVFOnTs3Ozs7MzASAgwcPWpWmW7hw4aVLl6jEjLNnz+bk5Gi12g8//PDkyZOlpaUkSe7ZswdF0ezs7OLiYuqhmyCInJwcmUym0+moQd55553Vq1f37t0bAHQ6HYPBEAgEarVarVbL5fKUlBQ3NzeqKh4VLJOdna1QKDQaDX35Z599RlWSCgkJGTBgwPHjxwEgOTn50aNHTfI3bhgolbVkGdnRBUFb7GDj0LFjR/o5iSI7O/vq1asNYgUBgNBr8r+casp62CCjtfCS0WIIm40LFy7k5+fv27fv3r17V69epRrT09PfeOMNPp+vUqkeP378zTffJCUlpaenjxo1ys3NrbCw8P79+2vWrLlx4waHwzlw4EBSUtLx48ejo6OphReNq6vr9u3bT506dfr06Tlz5sTExKSmpnp6eu7cuTMuLu7kyZPjxo0zGo1yuXzRokVXrlwBAL1eX1JS8t5779FWauDAgRs2bKB8sz4+PkeOHImNjU1MTNy6dSuO48OGDUNRdP/+/Xv37u3Zs6fJZHr27Nny5csfPHhAXR4dHb1p0ya6LsFPP/3E4XD++ecfFotF7YO+KFCphMktGYRNy/nz50+dOpWQkNAgoyEsDioQ6RLjG2S0Fl4yWqpP1I4GqT7RAsULUX0CAIbE4e+HM/Y9Ibq5I3NDbDw7Nrvk/wtEbm4utclNw2QyqY3qmzdv7t+/n3KNFhYWSiQSLpc7ePDgffv2OTk5VR2qVtUnAIAwaEmDrtp6hPWh2T8JzT6BF7T6xH96RRgXF7dkyRIqCBMAPv300969e4/7f/bOOy6K4wvgb/d6pVcLTQVFjb1iAXuNvSTWxG66JcY0NSaW6C8mGk2MUWOKiQULaOyA2BAVRQRFaYKclIPjet35/bG6nsdxHMhxGvb78fNxd2Z29rG3u2/nzZv3Jkw4f/68cwWjeal4YhotQ+3oEeELk5eXl/08ZMJLC06dOkU6ZLm5uaWl1Y2HS/mfGwBr0G88mqpo0M4yQ4YMuX79OrU8vE2bNpMmTWrSpIlYLHauYDQvFR4cKNJAhgyFu/0HFWFsbKxUKk1PT3dzc/v444+x532bf/vtNy6XazQaPT09Bw0aVG1vt2/fTkxMTE9P37JlC1kikUh27drVrl27jIyMhQsX2oh5ixAiCILcvnfvHhm0tqKiIiwsrPZ/nhkGSa7q0nEyHxMNjTkNWhFawGQy5XJ5cnJy3759nTi0p3nZ8ODCpSLUWIAJ/1PhxAEAUlNTZTIZGfAvKirK399/2rRpVO2dO3euXLmybds2AJgxY0Z4eHjjxo1td6jVaps2bXr69Gmq5P333//hhx98fX0bN2786aefbty40eqB9+/fv3btGp/Pj4uLi4yMnDlz5tmzZ0tLS5csWWIx/11rPN76ohZLmGgaArQifIa7u3vHjh3z8vLefffdrVu3OlscmpcFdw6WIDH18fsPWtXy8vK+++67KVOmAECnTp0uXLhgrggPHjzYqlUrcrtx48YxMTHz588HgK1bt86fP58aO+7YsWPatGnkUtTOnTsnJCRQPajV6qSkJHIdaosWLf7++++qFGHz5s3Nc1OHhISEhITYFr64uJhcz0OVrFq1qqoU1gCgTb3M6dxf99Sr2RGoVCrMqbrW6QK8JHOElJ0PALhcLuWyVxX/fUWoUql+/PFHC5+gdu3aVbbzCIVCNpvdvHnzw4cP04qQhsKDAyVa+E8upR8xYsTgwYPJ7bS0tJEjR5rXPnjwgFz9AgAikejBgwfkdvfu3T/99NOvv/4aw7Aff/wxNDS0qsRh+fn51DuIy+WWlJRoNBoej1cnwnt7e7dv3/7kyZNUCYZhQqGwqvbqO5dxNw8yxoWDQAjZEKAecLoADAbjZVCENXWWcY4iPH78+OPHj/Pz82fOnEk6jJlz8OBBHo9XWlo6duxYgUBQbW8GgyEmJkYkEg0YMIAsKSgoOHv2rFgs9vHx6dGjBxmc0zYajeaHH37Ys2ePwWCoK1MMzX8DDy4G8J8NrkZOxZ06dQrH8dmzZ5tXqVQqKrskh8OhoqW3b9+eIIgVK1a4ubm1bt3aYv2fRQ/mH+NsNlsul9eVIgQABoNhPiIkg9FUhTByLNPTv65OTfNfwgmKMDY2NjQ0dOjQoXfu3ImIiLh586a7+7NIxtHR0RKJ5J133ikpKXn33XfJKF82KCsr27dv38WLF3v06EEqQoIg5s6dGx0dzeFwli9fLhKJ2rRpY/XYuLi4tLS0iooKHx+f1157bfLkyXFxccnJydQ8f7VIpdKcnJykpKRly5bZeQgNhbKOjFSnTp0aPXo0FUmuzvHgAAC086iyQWJiYu/evZ37JV4VSqXy66+/trpK6v333/fz8wOAgoKCmJiYAwcOWHzIu7q6Ur+RQqEwVzkdO3bcu3fvo0eP3n//fRtnd3Nzo3ogCEKtVru4uLzgX2SDEydOjB8/vqpahqunoxWho2/FanH6rZiSktK0adNq55Idx4MHD0wmU1Xv/KpwgiI8fPiwj4/P119/HR4e7uLicv78+VGjRlG1O3fuXL9+PQB4eXmlpaUVFxd7e3uT+X3MncfIGXUAcHd3nzdvXkFBAVV19epVFxcXcmjcuXPnX3/9ddOmTVYliYyMJDshGTJkiEaj6du3rw0j+4MHDxITExMTE8ldmUzG5XLHjh1bu0vx4jx+/PjAgQPvvPOOswTQ6/Xr1q37/PPPa3HsZ599xuVyX1wdLly48LXXXiMnohyBgMA8OCxXpKpK0lWrVq1atYryh8QwzB5LRv0gFArXrFljo0F5efmBAwc2bdrEYDCox4qkZcuW1BhLoVCYP4BbtmwZPHiwp6cnZSO12nmjRo2oKqVSGRgYyOVyX/RPqgKVSjVjxgwbilAZFy3oPoTbqrODBACAd955p0ePHuTnhVNYvXr1+vXrIyIinCXATz/9RPo6OUuA/fv36/X6V0ARrlixgrSWEARRXFxscdOkpKRQC0J5PF5aWlpUVJSvr++mTZumTZvWunVrAFi7dm23bt2q6j8lJYX6IBKJRKmpqfbLVq3Rxs/PLyIignIouHjx4rVr1z799FP7T1G3pKamnj9/3okCqNXqjRs3OlEAAMAwjMfj8fl8B/Ufxofro5CN/hkMBofDcZwAjkOr1c6bN699+/YbNmyQSqVBQUGRkZG//PKLXC5ftGjRhAkTli9fTra8e/cuNcWwadOm8PBwKs7typUrv/zyS3OFR6lPNps9fPjw9PT0Vq1aXb582dwTp/5xHf8uLqDjHjgc5wZpqd3ZnaAIqVHzr7/+OmDAAItEBBUVFdQ8p0AgKC8vBwAcx9euXbts2bJp06YdO3asW7du1Bx+ZeRyOfXVyefz6za+s0AgCA4OpiYjjxFEOQAAIABJREFUFQpFSkqKEy0h5KkbsgCUGA6VIaC696ejBXAQWVlZHTp0ILc9PDzI4WDnzp21Wi0ANG3adPbs2TExMTKZ7IsvvqDmzqOiotq2bUtud+jQgc/nG41GcjYxJibm3r17AwYM+Omnn0aPHu3j47Nx48b9+/fn5eU9fPjws88+c8If+RSG2K36RjQNEocowtu3bx8/frxyOY/He++998jte/fuJSUl7dq1y6KNUCjUaDTktkqlor6ySV0YERExe/ZsG1oQAAQCAdWDWq1+eYxUNDQvG+Hh4eHh4RaF7dq1o7b79OlT+ShKC5KYm0xHjBgxYsQI81qBQDBjxowXF5WGxnE4RBG2adPGtolWIpHExsZu374dADIzM1u0aEFVBQQEUM5pSqUyICCAqlq/fv3XX39NeriQNlKrBAQEUHN4CoWislfqi5CdnZ2YmEjFyC4pKSksLKQGiPWPUqnMzc11ogAEQej1eicKAADl5eWTJk2qyoO/HkhPT//oo4+oeJg4jq9cudKG9Z6mTigvLydHn+QuQRA6na6B34oZGRkfffSRQz2SbHPnzp3r16/v3bvXWQLk5OQQBHH16lWqZPTo0QsWLLB9lBNMo3K5/Jtvvnn99dfPnTt39+7dzp07A8DWrVsHDhzYrFmzMWPGZGVltWnTxmAwsNlsaj0vOS/Yt2/fvn37fvnllwBgrguNRiOVh6hfv36UdwyZzKEOhV+6dOmwYcMo9zmdTieVSsmMfU6BIIj8/Hzzz4X6Z9KkSUFBQU4UYMKECc4VID8/38/Pz3ydQGhoqBPlaSD06dNn48aNTZo0oUroW7HyrVjPFBUViUQiJ86Xy2QyhJC5h7M9v4gTsk9s3br10KFD1O7BgwfFYvEXX3wxduzY1157TavVbtiwoXPnzrdu3erfvz85gVFQUPDw4UPKK48giEOHDpG+mmq1+tdff83IyGCxWC1atFi4cCEA/Pvvv6WlpXw+//79+5XDJ9LQ0NDQ0FDQaZhoaGhoaBo0r56fGw0NDQ0NTR1CK0IaGhoamgYNrQhpaGhoaBo0tCKkoaGhoWnQ/PfTMNUh8fHxt27dCgoKunv37uLFiy0iifz5559Go1EoFJaUlMybN88RAuTk5OzZs6dz584pKSkLFiwwdxEGgGXLliUlJfn5+Wm12k2bNtXtAkqSS5cuJScnnzhx4t9//61cu2vXLhaLRaYpePvtt+v87ABw9+7dK1eurF279u7du5VrP/jgg9u3b/v4+Oj1+s2bNzsi5KNUKt2/fz+DwUhISJg8efKwYcMsajdt2tS9e/e0tLSJEyc6d1nLfxuJRLJt27Zu3bqlpqZOnz7d4rdOTU09duzYa6+9lpKSsmjRIkcEONXr9V9//XWXLl1ycnK6dOnSpUsX89qTJ08uXbo0PDxcoVC88847lZO+vThZWVkXL17cuHHj+fPnKy8cvHbt2tmzZ1u3bn3r1q3Fixc7YmljaWnp2bNn//rrr/fee69fv34WtYcPH161alVYWJhCofjoo4/MY9jWFQih3bt3YxiWkpLi6elpEfEYIbRmzZrw8PCysjJfX98hQ4ZU0xeNPRiNxl69epHb//zzD5njkEIikYwZM4bcXrFixdmzZx0hw6hRo4qKihBC2dnZM2bMsKj97rvv9uzZ888//yiVSkecHSH08OHDO3fudOnSpXJVbm7upEmTyO2PP/748uXLjhCgqKiITINgtfZ///vfb7/9tn//frVa7YizI4S++OKLR48eIYQKCwvFYnFxcbF57cKFC69fv44QUiqVQ4cOdZAMNAih6dOn37t3DyEklUpHjx5tURsZGanRaBBCly5dWrZsmSME2LJly59//kluR0VFGY1G81oyYMiuXbsePnzoiLMjhEpKSioqKoKCgsrLyyvX9u7d22AwIITOnDmzcuVKRwggl8uLi4snTJhw6tSpyrX79u3bvXv37t27yefFERw+fDg2Npbcbt++/aFDh8xrjx49umbNGnJ71KhRZWVlNrqiTaP2cu3aNWqVaFBQUHR0tHntyZMnqRFYYGDg4cOH61wAjUaTlJTk7e0NAAEBAUeOHEHPL30RCoVTp06dMGGC46LKNWnShEpQZ8Hx48ephasBAQHmS0XrEG9vbxspZsRi8bRp08aNG1eHGe8syM/PJ8MH+vn5cbnczMxM89ojR46QYZIEAkF6enrdxrmloUAIxcTEkBnt3d3dL1++TEVVBIDCwsKioiJyFBgYGGjxqNYVhw8fpkJiMRiM5ORkiwYjRoyYMWOG+Xr/usXT01MsFlutysrKUqvV5LL6oKAgBz2MIpHIy8vLRoNRo0ZNnz7dcfFGFArFX3/9RW6Hh4enpKSY1x45coS8QwDA09PzzJkzNrqiTaP2kpubSykYoVCYm5trXpuTk0PVikQii9o6QSKRUAEjcBzX6/UymczcOlpRUbF//34Oh3P79u0lS5bUc5ynnJwcyj7joCtQLVKp9MCBAywW686dO0uXLnVEfA0qQWZ2drbBYDAPJWgwGB49ekR9LfF4vPz8fPNcmzR1hUwm0+l0VKAMFoslkUiCg4PJXfNH1XG3ovkjLxQK8/LyLILqHTlypFGjRjdv3pwxY0Y95+ezkM0pDyMAREdHe3l5paSkzJo1yxHzFFOmTJkyZQoAEASRnJxsEdI2JyeH+miu9iLQitBeNBoNNSnIYrFUKpVFLTUPUbm2rgQwz5vKYrGUSqW5Ihw9ejT5Lrh///63335bz6mRNBoN9dJ30BWolnHjxpFX4Pbt25s3b/7www8ddCKE0KJFi/766y/zT3KtVothmPnbua4yD9NYoNFozL9yLC61+aPKZDL1er3BYKjKkvEiMlDPY+XfulOnTn379hUIBIGBgVOmTImPj6/bs1crm42XVf3Qs2dPNzc3Ho/n7e391ltvWfUqqCt++OGHUaNGWcxTWvxAti8CbRq1F3d3d+pel8vlFo4qtmvrSgAqzRsAWGhBgiDIlFUAEBwcbDX7h0OphytgG6PRWFFRQW47+gps27Zt3rx5gwcPNi8UCoVMJpOy0VmkdKepQ8ibjZoasLjU5reiQqEQCoV1rgUrn8Xity4qKiJPGhwcfP78efMntx6wLVv9UFxcTF2BM2fO6PV6B53oypUrGo1m7dq1FuUWF4GKiW8VWhHaS5s2bai7WS6XW2Siadu2LZU0Q6FQWNTWCd7e3nw+n3z4VSpV06ZNzWfLMjMzp0yZQtaq1Wrbv7ojqIcrYJu0tLS33nqL3HboFTh27Fjnzp0HDRqUn59/584dqhzDsDZt2lDKmCCIkJAQB8nQwOFyuSEhIeQ3PkKIzWabT0Q1b97cYDCQ25Uf1bqibdu21G9d+YafOnUq6disVqs5HI7jJq2t0rJlS+qDzHFXwDYTJkzIzs6Gp7nwHPEtAgD37t3Lycn55JNPAODEiRPmVeZvpGovAq0I7SUoKMjHx4d0f4iPj581axYAREdHk0m3+/Xr9+jRI/Lxu3z5Mmm5rlsYDMbUqVPJDFDnzp2bM2cOAGRmZnbu3BkhFBISsmTJEgzDSHepxYsX17kAJPn5+WVlZdSn1l9//TV37lwAGDJkSHZ2NpkDJDk5edKkSQ4SoLS0VKPR5Ofnk7upqak9e/YEgJYtW5K2UIIgYmNjP/roI0ec/fTp0xs2bNixY8fcuXOnTp1Kvn979uyZmpoKALNnzyaNYLdu3Ro2bBiVYpqmzpkzZw55qS9dujRlyhQGg1FYWNi2bVudTicUCnv16nX//n0we1LqnNmzZyckJACAVCp1d3dv1qwZAPTo0YO8ExYvXky60hw8eHDRokUOSgchl8vlcvnDhw/J3ZycnPbt25tMJnd393bt2pHPiOOuAABotdqSkpKCggKCIACAIIhOnTqRHmTLly8PDAwEgIMHDy5dutQRmQ8KCwvJ22Du3LlvvvkmqfY+/vjjH3/8EQCmT59+8eJFANDpdGVlZb169bLRFR10uwZUVFScPHmSy+VyudyBAwcCQHFxcV5eHplJ6uHDh9euXTOZTEFBQZ06dXKEAEaj8fDhwyKRSCqVTp48GcMwnU6XmJjYv39/AJBIJGfPnlWr1e3atbNY1VRXHD9+vLCwUCAQKBSKyMjI5s2bSySSwsLCjh07AkB2dnZqaqpOpwsNDTVP7lqHJCcnp6SkiMViuVweHh7es2dPjUZz+fLlqKgoACgoKEhISFAqlV26dGnfvr0jBIiJiZFIJOQ2i8WaOXMmAJw7d6579+48Ho/8CuHxeBKJ5I033nDQVzANACCEDh06JBQKHz9+/OabbzIYDJPJdPr0adJerdVqY2JiyBzdZJoaR3Du3Dm9Xl9UVPT666+TFgjqTjAYDNHR0TqdjsfjjR8/3hFnT01NvXLlCvksNGvWLCoqymAwxMXFka8mtVodGxsrEAiMRuPrr7/uCAEkEgl5kXU6nUAgmDhxIgCcPn26d+/eHA5Hp9MdOnRIp9OJRKIxY8Y4QoCUlBRzZ93XX3/dx8cnLS1NJBKRS3iTkpLKysqKi4sHDBhg23mVVoQ0NDQ0NA0a2jRKQ0NDQ9OgoRUhDQ0NDU2DhlaENDQ0NDQNGloR0tDQ0NA0aGhFSENDQ0PToKEVIQ0NDQ1Ng4ZWhDQvypUrV4qLi50tBQ0NDRQUFNy4ccPZUrx60IqQ5kV54403yFhKNDQ0zuWrr76KiYlxthSvHrQipHkhHj58WFRU1KFDB2cLQkNDA/Hx8X369HG2FK8edBommlpSWlqal5d36tSpsLCw27dv+/r6NmrUyNlC0dA0RPR6/e3btysqKrKysphMZkZGRsuWLZ0t1KsErQhpakl5eXl2dnZsbGybNm2ys7NFIpGzJaKhaaBotdrs7Oxz5861adNGIpHQgTNrCh1rlOaFCA4O/v3338n8DzQ0NE5k3rx5Pj4+K1eudLYgrx70HCFN7cnPzy8qKiKTb9DQ0DiX+Pj4vn37OluKVxJaEdLUnnPnzkVERLDZbGcLQkPT0JFIJHl5ed26dXO2IK8ktCKkqT2JiYmki9qjR4/oFRQ0NE7k/PnzXbt2JZNiJiYmOlucVwxaEdLUnjt37pB20QMHDjRt2tTZ4tDQNFzS09PJhzEmJsbX19fZ4rxiMFasWOFsGWheVWQyWXp6+oMHDwYPHuzp6elscWhoGi4cDufff//VarXu7u70tH1Nob1GaV4IrVbL5XKdLQUNDQ3o9XoGg8FgMJwtyKsHrQhpaGhoaBo09BwhDQ0NDU2DhlaENDQ0NDQNGloR0tDQ0NA0aGhFSENDQ0PToKEVIQ0NDQ1Ng4ZWhDQ0NDQ0DRpaEdLQ0NDQNGhoRUhDQ0ND06ChFSENDQ0NTYOGVoQ0NDQ0NA0aWhHS0NDQ0DRoaEVIQ0NDQ9OgoRUhDQ0NDU2DhlaENDQ0NDQNGloR0tDQ0NA0aGhFSENDQ0PToKEVIQ0NDQ1Ng4ZWhDQ0NDQ0DRpaEdLQ0NDQNGhoRVgzTp06deLECfMSgiCcJQyJyWSiBWjgAvwHUCqV8fHx+/btI3dv3rz5ySefbN++fffu3VUdIpFIvv32W/MSp/8QtAAEQSCEnCgAQqgWAtCKsGZcuXLl8uXL1C5BEBqNxonyAIBaraYFaOAC/AcoLCwsLy9PTk4mdwsKCnx8fFgs1oQJE6o6JC8vLzo62rzE6T8ELYBOp3Pu2MBgMOj1+poexXSEKDQ0NDQ1okWLFjKZzLxk1qxZcrmcz+c7SySahkNDHxEaDAbqG6qiooL8lqmoqHCqUDQ0DR2RSJSUlFReXr5o0SJny0Lz36dBjwiPHz++d+/eqVOnDhw4EAC+/vrr3bt3d+zYce3ata+99pqzpXMy36URb7XAXdjWaxMkiACI9MPqVyiaV579+/eXl5ebl/D5/ClTplg06927N4ZhAHD37t20tLTWrVvX8nwImSpKGa5etTycpmHQoBXh0KFDb9y4Qe127959/fr1TpTn5UFthE+STU0FMDbIus3gx3TChCDSj1HPgtG8CEajMS4urlu3bhqNJjMzMyIiwqJBVlbW3bt3/fz8OnToQJYolcrExEQcx/v168dk2vW60Ov1165d69GjB1Vy/fr1oqKi0NDQkJCQ8ePH29PJqFGjtm/f7uPjw+VydTqdfX+fFXQPbinO7POc/02te6BpCDR006g5CoUiPj5+//79ZWVlzpbFyVwoQnoTnJNYd75CAAmPiQQJQTjTO4ymxshksrFjx7q6ug4fPrzy3NvVq1d37949bNiw0tLSn3/+GQB0Ot2cOXN69erVsWPH9957zx4niJ07dy5btszcmXPPnj337t0bOnTo0aNHL1y4UNWBUqk0OTk5MzPz/v37ALBgwQIWi1VQUCAUCtu3b1/LPxiA4e7L9PLX3r1e6x5o6hmj9LHyQmw9n/S/PyIkCCI3N9ei0MXFxcPDw6KwR48ezZo1k0ql06ZNi42t71/ipSKukBgRgMcVWld0aWXIhY0xMLhVhtp70NbRV4k9e/a8/vrrpNXRgvXr169evRoABg4c2L59+7fffjs6Ojo8PFwoFAqFQg6Hc+7cuf79+wNAWVmZu7s7daBMJhOLxTiOA8Bbb72VkJCwadMmqvZ///vf9evXAWD69OljxoyJj4+3KhiO40OGDBkyZAibzQaAQYMGXbp0Sa1W79y5k+y5MhqNpqioaNu2bVRJx44dLbQm4ouZwW1U1+MZIW3tvEQvgsFgMBgM9XCil1kADMNexHFUl3tXdmALq01PnC+snQAIIfN7hsFgVHULUThZESKErD6TdYhOpyOfQ3OCgoIsFKHJZDp//nyzZs08PDwqt29onCtE67owxp0xFqqRP9/yBzpXiCL9MCYOcYW0InzFMJlMly5dEovFbdq0sai6cOEC9VAghNLT0y9cuEA1c3d3T0xMJBXhunXrZs6cGRYWBgCPHj1av379xo0brb5rCgsLpVIpg8EAAFdX18uXLxMEYbWlm5ubm5ubeYm5cdUqpKeb+dMaFBRksZBO9uNS0aSP+KEd62eBnclkMj+R8VEWw6sRxubWw6mtClD/vLgAjLBOosmLCCYL1aofk8mEEDKXoVotCM5VhAcPHlQoFDNmzDAvNBqNmzZtCgsLy83NHTlyZNOmTW13otfrU1NTo6OjW7du/cYbb5CFFy9evHPnjqenp0ajefPNN21MS1CrL41GY05ODgAoFIoWLVq84J/2SqMwQIYMdfPGevvhCRI0OcRS1cVJ0KRgjInDb/eJj9rQ1vVXBhzHk5OTP/744ytXrvzxxx/r1q2jqhBCUqmUspcKhcLi4uKSkhKBQECVkEZLAPjmm2+WLVs2Y8YMDw+PDRs2rFu3rqrpw9LSUqpPHMdZLFZ5eXllY0ztEIvFQUFBO3bsoEoUCgWX+5zW4bVox/dtosu8ifNF7MCwOjmvDQwGg7kAJcd2iYfP5ASHO/q8VQlQ/yCE2Gw2+elTO/T59wUh4Qw2G2NV4apnExzHEUIcDqdmR9XiTHWCVCr9/vvvK387/PTTTwEBAcOHD58zZ86CBQuq7Uen0xkMBqPRSK150Gq1K1eunDNnzpgxYwoKCs6cOVPVsXFxceQa3lu3bnE4nCFDhvz777+//vrrrl27XuRPe9VJkKCu3hiXAZF+WFylaUITgsTHRF9/PNIfT3yMjE6Oq0NTA9zd3deuXevm5jZkyJB9+/ZlZWVRVRiG4ThuNBrJXYPBgOM4g8Gg7GxkCbnNYDDWrl27ffv2FStWrFmzxsabF8dxc0udeSf1g8vIWRiTZZJL1dfO1ud5SQQ9hmL1+/e+bJhkpZqU8zU6RBl3sGzPWsWpvQ4SySpOGxGePHmyd+/elcv37dtHfuKx2ezi4uLs7Ozg4OCCgoLU1NShQ4eSbfR6/d69e6dPnw4AIpGoe/fux44do3o4f/68j48Pud2yZcu9e/eS9pzKREZGRkZGUrukKWbIkCE2xE5NTT127NgPP/xA7nI4nGPHjjl3BKlUKq2W65JO4kIxK7x7TTs8mcfs4Q4KhaaLC/bdbbZC8VysipvluA+XJTAqAKAJn3MhXxXKti5AvVHVFXCWABiGCYW1md5wNDt27AgODo6KigIAkUj04MGDkJAQqtbb21sul7u4uACAQqHw9vb28fFRKBRkLVlCNX78+DFCSCwW5+bmkjZSq5j3oNPpMAwj+68fNGlXDPmZ4iHTBF0HoU7GejsvBdJrFQmHPAJb1v+pXxYwTBa9jdeuF9g9BSYaMInQqAhVvS7mdo4ivHDhQq9evTIyMipXZWZmmltjHjx4EBwc3Lhx46NHjx49enTkyJF6vX7JkiUffPBBVZ1b9EDZc+qE1q1bh4SELFu2jNwlx+DU6ZyFSCSqXMgODMV5fJa1KttcLDX+2JMhEmFdRKA2GcowYYDw2U2clEv0a4TIM/ZvbLoiY3YMJqwKUJ/QAthDTk5O165dAYAgCKlUSs7/3bx5MzQ0lMfj9e/fv6SkpEmTJuTMfatWrfr3708FFHz8+DH56Ulub9iwYf369Ww2e9myZdOnTw8Pt2798/LyCgoK0ul0HA6nqKioT58+9TkiRHot07MRAACG6R6kMlw9Wb4B9XZ2AJAd+cVrwZr6POPLhvzEH+4zP7NfCwIAhjPq05hM4oRhu1wur6ioaNKkidVapVLJYrHIbQ6HI5fLye0FCxYUFBRER0cvXbp00aJFQUFBVfVfVQ91Ao7jXC7X7Smurq512Hndwglpzaz5Y1+mgyw56uSJAQAG0McPj3/eOhpXSET6P7mtI/2wuELaNvrKMGPGjDt37uTl5a1evXrVqlX+/v4AMHfu3GvXrgHAJ5988vvvv8vl8l9++eXzzz8n3ThJq8zt27c5HA617nDr1q2kRRTH8TVr1uzbt4+yf+7fv//nn3++fv36Dz/88OjRIwBYtWrV5s2blUrltm3bvvmmXtfz8Tv05XfuR24bJLnqq6dr2gOhVZnk5dW3qwJRvwm40PIVoX94D5wdqb/eQHot092nImYnMtrry1r0v/eQQf949cz6vEpOGBHGxsZOnjy5qlpXV1elUkkaYZRKpbkhZdasWYMHD548ebJtDxpXV9fMzExy26KHBoXs4FbAMNex1c+zmhMvISJ8MdbTD6RIPyyuEE1v/mTXSMDFIvRbnyfVffzwKfEmnQlegdFQHVGydZmg22B+h77OFqQ2NG/e3MfH5/bt2/Pnz/fyehJsJSkpidxo0aLF2rVrb9y4MWzYsEaNGgEAg8H45Zdf0tPTjUbjli1bqH5WrVpFbTMYjJUrV1K748ePt/BNGzx4cI8ePW7evLl06VILv1BHU/bHevc3FgOOA4Cw9+tg97uYQhl3EDBcPNgy8I2diAdOfvzVTK+F6xjuz6zKFUd/FfWbwG3ZqXZ9vgxUxO5ievkLug6qtqX71I8BwPA4T5d1mxvawZ7OXUfOwlhsdmBLZDRg7Jr5vNQaJ4wIGQzGgQMH9u/fn5ycfO3aNeo5JAkNDaUmFZRKZWhoKLmt1+sXL17866+/MpnMmJgYG/2HhYWZT2xQPTQ0mD5NWI2b1fSouEIU6f/srojyx86ZrSZMLkVBIszzqW+ECxtCXbAbZQ3IHYDh4oExWc6WovaIxeKePXtSWtACDofTvXt3UgtStGrV6kWWtJMnjYiIqGctiAx6fd49eGqJxRhMXXaaqay4Rp3wOvQVRgyvnQCm8uLSbcvFQ6Ziz6+H83jrc06LdrXr82UBw9RJp3SZKbZbEUpZRewuAPB463M7tSAA8LsNAgD3KUvrTQuCUxThxIkTyc9GPz+/1q1bk5MW8+fPJ2cjpk2bRhpqZDKZr68vOfgj5wU//PDDoKCgmTNnlpaWWuhCpVKpUqnI7V69eslkMtL/7erVq5XDGDYQhL1GCroOrOlRcRJkHkG0hQuGALLkT3RhXCGK8n/O3B/ljyUUNyBF6P7mEl7bns6WgqZ6MBbb99NfzUt0mTfVqVWGtqkMMugxnKE4u98oldRKApzp04TfMRI3e6Hr8+6qk89qrschQ41TBb08uAybIew7ttpmRuljgyQXADAGU3khVpd9p9pD9LkZ0p1fAYA6+UxN3U1fBKe9wvbu3duqVSuVShUXFwcAUVFRAQEBADBt2jQWi3Xy5Mk//viDyskpk8mWLFlCzQvOnDmT+mhVq9Vbtmxp3LgxAPz4448AwGAwNm/evG/fvoMHD3bp0sWqb+orh7bmS0srju0u/2ujRaHKCNkKVNW/G6WoUI3aPb9Gvq8fdjD3SYNTj4i+zwfajvTHExuMIiSUstJty+s//hNNLdDeu2Hx5hUNekPQpQafhuobcYrTfwOGGR/n1UIAhqun65j5quQzsiPPVjoaCnMInUZ966L27rVa9OlYCJPi7P5q50RLflxmKHjAa9uD06IaOwE7IMxz9hOzOUPkqrlV/VcIxhVwW3UGAMBxY2mhXWLXBU5bPmExTUjNK2AYNm3aNAAYNOiZAdrcb5uECgrM5/Pfeecdi9qwsDAbLt2vIj1jjD90Z/T0qYHzlalCCiZLl/Gp8aakYsSterXrGyE44/mTjA3CFl0hfs4AAOAyoI/fc2ovwge7UYZpjMD770frA5NKbijKZ7jVpR8yjYPQ3EzkhLQBM/9DnCvQZiRzwzrZ6cTIDmjJDgirtaOpPueOPu8eJ7SD+dykoPsQACDUCoxVf3Y/+zHJpbqsVH673shkrGoKgOUXwPIPAoCyPWuEfceym1a5eEybcY3p4cv0bgwAvNcieK9ZBnm30rlvU5ZvUwDgd4yqgdwIFa2f77N0W43cU81pAG+v/wT3K9DZQlQjRej+hmUiNxOCeAmRMY7lw6vBqUcF4KMCqhzzCVnQ2hVdLrY0mb4SSHd+5T71Y/sDWLB8mvqt+N2hItHUFa6j5lSObSY79LPH2z4sn2riVQEAIISzuaSTi+zQz66vz4YaLvwwlpdEK6TyAAAgAElEQVSYFOUsv0CWXyBVKP/3d/HgKThfpLl1gduyU31GX6sWQqt2HT0PAPQP75Vu/9Jz7lfsJs0t2iCT0XXMfHKbE9oBadWWvZihunKC36kfqQgBQJN6CTDgtbEVOU+ZcIjh5sNr2wMQqojd6TLibXskR4SJ6eVfay0IdPaJV4JSLSgMUNOFCsrEo7JDP5uX3ChFjfhYjbSgPfT2JuIkr6Q7uKlCWqO3m+5Bqjb9qurKCceJRFM3ECZN+tXKb0b3qR8z3X3t6UD3ILXsrw3ktj47zVheVFMR+B36ku/xkh8/RnodACC9VnnxiV1dfSNek3alpn2aY5DkqlMSXqSH50CoaN08U4UUANhNQ70/3MR6qsCeNdHrHn81g5rdFHQdZNvrx3XMfF54F2oXY7K06cm2pSC0aspHRnX5BKpk07IKxmByW3dXnPnHnsZWoRXhK0COAoW6YNdKkaYmwTHUyWcsFk7FSVCkA8Ztvb2Jc1XkqXjJEQ+ZCqgGkmvTr+oepCrO7necSDR1guHxQ6uvRZZ/kLHssT09MNy8xQOfTN94ffAd08OvpjJoM64ZCh4AAC50QXoNAGBsru9nO0n17DbxfV5415r2SYH0OlN5ccXRX2t0A9vsEYn6T2S4PAkDy3T30eVaBjxBeo0wYoS5BUW6a7Wx5FFVXRokuYA/m4bhtursNvF921KIB73JDesIAIBhvl/8hjHsslnqstP0WWn0iPA/To4CtXHH2rpjl4prcNN7zvvG76vn4vXFFRKOMGB29SRulyGFM3O/1AZkNJT9sd7GY1wZ8aA3xcNmeC1c6zipaOoEpk8Tj+nLK5ebykuk27+0pwecL6KcQZBBrzx/pKYyaNIu6x9lA4DH9OXksnp9bgahkFH96x7cQjpNTbslUSYe0WZco9QqhTE3vXaqkdBrhb1GUrvIaJDu/AqI55z0cKGrqP9E8xJ2QJipwnr2VpOstPzv7ywKNTcT9Tm2fEcrYndR18RYnG8syrdHeGNRPsPTV9Rvgj2NrUIrwleAHAUEiSDKv2ZhXPS5GZqU85RtwUjA5WLU27fuf3EuAzp6YheLXrFBIaFRYkwWs5L9xwa6rDQAMJbWypmeph4xPn7IcPWsXM708BUPm25eos/PrBz0xFRWXPy/98xL5Cf/rKkMLkOn8ztGAoA2PZm0YSoSDhkKngU6V99IUN9MrGm3JNywTqL+EzEGsyJ2l/bOExOr+nqcNmYHIixdzDW3LlTrgVm88V1j2TPzL8Zie85eZT6eQwa9ZIXlUjRR1DhOM8t8XiS4yNX9zSUWhYRWrUm9ZEMM9Y049FSRazOu2Wn7FXQfIh4wWbZ/i1Fq13DfirS1O4ymPslVokAhFumHV84FYYPyfd+XH9hiKi8hd5NKUIgYc3eMq1qkP/7KxVpjiNw8531To3SY5f9sIlRy6c6vCLWTw3zT2Kb87+8MRQ+tVGAYr00PcsaOpCJmp+5BqmUzJlM0YBK1h3P5vp/upHZN8nJ7VhYaJHlkkDCk1+pz0gHAZdhMbttnriKuY+bzWnez589BJqPq4rO8AoRKjnH5pBmT17q7QZKH9DpjWRGvbU/hvLX6rNsWg0Jk0MsObbd5AsTv0p/p7mNexmocTE4ZPu1EJ+gyoPKhZb+tMclKrXRp0LEah1gUCroOFA+faUMQ3+W/4tynucB6jRT0GGpL7KcoL8YSKjkwGKYKK5LYA60IXwFyFChIhPXwwWpkgfSY/on3h5uYHk9cA+IKUZSfoxw7rSZseskhtKqy3au1mTftP8Rj5mcMsbv7tGU4z8lh1v/zHDp0KDY29u+//65dvnXx0OnsRtbDKqmSTlYce5JnjdCq3cYuZFfKDoHzRRbBKAitSvcglVDJlRdjdfeuy0/+Va0MFUe2G4vzAYDXrpfrmPnIZCRUFeaTXrhAbCh6WK2BQZd9R3Zwq/JCjD73Llki/3cPtSaPHRgm6j+x9Jcv1dfOYSw2sNiyIzt0OenU4fJ/97ADQj1nr0A6TVXRO5HJKB5gGfZSm55ccfTZCkicLxIPnQ6VYDVuRq6at0BxZp/qciW3MgzTpF60/o0CgHQaanRLntHOSEDK80cIrdp1zHxOcGt72leGVoSvADkKCBTV2AKJu3hiDCbl4hUnIcxjp9UtXb2xezIke6ViZRjy7yODoQarxAgCF4gBgOUf7ECxaAB+//13mUw2fPjwTp06ffLJJzU9nNAo2QFhVfkDc1t2JjWfqby46Ju3GZ5+lvPEBCFZMdViesxUViQ/8Yfi7D5CIeOGdxV2H1ytGK5j5jOfLpxQnPlH9yC14thuizaGR9mKM3/b7scoyeW27Oz9wXfsgCfRIvkdIy2GSq7jFlCuPR7Tlj27qxHSpCUxxO4AoIg7WP7P91ZPUfzdB5Uny7mhHcxj6pb+/LlVtSTqN95q3FRui3bcVl0qlxtLCrVVWEcNhTnK80epXWTQl2z9uPKUpzr5jPmYHgC839vI9PAltKrKV9hOaEX4soMA8lWITIRUIwtk0do5ssPbtZkpAKAzQXIJivCtzYjQVCE1PMqy3YaNQ1dv7PwrtYiCHdDSY9aXVmeSrKLPyyj/exMAlO/daMWYRlN3/PLLL2Q8jWbNmp04cUKjqZlHifzEHzbS8DI9fMkgeYggXMe9QygrpDtWmDdAJqOg60Dz6TEA4IS0cZv4vsvIWeQqQIabT7U+KQw3L2r8pzx/mOnm7TL8LYs2wp7DrQ6zzBH0HMZr0x3j8HRZafLjv5nKixme/pT9kMR8ZSTTp4mhMOeJywmG+Sz5EePwAKDKSN8IcUPbMz39LYpxgZgd0pr6MzE2F3dxtyqh6tJx+Yk/LArZIW3IpfEWiPqNF/YdY7UfVtMWbpM/pHYxFtt96jILbyBCq5Idfs7Mi/Q68gWFMVjq5CrTsNuGVoQvOxI1cmEBnwkAEOmH2b9QwWX4W6K+Y8i4D5eKUbgbJq5VsGh99h2VHflrIv1rNoXpdBBhUpzeq74Rb2d7hqc/+QDzO0UxPWvsTE9jPzdu3KDyO+I4fu/evapamkymcjO0BhMAcEM72I4HW7b7G03qRYzJ4rXtyXDxcB0117wWY7FdRlhqLMAwptezWORlf6zT56ZbtjEHocdfv01pEe9FWzA2p/L6dMBxZNBrblfpP1L682e6rNvkNqtxsP5Rdvn+LfoHt22dGkCdfEaVdArpddJfn+UJwVhsXrteVhYvYpjLyFlW1x6U792kzXiy8s9j5qdVLWbghnet7HD0eOU0q6sAMQZTm3bFJLfia0ooyjHmc9EtuGEdLUK+4VyB90ffI8OzEaE+76789D/kH+j7+W6rElYLHVnmZSdHAUGiJ/doV28sswLJ9OBqRywUYe/XkclIOoO8yMIJXvvevPbVx2uN8sPmXniVRoTq6+f0uXcFPYbZ2Z4hEJMLv2oW/Immhuj1epVKxeU+CbnC5/PLyqw76BcXF6ekpAQHP7VUYxi+LmtDd9U4v0AjkwvKKh2asLDO5dE/cXqN4pCJhALDFeVl1PI4zdFfWK27M23ONjG7DdOy+PpKp1CpVE/crxDiDnhD+TQTAFEuVe5cIZy9GnezjBZJqFXK6G2moLbWz+Tup/dsYnh6Iu7kJcas28bAlsoq/jpSAGa/SYTRUJGTYeIJLVrK928xuPrgrs/Sjyh++kQw/j3c2kJJRtsILYNtVCp1CdGMxs2YIVUIyeAw+o4nr6FGo2Gz2QwcZ4R2VGm0Vptr7t/CHz/k9BplWX72IMYXcXu9TpWYHt5VH/1F9M7TmMkI6a6ewoUuhjuX+ROejh09GrEHTSX/TFN+pl6jwQPCzKeWuVwuk1mNpqMV4csO6SlDbrNx6OaNnZcQI6uOeUaC9LqidfP4nfthHJ4ocmycBH3Z/jlTDzIZDQUP2AHVR2TVpicby4uEPatJRtPRE8tTolIteL5EQaNswQlpw/YPYgfZmwu7InYX07uxoNtgxZl/MJ6g2gtCUzvYbDabzdZqtWR6bY1Gw+fzrbb09vbu1KkTmbWGJKlAuS3memPtpX4fLMNtfPj1HKLz9mcHtSLDaSpOxyKTUfQ06aCRwxE1CWYIhVUfD9CpLzIZK4+QEELCpwcKBz7zO1Uk32Z5+okbB1kZeAmFwqXbcJ7l6QiVnFDJheMXWrZ/rbsNuZ4IIBQaHmVjXn7MNz6yaMCZ/w3Ty/+Z5AgZg1uJmzazvhq9Yx/yf4NcKvDpw6r6miC97vG62T6f7mAIhWw2m8FgCN+0DPFIIRy3ACGENKrHa2a7jppLJU9md4nC+WKm+VladWJplfynJfr8TNWNc57zVuuYDKrQJNPiTYJJ869aITU+uC0M78Th1Mw/njaNvnTsziRyFM9sjLkKCDTLexvpj5+zxwKJ48WN229Thm4razr3gumWFPV4Pk6psbSwfO//7JFHm5GsunS82mZMHCJ8sZnnjXMvmOZeMK299bKPDlnejY1lRerr5+xt7xvAbtwMAJie/ji/4aQidgKNGzeWy+XktkKhIHPL2EMrF7S+n9dRj6gxZ0xKm96mnOavUUGlua27sZs8czF1HbuAUWncZoGp3HKhoQXGovySrcuoXUHn/m6TPqwq9AnO4cv/3WOUPgaE5Kf2kgGhyn5fV4tV/BS6nDuV5+0AgOXbVHf/1rN9DHMdM7/KmCwIPV41HQjCbfKHtt3KMDZHPGQq5ZqnTU+2FfAMZ2AMJi508V2+40muCQAAYHr6U17uFPwOffVPY9ywGzXzmv81Q+TGa9eLalBxdAcVuY3fKUoweKoNOauUqBbH0DiUL28Q+7KfqbocBQoUPrtNyZTx1XaCMVlLfBcUN+ngGt6xoyd2oD+T//zHK9PdVzzIrkyNLsNnes5eVX07gLWdGSOa4h09sY6e2Dc3TfKXO9ZMxbHflOePEkq5ne35XQaQiY557Xrx2/dxpGgNndGjR+fk5ACAWq329/e3XxECgHeLlv+b0sWbBxExxgKVXZPWLL9AbviT9Xy6zBRF3MFqD2G4eHCa20yuy2RxglpRe7jQxVboBhwnNCpyzTvO4ZGTkZ7zvnYdV2k4aDfCHkNdR1qLWI1Q2e/rCGUFuVe88V2rqwCfgGGcsI7ajKtqO7wEBD2GAkL6O1cAgFArKo9xK4MLxMbiAmqevmTzEqsL/8t+X28oeIB0GlXyaTJGj/TXlfq8J4tJeO37sKlF/TjDmH+vFrkeaUX4cpElR/lKZB7DOlf5zDQKAB09sYdKVGrd9v4MrUI+4tp3y0WpE+/vmhOGD2xk+cWnuZmoSU+yRyT9w0x9vl2Jh8LdsDlhOPmvsxeW+Pil9p1h+Qe6jp4r7GM5UVEVJVs/IZ229fmZ8tN7q21PU2s+/fTTM2fOnD59esOGDVu3brX/QEIpK1o7l4XD9gjGzBZ4t6Om66V23YRF3y4g3TcMxQU4x46w9DjDddQcG/VMD1/xkGn2SQ0A4DpmPje0A2CYsM8otpkGrT04g9QZlmCY5+xVGE8AAMhkZDVpTsUXtYrbhPf0DzORfWHbMBxX//ubseQRv1OUoKdds+8Ym0MZnPgd+jJcrHhxe8z6kuHuq0m9pHu66pfXNgJjPB3Qt+zEELlRjVXnjxof3rXn1OY06DnCu3fvHjt2rE+fPp06dQKA7du3Z2RkiESi/v37Oyud77lCNLwpHi8h9ASwcQCAbAUEmdnhmDj09MHiJcS4IFsfMTeK9AGoXMTnajDrzZi+TTX7fyBGz6vWyldx/Dd9Tnqjb4/an64IACL98PhCYliTqjMfOht+xyjDo2xN6iVeW1t5YZ6BiCfGNKPRREdZcyRubm4rVqxACA0YYCWUiQ0wk5H3dLD+fmu8sQCGnjSu7cxwYUOZDsp1MDkEayywYgbkte1JLhwURoyw81zKhMMYlyfoOshqrfbeDWNxgXn0zpcHdmCYPvcuOzAMYzDdJtgy8AIAuVLIIrxAVeBCV9fF25hstvz4b8I+o8l1t7ZhNQrxemc9uW0RyPRZG79Afe5dTrM2VEZDQbcnlx3ptY+/fttv5bMAeOJxCzGBiz3SPid5TQ/4L8Fms5VKJeWTxmAwOnToMGLECCcmtY+ToFGBWAsXLLkEAYCRAIkaNRE+9+jas1DhjML9wuCv2IEtXaoIaMRu0lw8eKo92UFdx8zznL2yRloQACL9MbvmMp2HLHqb+ka8Nv2qne29Fq4j12izg1q5Tbb0QaCpc2oU/e7JIS6e4kFvULtjg/CjA5j7sok/HqArxSi1DA09ad1iLx70JsPVC+l1skM/2XkuplcjGyY4Ql5e64DajgaZjKU/fYp0mqJvFxKqaqYGGCI380Br9p0A6bLv2J/gzPAoW3X1tKlCWrK1yuAJ2nvXFfGHqAxNJnnZk5UhCPGfD/zG8PDD7BnTP0+DVoTBwcEMxrMhi7u7e8+ePV1cavw1UYckSFCUH0ZNBBaokA8PYz//K0X5Vz9NeCNHOrb4OKGUyY/9ZrWB/PhvTA9fe9QbzuGzGjeraUj7rl5YlhyV66pv6SyQXsfv0Nd19NzqmwIYSyXU5D8y6BXnDjhSNJpaotr5pcWbvas39u9gZnR/xo5ejN/7Mvr4YhPOGo2VHLkMktzyf743SiWGR9l2novbqrON4SO/c7+qxjdOB2Mw3WcsRwixm7aodtDG9GniNulD220qnQDzeme9PXOET5qzOarEo4CIyhkQKURR44W9ny2rwHlCZNQDAMbhuQybUTPxrNGgFWFlGAzGo0ePvv/eeiAiR5MhQywcAkVYpD9OThPmKJ+zi5K85o6VaFGhukrNpDWB9HFR09yLhF6nvXvdahuMK5Cf+ENnR6TNoo3vSnd+pa+UnMw2TBy6eWMJj19e31G3SR8w3L31BQ/saWwsKaACJCK9VplwyJGi0dQKhDAO37apf1N3BoeBzb9omZ+BIXIltCqWXyBlprOHsj83UMM+9dXT+vxMqkqTesl+nVr/cEM7mGQl1WYHrB+YXo28PviO4eplwzkIY7HNHUoxFttz7moAUF8/9yK+tc9kePEuXnJUKtWff1qmUAkNDe3Tx9Lxb8CAAUKhsEmTJtOnT3//fSfcIucKUT9/DAB6+WITzyGN8blFhBQ4Br188XgJeiPEuu3oYhFCjUO9B3yG84ReH1hfIyGKGgc4DtWtMwUAlxFv43wh4/nI9PYQ6YfHFaJRdsfyrGfkx35jB4YqEo54LVhTbWNuy85UdjpcIPZZus3B0tHUHAzjv/mx7eysDAz+6MvoFWNcnUIsb4dTaw1xoavH9OXKC7H8Dn1xvr1DGUKtMMnLSCdPo1RCGHTg+mRZuibtMq9lZ1ajlzQsLdJri//3vv9Xe2thRXQEpvJi+am93ND29kerUCefxUWuSKfFhXVgw3OOIrxz505SUhKLxZowYULllY+3bt3Kz89ns9kDBgywc54gMzNTrVa3a/fEoVmj0Zw8eRIh1K1bNz8/vzlzbPl3UYeMHj369OnTGIaRK3nrnzgJGhWAAYCIBa3dsCslKPf5tRMUpO30DcskJ0/7KSSGeCqNjyXsoFaqKyesLv2uOLxd2G+8ubdVVQi6D7YzT7QFUf7Y24kv74hQdf2sIGK4dRdzAADQP8zUPUgVRY0DAO29G0x3HyrIlv7hPW5YpxfJiE3jLEQsODaIMeGcKTaf2NqD0cHzyY+ovBBbcXQH32yBWrV4zl4JALrsNM2ti66vzwYMUzwN4+I6Zj7OfnlDS2Acns/H214SLQgAGJOtSUkg1+naCTLq9Xl3xYPerBMBnGAaTUpKkkgkb731lqura0REhE733DzSlStXDh48OHz4cH9//y+/rD6XtFQq3bx584cffmgeYGLOnDndu3cfNWrUmjVrCgurzEiZnJx87dq1s2fPZmZm8ni8OXPmyGSyP/744/PPP3+RP7B2IIDzEiLyaaYkMg1vjsKKafRJbdWuKHESNECfroiPBoQqDv1sdXpPl52mzbhW7Up5k6y0+Lv35Sf+UF05WYM/BgAAOnhiBSpU9JJ6DIDvJzsYYnesaksa09NPk3qRjJeoTjppKMyhqsr/+aHGHgQ0Lw2NBNiFEcy5Yfiwk8aFl0xaEwAA0mnEAyfXaHhhlD5WXozV56Tzwrsig848JK8+N8NqpM2XB6a1mGrOguHq6b/moPksYLUIug8RD3pTdugnQqt6cQGcMCLcs2dPeHh4//79R4wYsXjx4nPnzg0ZMoSq3bx585IlSwCgdevWM2fOXLp0qVAorKioQAi5uj5bFpOXlxcQEAAAHh4e7777blHRs9zK6enpGo3Gx8cHACIiIn7++eeVK1dalSQsLGzXrl0AQAY2HDNmzNWrV/v06dO0qZWg6SQSieTWrVtqtZrcZbPZb7/9dqNGjapqT6FNOom7erFDO1TVILUc3Ni4J1NPfhhEeGKrUwEhmBkCOp2lJgvhg1KP3S/TNRWATqdjs5/5vCgNkFqGN+/Zkh3kpdPrXd//Tqe34tvmsvBbXdplw8P7TJ0thxZEIFazduDhb2IwdVW0tBDAnB5e+Nl83VgHW0dtCFAlCGlvJrCatJDv+cbtoy1WmyiO7OAPmabT6TDcyBsyAxOIqSsgfmORkSMwPt21EADDsBrLQ1O/YAAzW+CjAvDxZ40/ZxDvt8ZF/cbXtBNk1KuTTnl/9AMAmCqk8pN/CFs9iX8mO/Sz59tf2FpET/M8VKAf+5Gf/EubdsWluvQd9uCEEeHUqVO7du1Kbuv1eotwqJcuXaIUHpfLTUlJAQAcxz/99FNqncOBAwcSEhKq6v/KlStUDy4uLuYjRQtEIpGbm5ubmxuPxwMABoPRvXt3G1qQbMPj8Vyfwufzcfu8hI1FD03lRTYaJDzG+vg+U3jdvFBqOZYphwChlfEcBtDHD0t4bMU0d6kE6+COeCwGQ+QKAEintZKNEyHNhaOc1t2FI6o0DD45kUAsGDKN07YnJ7yr7ZZW6euL4q0J6XQInVp1dAfu4smrFPmXAueLMK5Ac/6w8sjPprLHz6VUdfNByFFW39jYWAf1TGOBGwfWdmFsuE0YavVjsnyaer27gdxmuHh4P90GAPfJH1ZObERTt6ivn/NauL5ODLxOGBF26/YkmtGpU6d8fHwiIyPNa6VSKRVjVygUlpaWAoBIJFqzZs3HH3+8evXq+Ph4mUw2a9asqvqXSqWkYjPvoa7w9vb28PD49NNPyV2CIDQajT0BXg3+gUZJno2W54tNU5phHM4TtcrhQAcP45ViCHRlM6ypkqhGRGIRmtWKodfrzbtNLDH1a4yZ0i4ZHmW5jntHFv2j+9SPWU8ThD4RW60oS4gW9xymTj5je82vPjdDe+cqN7yL7kFqVe7gFgKY078J2nHOxOE49jazIUCVcDjMhetYQhE3osr4F5zXZwEA37eJ6trZil++aPTtUWpSUBqzQ9B1AOdpXK7aCFA1P//8c2BgYOvWtcy1/Ypy8+bNixcvymQy8uE6e/bs8uXLQ0JCIiIiFixY4LjzdvLEWrjAP9nElGa1GRWYL0AyyUpB7AUgAgBc5Gb/Qjqa2uHx1hf6vLs892oCw9qD07xGy8vLf/zxx9jYWIsRIZvN1j815el0OspvRSwWr1u3burUqf3793/33Xdt9Mxisaz24FxM0sdUzCGtCbjPR1wxIbhQROzo9ZyoUf54oZqwqgUBIMoPW51CZCuQSoUJ4Nmo8cwj9H13nA2tyA9Sl2EzKk8G4HyR90ebkVqpPH/EtiIktGqECGQyGstsDWeroq07JtWh5BLk8bzfABODptacgCpT+VrVDYQJmMxSpUHz7duGxdaXWjJjt/q+PoPNFwh7Dme6eZu7xgi6DmD6OMrgazAYfv/9dw8Pj549e/bsaSuv3n+Jdu3a6fX6/fv3k7sajWb79u2urq7kDIhDWdKWsfSq6c1mtvJV2IMi7iAW3h08+iO9rvjbBf5ro+tGPpoqMBY91Ny+aE+SuGpxjiLUarXff//977//LhaLi4uLvb2fqXQ/Pz8q8LxSqfT1fbZ25MSJEwMHDszIyCgrK3N3t54rmezh6tWrVntwIqorJ/md+wPAIxVqG22UTn1O52XIkA8P835+iD+iKSZRV/lsNnfBQsQw4LiJINg4/mxdlAsbunpjLDwAfAMAgB3SpvKqeaTTmGQl7MCWXu9+a1tsblhHblhHAOCEtLHd0io4Bm82wyeds1y2VaxFMQOZff2qefMoDeD3lyF3EsujzoZbT9Dn35cd3t7afe1qzmvrjluKR/JrauqBENNHXQAAuK26mFdRMZodwaZNm8LCwgDg0qVL3377rZeX17hx44S2swL9F8EwLDs728XFxdw5wBEMbowtT4aTBWhw4xdSheJBb2gYHADAmCyX6iYdaF4cbqsutXsvVabKwXt0dHRFRUWdnMMCk8m0bdu2OXPmmEymCxcuZGRkAEBCQgI5BTh48GDKz9NgMLRv/2Tx1oEDB+Ry+cKFC9etW7dq1Sqp9DmfPfOYsP379y8pKSG3Hz16NHCgXVHyHI3ruIUVMTsB4JwElemg5Pmo2Vly1Fxs+RB28MR+irA1GoofxsyayEwdrsuayKT+3RjNZOOgTDhERkKRHdiiuW05S6p7kErmdDY8yrIdMkabcU2XeRPptfaE5LfKpm4Mc/HIf++H42cLq5+WuVCElAZIkNT9bBzTqzHWZ4IeYXOWL6osHvlPOf+nf6XWM+EpEw4rzu6rc6lISC0IAD169HjvvfdkMllgYOC7776bnm4zJfp/i6CgILFYHBERMWPGDPMkqw5iURt8/S3r30P2w/QNQCYTAACO87tZj0FKU4dgLHadLCIEG4owOzt79erVRmPdewBv3Ljxq6++at26dUhIyMiRI1u1agUAmzdvvnXrFgAsWbLk6NGjmZmZW7Zs+fzzz8kQaPn5+Wq1mpwXFAgEq1at+vvvv8ne1Gr1tm3bbt68mZCQ8NNPPwGAh+VZra0AACAASURBVIfHyJEjo6Ojb926dfv27bffdv6nGdJr4WngWjI6mnnGQaiUdPDFYbj7MH2aAgAvvBvTy3LSnh3USjxoMgCU//M9GXS/KnTZaYbHeUivVSbWQfgGiih//JwdyaTiCgkfHtiTdqqm4DxBvl/HIBEm3bkKGa29ZxHqlnU0qRjprL0emT5NGGY5vuuWvXv3AkBOTs6yZcuaNGny/fffL1q0aPny5Tk5OevWrSM/HF9d9u/fv/15/vjDSto8DMOaNGnCYrEYDMa1a9ccLdXEYDxbAVeKX+hO0+fd0xz4AQD0+ZnSHdY91WleUlAVfPPNN8uXL9+wYcPmzZsLCwurauYgsrKyZDLZi/SgVCozMzPrSh6KlStXfvHFF9SuyWRSKpXVHqXNvFn848eE0YAQCvzb0Oag4e8sk3mDDy4bN6aaqjj6OTQZ1+Sn/zYvqZCWqq6eVl6ItesPQAghRGjVJo0KIaTNSkMmW+cl9DpSbJNKXlUbubzKqqpQG5Bwt16hr6ZZ58OG726bwg8YbDerhQCqG/HXdmwafdpYtOlDQquu3MCkUhR+NqnrEUN8IVFtb7UQwAaDBg2KjIxkMpnDhg2LjY01Pf8Dbdq0SSqV1q5ntVq9bNmyw4cP//3337t3767c4MCBAzExMX/99ZdWqyVLUlJS/vnnnz///DMnJ8fOs6Snp2/bto3aNRgMu3fvPnbs2MGDB20fmJSUtHjxYnJ79uzZpaWlCKGhQ4c+ePDAavvLly9369bNvORFfohNt03jzxhrfThCyKRRlSYcRQgZigssHtJ6o25vxVqgVquNxhe6jC+ITqej7l77qXJEOG/evFWrVi1atOjtt98+e/bst99+GxcXh2oYebnWBAcHv2Dwa4FA0Lx587qS5wVhN20h7D2qZNOH2QqkM6HBjbFcxXMNsqtYOF8ZpFNbWAO0sb8q4g6aKp5zjlVdPKa9kwQAqkvHlRdiLDpRxB1UXYgBAKanv+1lALrsNKRRAYA+J72mcbdtwGNCJ0/sQpGtDiv0cFeG5obhEjV6XNer8pnuPlmebYNE4P3+/6y6X+N8ofeiH/r6YXHWDLOGwpyK2F11LNNTEELt2rW7f/9+bGzssGHDzNfnnD59Ojg4OC0trXY9q1Sq8+fPf//99ykpKaNGWa4b+fPPP2Uy2fDhw3v06LF48WIAKCoqWrdu3YQJEyZNmvTZZ58pFAprvT7Hzp07o6OjT558Fn5h2bJlrVu3Hjp0KJvN3r59e1UHZmVlnTx5MicnJz4+HgDmzJlz48aNffv29e/fPySkihBKdcqsMDzhMZElr/1NjnP5rLYRAMD0avTSRtymsUqVzjJubk+Cb/F4vNGjR//1119vvvmmn5/f/Pnzx48f79wUDa8chF7L8g/iNGsbU4ii/PFAIXa73MI0ioJE1Thbm2Sluvu3+J37AYDm9mWGyI0dGAYArLY9XSd/YOERY1JWkHHlcaELoVZadMUJDiczc1Yc/YUb3tVGvnVl3EFR1DhOi/bl+37w/ugH2zk8a0SkPx5XSAxuXOUkaIKE6O6N8ZjQyxePLyQmhdSlMzo7IOz8o+ahQkwRHy3oOrBypHyk15nkZZF+nt/cNK2oHAUBw0zlxXUojzktWrT43/+sR4jdsmWLWq2OibH8srGfJUuWVFaBJDt27Ni9ezcABAQExMfHK5XK/fv3d+nSBQBwHG/SpMmxY8cmTZoEAImJib16PQtFlpSU1L59ezKGwFtvvZWQkEAZM00m09GjRzds2AAAkZGR3bp1qyreYUhIiHlEp06dOul0OpPJRC2mqkxZWVlmZuaYMWOokokTJ/6fvfOMi+Lq4vCZ2d5YehOkKKAooIKKUhSJvfcYE0uiMcbeonk1Go3RRKPRqFFjEjX2EsVewBKxV1AURem9w/Y2M++HwWFZdpela7LPjw+zd+7cubvMzJl77zn/M3CgSflg9fKxO21DHLauU93Xg8S/ryBGfokXZuPiUlbXfnVup85IpdI6pK9qQORyOZPJ1M7q08SoVCqCILTXldlsNr0mUWWDuw8cONCvX7/CwsLt27fv3bvXyclp8eLFEydOxHH84MGDLBZr8uTJzfuLv0eIY47Q7VoIh069dh2LcEKcucjpjCrjjDQx4V5NXFsH0fm9DNeKMS7K4pSf/cNm0jJZXCw9oAcmLlUlJ5A2koTKysbx1+N/T+lHc4MiaVbG1rqEw6eR0Rc2k5bSLAx66taBCCdk/l1jg9FruUSEM0rWvJZLfNigowLprXP2SUyPyA/kl/5htwmsbghV6S9Flw+FTfvhcTEh0wC36o3CcHK3/mRxQ3ZIiy1btgBAdHT0nTt3FApFZGRkZGTFf/bUqfqu1GZnZ587d04ikQwePFjHxsTFxQkEFfMSTCYzMTHxyZMnVNSvQCCIi4sjDWFKSkpWVta4ceMAIDY29sGDB5REhg4ZGRlULBOXy01MTFSr1SZGNNUYmmlhYWFra0t2CQAQBAkICDBiOGtkXgDhfxJf2ZlZZy9ledsgDo+vylMTDEZ9elJnjL86NAGkrFIzGkI6nU4QhPbFY4rmiUFDmJ2d3aFDh4KCAtLxJCIigjJ706dPT0pKOnXqlKFXSzM6cNp1pVnaFf665LrV6lWBqAqDVDEAgCT2NNO9jdjem4aCZU2aXFYfLaC2Wd4d7Lw7lJ/bgyAIAqApzJbFxWobQtnj64wWngyHluqcVGXSE37PEdpNFe9eLYgczWzpQ4ZGGIMgSOkjmrUDgWN1U9/WS1d7JKmcKFMZ/OLXcoidoSgA9HJGtiU2sOMogWlylLyRArCd/r3exGkMVy/hgE+YdOhgg9zOJz5ogegcLo45qp0DtgFRqVRjx46NioqytbXFMGzt2rUff/zxX3/9Vf/3TjabbWlpOXDgwIyMjKFDh16+fJlqE8fx8vJyUmsQALhcbklJSVlZmXZJWloauT1x4sS9e/ceOnTIxcXlwYMH8+cbTFNcWlpKtYAgCIfDKS0t1Q6Xqg90Ot3a2nrMmDFUiVgsNlHpSS8ufBjSEn5Pgq8D6tgIO3w4UyBgNp+yGoqi9fkFGqoDzdgHFEUJgqhtBww+11AUHTRo0PLly52cdMOx79y5Ex8f34w2/72D2coPQWlyiZRmDZ4CRIFBhoTACVClviBUilSOV/VcSzoUbl1kM2mZzuqgRb+PEZQmlkjY3h2Zrt7auxTP7yEMFsOhJS6TKNNf6jzp6fYuKN8SAGSPrqqzkoVDpxo6b9G2JQ5LdqI8i7K/t/G69mXXSWhNL0wUgu2RG7n4EDc9l2yxEtIkRKAtAgDtrRGRisiQECbG4JsCL3zovhT1T3xEnZHKcHKvnsQOoTMYzp5QMR7FP2hR9WrHccmNqEYyhKtWrbK1tc3MzHRxcQGA5OTkJUuW7Ny584svvqjx2Pv37584oSeO28bGZtGiRXw+f/z48QDQsmXLzMzMR48eBQUFkRVQFOVwOAqFghxPyGQyLpfL4/EUiopAH5lMxuPxqAYnTpy4aNGi6OjoP//800h/+Hy+XF6xwEsQhFwub97xSo0s9Ed7n9fMa4/WTcZBk/xUlJdKt3ZguHrpyDmZeZcxaAg5HM7q1attbPSsCaWlpZ04ccL4DWBGm/x1X9rPWndu8OZehQQAsGlgxYJcGeE45DNA0LQS/bmWtKFZWCNM3fkaanxGaNTqrDcs7w7ULsvRs1AWBwBYrf1YrXVjTqmcznRbZ1wuM3Je4ZDPSCPB69qX3tA3doQzei2XGKJPOeRaDh7qgNBRAAAEINwR/SeP+KR1gxnC3Otn22t8+QzPoqvH+SEDdeLlAUB695KmKMdy2OcRzujSB7ohFAiD6bissa5/pVK5a9cu6mOrVq2OHDkyd+5cU47t0qULuaqnl9mzZwcGBk6cOBEAaDQapVxB0rJlS5FIREpVSCQSV1fXli1bUg4yYrFYW4b3xo0bTk5O7du3P3ToEDlHqhcnJyfKEMrlcqFQ+I4rA7S3QvytkcPJ+CTvOimucfi4TKwoyET5QrMhfI8w+M92dnZOTU2tXv7ixQtLS8uzZ8+Sr6tmTIHTNgjh8NlX/4q0q1jCdecjaRJQvnkGhMFcS9pYT/gaMZzeTFOcW3Zyh3aJOusNrpQBAKFSVs+gVPznd4BjAMB0a8MP1ZOtsLLnHXuQ0mLsdl3ptc/Naxwyq6LeXdQCYUVNZ4M164Y08XE7RjkACAdN1itOwXRtzfHtDADd7JGEUkJULdRQ+eZpI+XZadu2rU4JiqI+Pj71b9nLy2vw4MEAIJVKlUpl586dAWD79u1ZWVkAMHz4cPKWVygUtra27u7uw4YNS0mpSLOelpZG+aHcuHHj4cOH8+fPnzhxokqlIgMfKTAMw7CKVweBQNClSxdS/uLNmzdDhhjT83tHWOBP++kZfj6TOJKC//YSf1ZSiwuP5uxpOWK61di57LadG6+HZhocg4bw9u3b1Mo5xW+//TZo0KD9+/eTL5VmTEQ47HOg0b0zY8OFFQ6cHgIkVUyIY46ILh9Kk9TgKUMo5aXHthipwLB3sRozW7tEdOmAOisFAHBpuTj6sE59dX4mICgA4JKy0oMbDDWLS0X5P0wjtyXXT5BSNQ1IoC2SLiGKFHp2XcshejlX/ia9nBH/2zvkT2/rVCs7vk2dn1GHUz+KXCxz9QcAmsBSb35dplsb0qWITYMgW+Rmnu7TsPzsHqwotw6nrhEyOFW7RCQS4W9TiGzcuLHOOvITJkw4ceLEwYMHV65ceeTIEfIGf/XqFTk0XLJkyY0bNy5fvrxhw4Zff/0VAIKCgry9vc+cOfPXX39FRkZ6e1dMv2dmZlLrghMnTqTT6ZST3vHjx0+dOoWi6JYtW7KzswFg8+bNv//++8WLF48cOfLjjz/WredNSe8WSJAtsvUFdiKNOJ9JLLxXO8WZsr9/lSfcfceTEZrRweDUqJ+f34MHD2bMmGFlZfXdd9+Rsk9r1649ffq0n5/f3r177927Z8hVzIw2muI80cV92f0Xzujwc5yzBVnoIYBUMViNm0co5ampxABXY/MwuFyqzko2dg6URrO01S6wHDqVVJahWdnbzvhBp7rj12/DuRBUU5JnqFWEzqAEbemObris5jCyWkFHIdQRuZ6Lj/Ko8vXz5VAgJwKsK+2TjxC5QOBFZ/e4+nfXrqnOScXKioBrVdtTEy/utnbsAsARXdzPaNGK162/ToXy078z3Xw4AWHwNtJjgGuVVSPrjxdWl+xpEFJTUyMjI6msLKQSYUhIyJIlSzAMO3fu3Kefflq3loVCISnP9NFHlaubmzZtIjcsLCzIVNjaqoSzZ8+GapALjRSjR1dm8hs1atSoUaO097Zq1Wrx4sUA0K9fM4QT1AEEYE+Piv+1TAPOB9WlSrAy2Y9UmfpCevs8y7MdzaphfILMNAEGDaGLi8s333zTs2dPuVw+adKkS5cuaTSaoqIiMjvM+PHjf/vtN7MhNAVCpUCY7Gu5xHhaIq5oj7J5AOAhQG7lE2BFMFv5pT0Fd6PrJjRLW/t5m4ydQinPXz/Dec0xqgThCqhEl1hZkfasJi6TyB5eIZNBozwLu5kGdbcRFodaTazZv7RORDiha+Px6Owq460sKRHuhOrkAngc/EWb8hjXqodzAkIUiQ9pzl4lSlj2EMMIAAAE4H8dUOOeNe0f7lEN8QbgcDqEk35DOqACK5pFxQJ5L2fkw6u4SF0xMpjvh/oIERrPksAwBG14l7EjR44EBARQc5IA4OrqmpFRMfCVy+XmsKUmg0uHHk7o+Ux8vMlJmuznbdLkZTSeAp+ZxsCgIYyPj4+NjSWdUJOSkmJiYgIDA4VCIXkT0ul0s9eoiTCc3K1Gz7oWjX2XfkKdxWG19gcAdwGy/w1euGURy6dTOvMb41OjmqIcdV4Gp73BjAcIk23R72PtkuJdK2wmLaU7uAJA0Y6lzquPUL42muJc2ZMbpCEEANHlQ4KIkdUzVACAOuuN9H605YjpAKDOSZXej7Ycpj8aus5M9kYFDNCZdgyyRXpUTUyBy8RfpO7b4f5ZP4KgZjJV6S8JjZofNlgOcCkLf1JMTPZGAeBEGn48lZjvZ+wn3RDwzTgnBwBgeepP+yeIGEltd7NHvg9CFRgAwMUs4sAbfFUgrfzCX+w2gdzACL2H14fu3bvv27fP0N7vvvuOiswz0wQMd0NOphPjW5taX52TiotLGS08G7NTZhoYg4YQx3Ecx0lDyGAwcBzHMIwyfhiGNYYe978SxfN7BEq/kedvO3om07liZOYhgDQJWI78slwk4RcDz2h4nir1hTL5mRFDCAhCGTYSfs8R1MyMzcQl2naO6dLadmqlIrDs0VVelw/0vsASahU1rAQEwcVlxnpZJ6xYMLVNze/aWHmxizynzYN9Erod9U2VKc8JDAMMA4CrOcRHrdDP26Bkm3+9xuf7GWs2X6LxsEAAQHwjCjCNIHKMToWyqN8EPYaRvyGKwASvitY8BMSqJxgA8DpHNtLclxErCADa8itmmoDBbuicO2qZhsY1LYZWnfm6/Pxfzqt1F+bNvMsYfFh07tw5IiJixYoVCxYs6Nu3b0hIyKVLl6RSaVlZGQAcO3YsICCgCfv5HqNMSUjNLnDkIHYWLNJXEwBceUiujKAHhKd3Gl1jECGnQ3iN6c3yVn9KqCsHCryufaghINOjnbY/CFZehJVWZtm1n7fJ0DQO08NXOGQKuc1wcrf+5CvjfWg8GE7uLWesvmfTOY9daXsEPYaz2waV7PsRAK7lVjrX9HJGY/MIjeEQfEyj2fpsITl3ynBwpdvqRsoCgDo7hcD1eEmEOCBxxYRUAyyvDnSbxkp1mZSUNHToUFtbW1tb26FDh77vGSfea2xYEGiLxGSbKunADYq0HN7AEydmGhuDhjA8PHzevHk3b95MTU09dOhQVFSUXC6/devWiBEjPv/88yNHjvx3cmfXE4sBEy/Y9+nljIguHZTF3yQLGSj404oL107lHl5VoyHUFOXoTxWkBTnjSpH3/We4QkpuF/22XNvXRh5/S3o/mvqozk4xlIlJmRQnT7hLbhOYpvzcHuN9aDzkCXfVOak23u2jBW+XpQlCciOK4dBSEDkmSwZiNeFrVfEz2rDAjY88Ljbo9Z6jQL/3mE1GTLPbdiY9YnSwm/EDqS2nA5cOnWyQW/mE9M6F8gvGhm515s6dO8OHD2/VqtXXX3+9cOFCOzu7wYMHv379ujHOZcYUhrujJ9NNDaJAmCxuYK9G7Y+ZBsfYaH/EiBGUoG1gYIWvxL59+x49evTBBx+YV+xNRP74emxR9wlt2VzH3jRBpV+GjZBTEtBfmfbSo6YIY8k/UUz3NrxgY053Vh9WCbhmeXdA6BXTobwuvVEtmVBOhzBCUzl2lN2PZrby43XpXb1NVcYrQBAgp2QJQnr7POU708TIHl7hBkVGOLt57ZtFLN2AMNmYqEQSe5rfcwS7ffCNRHWEUxXfmghn5GoO0cVO/yWaKkHSWlZ4nyqT4lQZr6rnChDHHBFEjtEbWRHhjFzLwXs6uVXOGzcohw8ffvToEaVMBgBZWVnr16/fvHlzY5zOTI2McEdWPcE0OI3enOJlZhoRg//Yx48fz549u/pCYIsWLYYMGfKO6yS9U5Rf+OtFjjjcEWW5t9UeZDha8R8GfLwr+Lsa5bb5oYOMLRACAEDp0V8wUSn10Wr0LOoxzes+gGahFWCAopQ/JAAIen/IMSCcJug1ShBR4QqP0BmO3zRW4qEasRozh9Oua6QzcpfphSkVAEAT2tjN3gAAeasm3snRRDhX+Q0jnJBrOQbnsgqystY+qZjmJXAMl+tm5wAA0eWDhg6PcEKv5RJMj3ZcfW8P9UQmk3Xq1EnbCgKAi4tLixYtGvxc7xQEQcTGxupkmHr27NmLFy+aq0sULXiIOx+JNZo1zMx7jUFDeOTIkZcvX2onszBTN7JGf8eztrFlg/ifk+IrR6nyzsqklpc3dX30e40jQlRghfJqyHuFlZcQqsrQ9KKdlS4V5Wf+UDy/W/kxapciofIjyrfUXlzURpn8THvWVJkU1zxhwgShSk0ABHHmIr96z0xUC8m+kZoA3KBesYW0iKpepj2d0DsGkssDQIqKl+0ZSm6z2wTqXX91XPqn3uEgAHRzQF6UEiXZWaVHf6nHt9IPk8nMzdUTp69UKhv8XO8UV69ePXHiRFJSElWi0Wi++eab/Px8I0c1GcPd0ai0BlZ+N/PuYNAQBgQE7Nq1i8OpkrN0wYIFhuqb0Q+OPc6Wk34czBat6I6Vao1OPCSbZhucfdWdXcPbRtGOpZrCbON1bKd+W+n0QRDaBoxmaQf0Sq9RTocwpkeliJfi6S2RgbUuSewZVWbl0pTowr4au9EYaIrzyk7uJLc/ZiXlnjsAAKKLBzT56QBQ2PMzOcL0FlYxWkIm+AiRB4X6X+FfqIVlwRVuolhpQfXExQSm0RgWrGGi0MUOeVjGbHCFAQCg0+m5ubn37t2jSjAM279/f405id53IiMj3dyqyM5GR0d37NixufqjwzB3JCrdmAeWmfcag2uE7dq1W7duHYvF8vPzI3Vy1Wr1jRs3mrBv/wbUOantbmxrMeUXANAWxQYAW0+fdUWtXzBHFtSkWsEL7ldjfK70fjSrtX9F4DyCOCzaRu3ih1UReOT4ddP+yPIKQAX6lVmEQz6jCSsFa6zHL6TbNcMEHc3Kznri1+R2gDNX8TIdACyHTiFFwPOObR8vDAfQDQeMcEau5hKhjnpGdezMZ51zHoH3ZwCAlRUpEu7yQwdrV9AUZped3OmweEf1Y982jl6S2PSZtLReX8wAy5cvHzRoUG5urrOzs0qlSk1N9ff3v3z5cmOc650lJSXF3d398ePHzd2RCnwtEV9L+O4JtjLQHD/9L8SgIfz5558vXrzo4uJCGT8MwzIzM5uqY02NSCQ6cuSIo6MjQRANKA2MWbdY5TDxmCMCAMrX8co3Ty36f0Lu8iiIa/m6yIvNZOLdgGYsGyG/R815HxXP79H4lqQh1MmWp3jxAJdLqNDv/HXTbb9YQ60a0qzsDRnCKnGEACjXAjRqqHdKQlwqKtgwy2HpHyZmN8SlImptNbide9vErwqUSoTFIQ9PUbADW+qRK+3ljP4Yjy3vqGfOo0CKWzhRsSW+1pP+p1OBbutsOXKGkS71ckZm3MIlN06xvAIaPMmAjY3NzZs3Dxw4cOvWLblcPmPGjI8//tjEZLbvOEqlcsuWLZQkN4mvry8pBU6B43hKSsoHH3zQtL2rgb096J2iND2cqqjgmvl3YPBJZGtrGxsb6+XlpV04Y4axp8N7zbRp037++WdHR8c9e/YcP35cRy+xztwvRuXOvkLSzKGodhSEsDy7pbpkWNkdTZGbkYcpoZTnb5zt+PUuQxVIrMbNQ5kV89iEQia9d5EyhLikTK01pcnybI9yKhPLYeXFRdv/57BkZ/U2i/9YaTt9LRUtJ7q0n9Xan9u5vo8nXCFD2FzJ1eOC3h+aUl906QCzRSte9wEA4MCBaWXnks+U2ykLrMcvAoCvrSZc9tNjCEMdkNFFhFwDnKrXuBqH80y/o4M6kR8JjVr5+qnOKBkQhO5gLLlKZ1skRUxIoAhhvmpwQ5icnCyXyydMmDBhwoSGbZkkPT3dwcFBxx+H2pWUlNSlSxehsGJNWiqV3r17183NrXVrU7VVFApFQUGBds6mhISEgoKC0NBQFou1cOHCGlsg89rHxMS8ePGCzWb7+/vrzQfXxNhz4Pcw2uQb2OPhdEMp7IuUyNfPsKs5xO5wWld7s718bzC4Rjh//nxPT12VoK+//rqR+9M8lJaWvnr1ytHREQBCQkK2b9/eYC1fOTpbdJrcZrXyEw6ulEsWhA2K8vwoqutXDAdXA0cDdWCNJ8KK8zBRMbmN8iwcFv1K7eJ26a0d9mA5aoa20AzKFbB99aeMEQ6cTLeqnJLldu3LdNfNEFQH6DaOVmPn0E3O4s3tEKbdw2A0J11CCHoMB4DEMqKbON4p4171o/gM8LdG7hToLhNmSIiRqofq53fIj1hZYfnp33XqKJ7dKY8y9uZBR6G7A3I3YCKvax8j1erGsGHDpk+f3uDNAkB8fPzWrVvDw8PJvBA6/P333xcuXOjRo8fGjRtJp5WcnJyFCxd269btzZs32ikSDSESibZs2TJu3LjDhyt1VVavXl1UVBQYGPjVV1/pZEDURiKR5OTkZGZmymQyd3f3AQMGhISEMJlMR0dHyio3O/1ckNEeyJQbmM5VVa6CQgWsicM7X2AyUFjWER0ardmcgJvdTN8XDI4InZ2dHzx4sHHjxoyMjFu3bhUWFu7atevfOiJMSEig3IIEAsHTp08N1cQwrLS0lBJEpjMYYqY1x/AFfxm8xrariB3Eyotlj64JelWMNZWv40IQoSOfbly7GWFxdFIs6UV69xLdwZVc6yLUKmVyAhVxgZUXq1Kek3kkCKW8ZP86m89WVLbPYFLyMTqw2weDVsdYHr5A1NdbAJdLCjfPd1jyG+jLx6sXpruvtuXG+0/d/lTUWmgNYuJkGhHBKcAyUqFLZPUDezkjp9Jxd0GVt717hURndSpWXDEeots4VVfMYTh7GMn++LZx9Gwm1jH5FBY8VC0Dn5oySprOp59+Om3aNJ3CXbt2TZ06tZ4tBwQEBAQE7N27V+/etWvX3rt3j0ajTZo0acGCBSdOnNi8efPw4cO5XG6/fv1CQ0PHjx/P5XJxHCcIQltqWK1WkzO3FhYWs2bN0s4hVVJScvXq1WXLlgFAjx49Nm3atHz5cr1nf/36NZn1Ij09nczImJWVRaa5EIvFVlZ6Zu/VanVJScnRoxWe2CiK+vv783i86jUbkNWBSNhZ3O9vjVQDJYqKRJUWDKCh0NsZuRKp8HPkA0CwLfrhdfyfXPznYMSV13RDQ1Ias8lOZ6gDzRhlTl6f2j8CKRRq9QqFQwAAIABJREFUHIOG8NKlS8uWLRs1apS9vT0A2NnZzZ8/f9OmTUuWLGmQ7r5TlJeXUzNFXC6XlJHTS2JiYnR09JkzFX6Gaqd28MURBsOg2yeP32mFl5p8NGBF+bK4WKRLRVy87P6VPjSf9k8flvF6MAyn8cRyU9Uv7rMjdSO+KaRSKYIgaOc+OINVcaL8DNm5PZh7hf+IJiNZeesc5tUJAAhpuUYu00l3J9n3A2/ULIRT5QlCqJTijTMsllSOllSPruJF2ey+n+jtgKHu6YCX5tN8gyVisXjrAsHMDYZCFCpRKUQ/z7RYXNmNzhZ4u9ipfWQHMIQGABuCe2h4fjrfiOQDW2TyHcbpNN0oio8Dh0E7DXUIhhEqncO5ltDSUm+bFBE2yG8JqPLB3gGFfTGEea6XtCWv4n0IQZD6PI579uy5b9++7t27t2rVigzYLS4uvnnzZv0NoREyMjLKy8tJ82ZnZ3ft2jUAuHr1KpWwicfj3blzJzIysrS09Lvvvlu3bh2TyQSAxMTEo0ePkvmbqhMbG0vNapLNGjKE1R1Evby8dJZmdBCLxUVFRdqjTwzDnJ0bJTeWNifDkVQJWLPAkglCRpWXYIlEJpOhAGBPg4sRsOYZrdNJWgdrYrwH1sGKuFGAXslFbxUiazti4z1ql+bQRORyefOmQ5DL5RqNphn7oFKpCILQXodms9l0eg3uCAZ3P3369Pbt2wwGg5IAZrPZ3t7eGRkZ2rP//w4EAoFMJiO3pVKpkadY+/bt27Ztu3JlhWg1juNyuZzHM+jqUrRjqRU2hya0BwDg+1rMWk8NbrhDPxvH5KjSXOj2LjS+wVhCBa4mMBXfcAWCIPh8Pk53BhxHuXwAIDjenI/mM6lD2nfGWraqOAWfL5ipmxxVyeZwWQydPhAYGw/uq31elYePhsvjVusJ2QFD3dOFzwfXVgCgdGzJ43Jq9JchVHQ8ZJB2+3wuLvvwyzedK0bwuEJdFv+S30LPymUPPqToG3cqEp8yNC1p1vYAQGjUOTu+bvHjSe0K4itHESZbx9tWh0A+JI0DbMDvb4QcsVhcPYt1nRkzZkxhYWF5ebl2IaXx1Ejk5+dTKhk8Hk8kEikUivz8fOpeEAgEeXl5AGBjY7NgwYIFCxasX78+PT19//793333nZFmtVto2KBAa2trb2/vEydOUCVisbgWl2Jd4QO4WOvfpXMv/BQCq4PhVDq+J4m26hlEOCMfeSNLA5HRV1Auh/WJyamdTKd2N2MjQKPRmExmsxvC2oYbGXwMcbnc6o5qSqXyXxnY6+bmJhZXxIRJJBJ3d/eGahm1sEa4b80qjsuf3eZ26kl+wsqK6PaurNZ+AMZGRWyfTmyfTjWeSHrnAi4VCQdNBgAEQVBOleeypjiXJrQBAE1htjL5mY5am81kPWEACI1OtkbBbOnDbOlTY0+MgCtkRduW2C/4BQBsJi8z5ZDqGaYARbUddrDSQuX149C1Fi480vuXuR17cKztAQChMyyrzQzThLYoz8KUpgiVQp2XAbxaZwY2gr29/alTp7SdWVQqlYm53Z89e6bX2Njb2/v7+1cvpyDTy1Db5Ds1QRCUtpR2BVdX10WLFs2ZM8fKymrNmjVGpp60j8IwTMdf9L8AmwZjPdGxnlV+oisDaJHnMQTg40awhWbqgMF/Q0FBgU7UYHp6+r59+0x3HnuPcHd3t7OzI238q1evhg8f3lAtW3+0gMzECwC4Qlr2d6UPS1nUTlXWa9HF/ZJbZ420oHj1WJVas8oU27sDu20Qua1MeV52bAu1i1Apiv9YpSnOAwB1Tooq5bnOsfKnt5Sv43UK1XkZJfvXaZdoinJLDm6osSdGwCVlLK+Kx7H0frS23o0hJDdOSW+fN1KB4ejGHT3XSIXqCAd9ytaai+YG99WpwA3qRf2YxlG+jpf8c7LmerVh+fLlvr6+nlq0adPmk090Z6T1IhAIrPRhYVGDXbezs9N+F+RwODweT7tQLBbb2VV6TpF1FAqF8XRsOi3Y2toaqfzfwVuIXOpPW3wf3/AMz5M3d2/MGBkRLlq0qHv37nw+n06n37p1Kz09/fbt2xcvXvy3am1v2bJl586dHh4ejx8//uqrhsk3pMnPlD6IocZVKFdg9+UP1F6LvuOZLVoRcom27Et1FIkP6XbOTA9f4+ditGhFbdMdXMlgAxKExbGf+zPN0hYAOH4h7GrrkVhpoTo3jeVVNa8WgaPcKsNKhM4AA2JsJkK3da50zMExdV4mu10NGqoAQLN2MLYbQQiFrFbdwGVi8tcgyV8zxeGr7QirUkRJdOEvjn+I9k9qCE6nnkzPdnqiN+pB376Vhpmcg7GwsOjVy6SEBu7u7rWdz8jKynJxcfHw8BAIBGQK0qKiotDQUAAIDw8vKamQKCorKwsOrvhnvXr1av/+/Rs3bszJySHnSPUGYwBAaGjoli0V72RUs2YAwNcSiRlAW/0EXxOn9hYiI9zROe1Rpnl82FwQhpFIJN98801wcLCXl9eYMWOePHlipPJ/hJUrVy5fvpz6iGGYRCIxVFn+/H7pyZ3aJaqc1MpjpWJTzogrZLhGbaSCSCQiCEKecKfk8KbKo6odoiktLPxtuTL1hTovo9o5cALTmNIZIx2oEVwpL9iysM5nMULWkhGY3OB/oTp5P0xT5aZRH0uPb8NVSu0KxfvXKTNemdiaKidVVF5u+tlrZNOmyv9jQkLCzp07f/755zNnztS/5ezs7OPHj9va2q5cufLRo0cEQRQUFDCZTPI/uGvXroMHD+I4/s0338TGxhIE8ebNm+nTp6vV6lu3bi1dupRspKCgYMmSJeTEKUEQGRkZK1asILfVavXZs2f79+8/YMCAs2fPajQagiAWLFjw5MkTpVL56aefZmZm1v9bUNy5cyc4OFi7xMRLsfGoQwdUGBGTjQ+8qO5zXi0xdqM3VgcaFplMRv7fmwulUqlQKGp7lDFDWJ2kpKTanuBfRq0MYXWyl4zEFTJyO2fFx5ikXPbsjijmqJFDFElPqEP0Ql76qqw34mt/kyXyhDslhzbq1sPxsqjfCncsFd84pbsL00huntU97+un0gdXdApLT2w31AFDyBPu5qz8RJmRpM7LKP37V62TYuUX9xs5kCAITFxavHctgePGqxXfuUS8fS7rUH7xgOTuRZ1C2dNbuFplvE3TyVv/Zemr+IZqjSCIRYsWVS/csGFD/VsWiUTZ2dklJSWFhYW5ublkoVwupyq8fPny/PnzycnJVElRUVF0dPTNmzdNaR/DsLS0tJKSkpKSktTUVMqR/eHDh2fPni0qKqr/V9Dm32EISTQ4MTVW0zlKXSivuXJjdKCheE8NYe3ksjZt2rRt27aa65kBAADJjVPcTj1RfmU4sOXIL6kANV7IAITNRWh04ykdyk//YTV2DsOlhqVZRotW1FQeamHNcK3md44gwqFTNUW5KEfXJ5bAsLJTu3ghA7UL1XlpuFg3jET26JpwyBQTpdFIWN4d7Wf+RLpoWo6oEicuufa3Re9xYNjVQpX+ktGiVY0hFvTWAXrraIrzaEIbrLRQt0teAdrScSUH1gsHfUo6E5GIrxzjhw/VDl40gnDgZFVNSrCmcPXqVTL4KS0tLSYmhion5Ubv379f/1MIBILq3q3as5o+Pj4+PlX8oWxsbEyXOkNRlBLOpiL/EAShspmaMQQNgZ2htMX3sYhzmrN9aW78f+cK1DuLwSdaaWnp5MmTnz17JhKJKF8vjUZjNoSmI4k9zQmosijC6RBGPbIteo8DAHbbION+GZajZ9JNEPHSFOVIYk9bDv8CAJiu3kxXb73VKjNUaIEwmNUl1vghg4DQFQpw+nZ/rawgrpBKYk+T31QXFHVc8ZeOFVSmJNAsbOi2TsqUBKykgBvUy5RFRPnJ7czQgdXXPpWvHquzUyxHz8QV0qJf/2czZQXNwhoA8r79xHnNcerUhEqlnakYACQ3onjBfU00hOw2gaqiBogKEAqFz58/37hx4/Pnz7UNIZvN7tChw7p164wca+ZfAAKwrgvNkYN3OqkJsEY+bIWO9EANabmZaVgMPtS2bNkSHBw8bdo0KogCx3Hz3Vgr7Bf8QrmMkhRuWWT90QK6gyuhVhX+ssB+wRZNcZ4i4a4RWW2UJzTJ9uA4NfRRPL+rKcozRaqbglApcEm59uBV+TqOZmWvk25C+TqO6eqF8i1NbFadk1bdSZVCU5iNcgV0W2cAwCVlmuI85Ztnmtw064lfS66f5Pc01XeX0S6YZqXHoYbTIYzt2wUAUDaP27U3LhOThpAXMlDbAFePHnFYvEPHUcgIqszXsr9/tZi3ycT6hggMDAwMDBw5cuS0adP2799fz9bMvKfM90Nn+KIXsvAjKcTCe2pHLtLRBulgg4xvhbQ0DxMbDYNPWEdHx88//1ynUCfI14wRsPJiTX6mTuoljl83hFMR7kqzdQIAXFKmSHxgyGgRalX+uuk64d56odu72HxakYwXV8i11b1NQXrrHN2uBT98aGXJgyvsNoE6hlB67zKhVnH8Q0xsluXhy/xMv+YIACgS7gKdadFnHABI/jkFABYDJ5K7qO9iCgy/EIa+eHZCpUSYFW/U/JBBhFIOBAEIopOJV3LrLNsnUDuboyr1uSkj0YqzO7akt+1iem+Nw+Px9Cr63r17l3LaNPPvhkWDYW7oMDfQ4LRX5URcMXG7gAg/i18bSPMQmG1ho2BweYbNZpeWluoUmsOATEeR+FAWp5u+UfDBWDL/EcJg2kz8HwAw3drYTPlWu4746nF1Xjq5rTfcWy+EWiWOOUJucwMjBJGja9VbfvhQdrsqT3Nh/wnVDZ7lkKmmRPdTyB5fA8MroPzwYZRoNbdbP8EHY0xvWRt13D/iq8erl4ujD8vjYqmP5Wd3S25E4ZKyou1V8i4pX8drJxzGpaKSQ7UY3iFMNitkcM31TKZdu3YAoFAoSt9SUFDwxx9/NOApzLwX0FFoZ4WMb41u605b1hGNOIelis063o2CQUM4bty4Q4cOXb58OTc3l7obGzAtw78DTWG28r7+jKkc/+4WfcfrFJaf/l2VlggAWHlx+dndAEBgGvnTW1Uq4Vil6weCVA/31guhUkhunSO3FS8fKZPiTP8WAEC3dUZoVYSEMGl5dTcWhMXGxLqvR0YoP/U7rjIYZYfyhbikHAA0xXmEUq4dyVcrEL6ltvMLBScwgtWm0k2DHz6UJrQlcEI7iBAArMfNZ2tVQ3kWtp/VYjza4Fy4cMHZ2ZnD4Vi/xcHBobi4uBm7ZKbZmeKDLu2A9jqPpZltYSNg0BBOmjRpxowZffv2dXZ2pu7G8+eNaXz8B0EYTMWtM3p3aQqzadUT3r71EcWlInV2CgDgkvLy01Ve9gUfjCWXzQBAlfay+M/VpvREO/WSKi1RlZ1ci68BgJUWFm6tIiNQemijpiBLp5rixQPR5UOmN2s3Z6OeH+EthEpR8MsCIAjRxf1GlhJrhN46QHtSl4Lp6kXXCsan27Vg+3VDUMRq3HztaurcdE1pgVa3cJqVfZ07U38OHTp09OjRZC1evnz57qQiajzUarXO4otMJqMi+s1MbYPObYf2PIcdSTEneGpgDBpCW1vbEydOJFelf//+Tdm5dx+apZ3F7J/17ir+fSUu082+Jhw4iUwuyHD2sJ32HQDQhDbkBkXRjqV5qyaSHpsIm8tqXXMyQhJlSgK5IYgcY1wwujo0S1sdWyIc/Gn1lIGsNp14XXqb2KamOA9wY9qSCJNtNXYOIIhF7w9NHPjqBReVkMNrHYp2LlVnVXkhUKW/LPh5ns48quzhFUXiA+qjMuV56SH9/9OmISwsLDQ0VFtizcfHx0SJtfeX6OjoL7744sqVK9qFS5cujY/XFf/7LzOnPbqnB+2np3jwKc2NPLM1bDAMOsuMGjUqKCiIytJH0kj5Qt9rCKlI8uQqv4eui6Pl2DnVvSvlT2+jXD6rtb+mKEeTn8lu1xUAdKIUcJmYExAKBA4IjeHYkuFoaq6Pkt2rW6w/BShNnZuK8i3pxpXJdEBRbUOIyyVMD9/q3qo0gZXeSUi9SGJP0yxtBT2NpU3gtOuqzkpGuPxaRWXogOC44o2exyXbJ1BnFpTl0Y7j312dm6pdyI8YiWrNytLtWmgL1DU9ZCIbncQx//qp0d69ez9/XmVW4Pnz5ypVvST9/pX0dELuD6MfTsYnXMfmtEfntTfLsjUABn/EsLAw0go+ePDg2LFj5EVpouDhfwqEwRJfPa5jzAiNmuXZrnpldU6KOjsZAFSpifJnt8nCgp/naMfU28//xXLEdDIjruzBFek9/WuQ1bGb+SN5lPTOxdquEQJAyf51ipePyO3yM3/KH/9TvQ6hUuR9b5LzDgDwgvvyOtcQiy26sC9/42xNblotOloNxNLWfq4e9xZB7w+1A0IAKlQFrMcv0i5D2VyAyn8fTWijE/3ZxPTs2fPrr78+ePBgzFsuXbpEpcD8j6BUKktLS5sgueD7CAIwrhV6YxBtXTwW29zjwqHR2J9JzZkKuEGo8tZJpqh2c3NzdnaePXs2aQg7d+5sa2t7+fLl4cOHoyj68uXLZurqOwrC4Tl+s0dH2UR696KmKNdymG78iUWfcWTSJU5AKBVHb/XhXCpDPS6TSG6dYbq0Vr6OFw6ZgstEpge0oUJbMjxA0GuUiVmEtGF5BaCsCpERdpsgpkfb6nUQBotfVYDGIAQBCFJjN9jtu9Gd3Mlov/oguXGKHzZE579QsHmB/az1RpRrSKR3LhAqhcWAisgN6d2LWHE+FcjR9PTp06ekpEQ7q5xMJhswoDkHqQ0FQRCpqak6hXw+n8z+rc2VK1f69+//zz963sbMkLTkI7t70D+6hj0cRnd4O6MRX4q2Y4JVU4XhZ0mJm3l4Yhnyppz4vjPt/Y3tqPKMOHjw4Pjx4zdv3rx48WLtSVEPD49p06Zdv349Nze3yXv4HkColeLrJ7RLGE7uXH2jCk1xnirjFQBgkjJCVZHZkeMfSj3BsdICZeJDuq0z4DgA8HsM59Y0qKIo+vXriph6Gh1h1PpW4HXty/RoBwAEpmH7dNTv5IIgFv1NWqxSZb0p3f9TjdVYrf14XfvUnKe+JsQxh3GZWKcQoaE1WkEAYPt2Yft2pT7SLGwYzh717E998PPzk0qlJVpIpdJ/R+SSRqNJqQaZ71ebN2/evHjx4vjx48+ePfvnn3+qVzBD0s8FmeyNfHRNgxHwqIjoe0Ez7iaz9VH1rNtYsqgpRopnMogBruidIfSb+cSHVzHFe5tussqI0N3dffRog/Fnzs7OZmcZvSB0puTKMX7IIEqUi/SIqY7yzVN1VjLTva309nmUzRV8MBYACjbPs5m0jAzoZrTwtJ2+FmEwhcM+BwBJ7Gl2u64mrvYJeo8lZwLLo3byuvYxPSScRFOYLb5yzOrDudLY05i4TDj4U73VSvb9KOg1mtHC03hrNEtbiwETatWB+mA/b3P10afdzPWmHMtwcie0nHrYvrpSbU3MunXrdHJi02i0mTNn1r/l4uLiBw8ebNmyZfv27S1b6q4979q16+LFi+7u7gUFBV999ZWfnx+GYRs2bPDx8cnJyYmIiGjTpo3x9tVq9YMHD86ePevq6kr5E9y5c+fRo0cuLi6FhYVTp041olxKyh8DQOvWrRcuXAgA9+/fDw8Pd3R0rNfX/lezohOt30VN4ElNkRKWdUAPdZcqGYKtL7BupzVjPNGt3Rs3U/yZDHySF2rDguj+9CmxWPfTmh3BSGBz+lzXkSrvy5Rg7sOHD5csWeLi4tKpU6fVq1dTkfXmKXu9IAym44q/tKUpc1dN0CulzekYToaNc4MiOR17kIXcgDCUzSW3NUW5ZFiFOPqwKu2l/OktMtLOFHhd+5JCKtzOvRkGtEaNfQsWlxxU0e1duG/7Vh26rVN1DVI9rTGYJua2bRBwqRivmpUQl4pEF/aZcqw8/qZ2wmTx9RN1WGFtEDAMKygo6NixI/nx2LFjW7dujY6OzszMNJ5f3kSkUqmXl1dBQYFarUd4SKPRhISEtGjRYvXq1X5+fgCwe/duBweHoUOHTps2bc6cOURN/3eNRsNkMjkcDpWMV6PRLF26dMaMGcOGDcMw7PhxPboHJHfv3pVKpampqU+fPiVLXrx4weVyX7x48a93FKoPNAQORtC/9EWTRtO/aIsyUHDiwvdBtJSxjHsFxE/PGnH1TqKGW3lEP1cUAFg02NeTNqc9OugKuuIJoXzfhoZVRoRcbsXjOCgoKCgoCMOwgQMH9uzZk6rAZJokQ/zfRBxzhBzhAY6zvTrqdYNEaAxcowYAmqUN+jYNhaD3h1QFxfO7WGkh070N0Bnq/Azbz78zUfoZAIp++8ai/ydMV2+2b+c6OGHSLKxIYTOWTycjh1v0N2mcV7hpvs3Ub+k2ejS+GwNR9GFupx7aTi6YpEyRFGfKRC7d1pmpZUTx8mLCBJXzBqS0tHTEiBEKhaJPnz7dunXr168fWT569GiRSBQVFTVx4sTAwMD6+8tUHwVqw2QyddzCjx8//v333wMAiqIajSY+Pr5Dhw6FhYVXr14dO3YsWUetVu/evZuUY+RwOEFBQdHR0VQLd+/eFQqFZDZvHx+fbdu2jRo1Su/Zg4ODdTTkfH19V65caaTD+fn5Dx8+pNJcAMCqVasmT55s5JDGRiqVNn3qcg7ARy6AK0BStQP7ukOvaJYXRxHp2Cjm8EwWGmRDQ5USScUiD4x0gqCeyiXPeB1P4FE9VM7cxjhtDahUKoIgtF/12Gy2jg92dYztdnNzM37nmKFAUJr09nlupwig0dS5aVZjZ+utpkxJkFz72/aL78uO/MLp1IPj1x0Ayk7u5HbqwXRrAwDcwF7kUFIQMRIAZI+ucgNN9dRlebRDOXwAKP5tuXDIZ6YkWNdBfOUoyrNQvHpMyr/pRfHyES4u43aONN4Up2M4XZ8QdiMh+GAM3apKLiSGQ0u7mT+acizDpRXDpfK3Eg6d2sCdqwm5XJ6env7kyZPqUfMWFhYTJkzw8PBYvdokXYX6oNFoTpw4wWKxyHy8TCbzzZs3PF6Fajyfz09OTu7QoYOdnR2KogcOHBg/frxarV60aNHs2fqvdgB4/fo11YJAIEhOrp3Og3EcHBw6dux46dIl8iOKoiiKajsZNT0EQbw7HWjDh6ORxKgrcHMwvbVFrc2zCocSJZQqCQ4N3PVpnEYXYMM8ED6/ijuCJ40W1YexPgH58BZ6YxCdb2qwVYNBGkIWq3ZOElWmRnNycgoKCiiFQ4VCIRaLqY/FxcXp6ekN2udm5vz583PnzqVieJctWxYWFjZmzJgbN3Q1QmsGRR2/2UOztsdExeKrx1XZKXprMV29+OHDAIDdritlqBAGkwo8x1UKapq07OTO0oMbSa8ZUxD0/pCUpGG6tzU9QYQ26qxkrDif26mnkTqEUmZctkadl6548cCi73hTHFUaCoaDK1QNcNSU5CtfmxSLrc5NKztemVxMcuOU6dPRDcWgQYNIKyiRSKg7jpJZCQsLa4J1stDQ0EGDBg0cOFAoFC5fvhwApFIp9SrNYrFEogqBCNKTYO/evYsXL547d66np8EFY6lUSq13MplMasq0oaDRaFZv+S+I79SWUEfk2060YdGYqDYi/LfyiU4nNfw96oAT6hExWFCUprrrDU7AuUx8cEv99nVJABpkh3x0DcPek6D/KiPC+Ph4B4ca3uIPHaqFwtY7zoABAx4/fkxlWwwICBg/fryLi0v15KUmgSAAwHT1tvtyraEqKFfA8goAAG5Q5ThPOKhyMqf81O/cwJ6k2rUy+an15GWmmxPxlaNMt7as1n4mOnZWx+rjRTXOqXICwjgBYUYqlB7+2UJrsrdpkN6P1olXUb55qkpJ0BYRNQiCaOcjlN6PZrcJ1A1AbGRatKjI8nHnzp2YmJj169d/8skngwYNopzX7OxMyv177NixR48eVS/v1KnTmDE1aJoLBAJy7aNt27arV6/+4YcfLC0tpVIpuVcsFltaVr5djRkzZuTIkT179nR3dzfSppWVlUQiIbclEonZVjU9X7RFn5USY65ozvah098+S8RqWP8UWxxA41W93QvksPgBFpNN/NQVHetZUXtTAj75BnZ9IB3Vsnp3CwhHDqJ3pEiyrTtt4CXNgnvYpuDGddhpEKr8DAKBYOXKlYYGlRiG/bsl8FEULS0tzc7OjoiIoNEa5Z+HlRYU/bbcYfGOop3LLEfPIt1B5fGxKM+SlFLjBfdlulYko7efvVFTWouMr7hCRiilAFCyd63lyC/r8CjHSvJLj2wy7mxJqFXS2+er541S56TKn94SRIzUG9ve2LBa+elMjXL8Q0xMlMFwdLP6cB710W7mjzpZJJsAavW9d+/evXv3fvr06e7du1Gtd6AaFzlIRo8ebcTx2whisdjX1zc3N1cgECiVSjJtfdu2balRoFgsprxG1Wr1woULN23a9Pjx44MHD3700UeGmm3btu2+fRUuSyKRqG1bPcGpZhqbX7rRhl7WTL+F7QqjAUCeHAZe0ohUkFSOHe5V+aB7WEQMvKSZ0Bp9MYou0Jpemd0OPZmGb0rA5/tVXpBnMgwOB0kYKByLpIec0exOwid7v+vyN1XuroCAAHJKxBDZ2dlG9r7v2NraBgUFZWRkzJgxY8eOHY1xCpQr4Ph1AwCa0JaS9VLnpqPcEtIQslr7U94x6pyUslO/28/ZYGLjwoGTyA1cLqlj/2h0XtcaND8JtVJ85ShlCAmlXLx5jmDpH1hZIUKjA9o8b38MJ3dGVQ8XXCZG6Cb5GeEKqeSfKCpViDLxEadjeIP3sFb4+vqiVWcCavTYNB2xWEyN0kpLS0ePHh0VFSUQCLZs2ULOhVy+fHnGjBkAMGnSpHv37oWFhYnFYg6HQ5oxtVr91VdfzZs3z93d3dPT8+DBg4cOHRo3bhzVvkQiod4jO3XqRBB0kycOAAAgAElEQVSEQqFgs9l37tyZMKHpImrMUNAQONyL3uOcZk0cPtoD6X8Jm+yNLvBDw85oNj6rMG8vyojBlzS/h9EGt9Q1WigCu3vQgk9pBrgibSwrjN+ZDOKPsBpudiETdoXRJlzHJnmj73isfRVDOH/+fEP1SObNm2e8wjuIVCo9cOCATqGPj0+PHroRAhwOh8lktm7d+vTp041kCBEWh1QwsfpwLlVIyc0AQP7aqfYLt5JqMnTHlhZ9Db5rV0eZ9ARodFYrP9svvq9b9+jWDjXGLKJcgf2CLdRHQq1itO0MCML27VJ/gZg6oynKLT2y2W7GD1SJ5PoJul0LU8THCYVc9vifCkNIECX717XoEFb/GP9ace/evYcPH1L+fgUFBdoznDKZrEHeQV+9enX58uXJkyfHxMTk5OT0799fIBCMHz+e9Gfp06fP/v371Wp1u3btSMM2ZMiQY8eOXb58OSUl5a+//iIbkUql8+fPd3V1JT9+9NFHCQkVau8qlWr37t0WFhYAsGPHjilTptDp9F27dv399988Hs/f379Pnz71/xZm6gCfAWf70Lud1vycQKzrQiOHaMc/oAWf0nSyRVryoe8FbEOwHitI4ilAVgbSJt3AtnanZUiIV+VQrCA629V8j3SzR/gMiMkmerd4p00h0oBvmqZz7ty5/Pz89PT0yZMnV19jOHbsGJkWeMSIEaa4YKlUqqioKEtLS+o2y8zMvHLlikAgcHBwCA01phu5evXqLl269OnTRy6Xf/HFF3v37lWpVEFBQVQwkw6rVq3CMIzy6sZxXC6XU35xNUMQBb8ssJ+zsWT/Ouvxi8inraYwG5eUMz18AaD81C7h4E9rNa4Si8Xki7w4+jAACHp/WH52t3DAhFo1olaryYegKZU1BVk0WydKFo583zf9XA2OQqFgoYj86S3tlVdNcR7K5pooNUdgGmpxVFOcR7ephWcKg8Ho3bu3i4tupg7TycnJodYIDdGnTx/KPdIMyd27d+fNm3fnzh2qpKys7PTp0wqFwRSYjc27cC8Y6UC+nChXgbew0iYllhF7kgg6CgPcGBumDTUiYEQAjLuKvRYRLXmImwD6tEAHuOqxbXK5nMlkai8t7UjEY3KI45FNNFdUN6/Rukv+15lTp061a9du4MCBL168CAsLi4+Pt7a2pvYeP368oKBgxowZRUVFM2fO3LNnj/HWiouLjx8/fvv2bSoICcOwadOmnTx5ksViLV261MLCwlAw8pUrV5KSkkQikYODQ0BAwLhx465du3b//v1t27bprd8AIAiC0oAglMkJVJky+ZkqI4k0hPXx3ee/zfMgvXvRou94pDaG8PXr1wsWLDBxeYlQq5D0XNKLh9CoAaUhTeggahBECPr8REwCx96+NxBAAKTVYvh1+fJlNputPTdYB8LDw41oxygUCiOh6GYocnNzZ8yYYWTN0gwA6NwkwxEAAm7uvXbRjfXxxx8bOgoB0F5QNJ3xrdGlD9U5MtSZ++4OCpvBEJ45c+b+/fvff/+9r6+vlZXVjRs3hg2r9LzYvXv3+vXrAcDW1vbFixcFBQX29vY5OTnl5eXaK+1Xr14lU2HY2NhMmzYtMzOT2nX//n1LS0vyjSAoKOjPP//ctEm/+0ZkZGRkZGU8XL9+/RQKRUREhJHOv379+ubNm7GxseRHFov1448/GnEfrw5n8gqJVCpY8KvkrT8e4RVIc20jkUhwSZn81G+88V8Zb0EHKoQWLy0kpGU0Fy/BvC1SpQqUtUhhI5VKnZycdu7cWatTmwGA4cOHKxQKatUNABAEqcUkAQAA9OvXz/hbyMOHD+vYv/8SBEHY2NiYL+M6MGHChEaaHRQwYIwn+scr4puOZkOoxcqVK0kXOAzD8vPzdWTb4uLiqOgFDoeTkJDQq1cvJyenHTt2jB49mlR++uGHH7p162ao/bi4OGpCVSAQGJrk1EuN0xrOzs6hoaETJ1amJnBzc6tVCG352d2CniNkj65V+puwmBimpPP5mFqm4fJrG5BLhdBKn99SpSYK23SUJT00HgtYHS6X2/SKGP8OEARhsVj1CaN2cHD48ssvjddZsWJFnds3Y6Z5md4WHXQJ+18H9J3NT9EMhpBaDvnjjz/69u3bpUsVD4vy8nJqepfH45EypwiCrFy5knwWnDt3rlu3btVdXShEIhFlz7hcbklJSQN2nsfjeXp6UsLB5BphrVpQvLjPbhsk0YpAUKW9EEUfsftyLc3K3vqT2g0HteH4dWd5tCPUqtLDP9fWEJppRmg0Wo0BdtrLB2bMvF/4WyMteHA+EzfkjNPsNIohjIuLO3z4cPVygUCwdOlScvvly5cPHz6sHpjI5/Mp0yKVSin5UwRBvv3225CQkM8//9yIFQQAHo9HtSCTyWo7SdXY2M//BaEztIPuGa5eZBp3VcYrTX6m6XmXdEBYHJBLEQbTboZJ0mJmzJgx0zRMa4PuTPyPGcIOHTp06NDBSIXc3NwLFy6QIQpJSUne3pWpEtzc3KgYXolEQiXEAIAff/xx7dq1165dS0hIaN++vaHG3dzcqDU8sVis3cK7gOLlI4azBy4qoQltyBKUzWN6tgMAdW6aJj/T6NHGUCUniK8dt522GmE3h9itGTNmzBhgrCf67WN872t8ote7aAuboU8ikWjNmjV+fn5Xr17dunVrWVkZAGzdujUpKQkARo4cSSrzqtVqFovl6+tLHrV27dru3bv37Nnz22+/PXbsGBW6RKJWqzWairRHkZGRRUVF5HZSUtLw4cOb7KuZgvTmGemNU6LoyhEzVl5csHE2APC69NGWW6stDGcPXte+WFlR8c5vGqCjZsw0IXFxcT/88MO1a9e0C//+++9bt241V5fMNCAcOlzqT/vfA/xYaqV48t+p+PBoTKYnYV1T0wxrhPv27Xv58uXLly/Jj2TalKKiIjL6Z/bs2Rs2bOBwOHFxcVQYQ2ZmZs+ePUkHGQRBVqxYERUVRQ4KZTLZ/v37y8vLFQrFrl27pk6dyuVyFy1a9Ndff5HTqobSvjQXlqNmIEwOVlZAlaBcAbdDGAAoX8fRrB1I4ew6gPKFbL9uQBCCtyIpZsy8L7Ro0YLFYlGpTwGguLj4wIEDs2bNasZemWlAfITIhX60vhc0HBoSZIfMvI29KCU8BLDwHvZrSDPrkTaDIZwxYwYp4KTNt99+S26w2WxyHbFv30qtL1dXV0rJAgBQFB0xoiJmjsvlkrnQtKEyur2LoDQgcLptZQA1wmCScjPSe5fZ7YPrbAg1Jfkle763n/+Ldlx545GVlfXy5UsajRYWFka6AT99+pQcmrdp06Y+8soxMTEKhWLQoEEN11kz7zp2dnY6fsv3798PDDRBM71+5ObmPn/+HEXR0NBQUvH1+fPnCoVCo9F4eXnVx0fp+vXrZWVl2rFhZvytkdN96IMuaxCAKT7ogZ50JQ4BJzTnMwm94flNxrs4XfvvRhxzpGjnMnFMFWeigg2zgCAsBk7itDcYFlIjKIfH8myvzsso+vXrenezZiwsLHAcHz9+/Jo1a8gSLpe7du3awsJCQwmcU1L0Z6fSgclkvo9ifmYakHv37gUFBTXBiQQCAYfDGT9+/LJly8gSLpe7YcOGrKwsQ5exiVkVuVyueThbnc52yKV+9Ev96auDaCwaWDDgrx60qbFYYbPJAQE0y4jwPw6vax9WKz+ahZV2IcoVAIHjkjK6lX2dW0Y5fOGwz7HyYjLTU2NjYWHh6+v7008/zZ07d9CgQZ06dWrduvWIESMMjeSUSuX58+eN6KdQhIeH11Yhycx7gVKp3LJlC5X4jMTX13fw4MHaJSKRCMdxEzNP1RM+n9++ffs1a9b873//Gzp0aEhIiIeHx8CBA0eOHKm3vkajOXPmzNy5c/Xu1aZLly7mtFN66WBTZfAX5ohM8EKmxmJRvZttgtRsCJsahktrhrMnlWKCxHb6GgAo3v29/ZyNNEuDcn81gGNFvy23/eJ7i34GdZIaHBcXl/Xr13/88cePHz/WkSOQSqXPnj1zc3NzcnLCcXz16tVMJrO0tJTP51PJWinKy8ufPXvWunVrKgMtQRCvXr1ydHSk0uAVFBQkJSW1a9fOysoKACQSSU5OTsuWLUtKStRqNeUeTBBEcnIyOan1/PnzsLAwAMjJycnIyPD396cCcv6DEARx7ty5zMxMOzu7kSNH6kxFEgRx6tQpFotlYWEREhJCFj548KCgoEClUg0aNKj6f00vCQkJZWVllMavTCY7d+4ck8n08fFp06bNwoULa2xBLpdnZWUdO3bs/v37arW6bdu2jZ2X2N7efseOHRMmTIiPj9fRRpDL5U+fPm3RooWLiwtBED/99BOZNlnvZSwWi58+ferh4aGtE/Lq1St7e3vyogWA4uLixMTEtm3b2tjYwFtFdWdnZ4lEIpVKtWWqkpOThUIhg8GIi4sLDw9HECQ/Pz8lJcXPz68+Ag7vICsDaV1PaaLS8WFuzTNJaZ4abWokN07lLBsre3xdu7D89O+4TGI57HMqpqJOILhUpM5OKTtZR4kpNQ5/JuG/vazh76/XuPZREydO9PX1pVZ5SRISEhYtWtSqVavdu3efOXMmKSkpLy/v9evXMTEx1SUOoqOjv/vuu1atWu3cufOff/4BABzHo6Ki6HT6lClTSHfihw8f7tu3z8/P75tvviE9CePj44cMGfL777/n5uaeOnWKFNLDMGzChAnFxcV79uzZvHlzXl6eTCbbtm3bhQsXWrZsOW3atOLi4rr9OP8C9uzZ07lz5+nTpz969OiLL77Q2btixQp7e/v+/fsnJiaeO3cOAB48eHDixImBAwd27ty5xtQ0ACASibZs2bJq1arbt29ThVOnTg0PDx86dOiePXtevXpl6NjY2Nh//vnn/Pnzjx49cnBwGD16tI+Pj0QiEYvFtU0OihOwx4TLeHcSrp0/fejQod26dVuyZIl2U69fv54zZ46Hh8exY8eOHj2anJycnZ2dkpISExNTUFCgc97Y2Nhly5Z5eHjs27fvwoULAEAQRFRUFIqiM2fOjI+PB4Dnz5/v2LHDz89vzZo1MTExAJCQkDB69Ohff/01PT392rVrq1evJg/89NNPc3Nzjx49+v3335eXl5eVle3Zs+fYsWMeHh6zZs3Kycmp1W/yjsNEYaYveji52fLZm0eETQ2zpTfbp5OOwVOmJPBkIpZ3h3pl/0FR+wVbVOkvtfOt1woNDvHFhAKroZqQCTgB2hnGtm/fHhAQMHDgQKpk1qxZP/30k52d3dy5c/v06XPz5s2OHTvKZLLqipoajWbKlCnPnz/n8/menp7kUy8rK6tfv34cDicoKCg2Ntbb21smk5EKLKNHj/79999DQkJCQkK6du1qbW0dGBhoZWU1ffr0uXPnPnv2LDs7u2vXrvb29mPHjl25cmV2dvbWrVsTExMBoG/fvnv27FmwYEHdfp/3nU2bNvn6+pKKbp6enps2beJwKpJiYhj2999/r1q1CgAGDx48evTogQMHbt++/bPPPgMAFxeX+Pj4/Px8BweH8vJyqVSqPeJ5+fIlmbPXwsJi1qxZ2rKrKSkpJSUlDg4OABAREfHrr79u3rxZb9/CwsLIsTuFv7//lStXjHwdkUiUmpo6ZcoU8iOCIGQLGAFPSwhpTU75fAZgBGiLfm3bts3f3197bn/+/PkLFiywt7efNWtW9+7d79+/37lz55SUlOqXMUEQEydOfPDggY2NjaenJzlYLCws7NGjh5WVVXBw8PXr1wMCAqRSKXkZf/TRRz/88MMHH3zQpUuX0NBQoVDYpUsXd3f34cOHL1u2LCUl5dmzZ6GhoT4+PuHh4evWrSsuLl65cmVqaioADB06dNeuXQ2uuqdWq+ufuEOhUOA4XofE5n0ckAX30DKpml2/+VEy+4S2biqDwaixP2ZD2NSwWvmxWvnpFNrN+gmXlBdsmO247M/6NF5+bo9Fv4+t3NrU7XAOHTZ3q8tlaGdnt3379kmTJi1evJgsefToUWpqKukNbzwda2pqKo7j5FTPJ598Qhba2NiQz2gGg0HenCEhIYmJiQcPHiwsLFQqldTh/2/vvAOauto/fpKQQIRgpUwHQ0EEBLHIcOCiLmodaLWKqPVta7Vvrdb9Wvur+rpex+usvo5qqdoKlilVEBBEGQKGjQiETUgCgQyyk/v74/S9zRuGjIRUOZ+/Ts6999yTm3Pz3HvO83wfqNhHoVCgnJCDg4NSqVQqlSUlJXB+r7Cw0NDQED59Dxky5L33epS2/q3k2LFjzs7OAAChUEihUNSz3ldUVOCRuKamps+fPwcAPH/+HH8RpNFo2dnZCxcupFKp33333fbt221tbQEA4eHhYrEYT16vwfPnz/F1MrxZbUGhUIYMGaLuWQpn0clEcNqvL8N46NCh165d27BhA/5emJubW19fDwcPDPTqChaL1draCmc7cTNpbGwMZ0QpFAoMmPb29i4qKvr5559FIlE3w3j48OGGhoZyuby0tBROMpeWluLDGACAJ9vRIkQisQ8GTAPSf+ntgdbGwH0YSGOT5vc9odkfHcAwTL0DPVFRRoZwoJGW57Xe+8H8b98ZWP75g0tKnpOtbI2nBPazcVFOstHYicq25iHeAa/fW6ssXrw4LCzs7NmzMJrFwcHBxcXFzc0NAMDj8YDacIyPj1ePjbGxseHxeEqlEo5dHo+n4WIAH+6+/PJLT0/P1atXP3v2LCsrq6ysDP6na2Bqarpo0aLo6GgSiXTy5EkAgL29vUKhwOVhYWcGJwsWLICFixcv7tu3T32Ji8vl4qunVCpVoVAIhUIul4u/MhobG8NZZQqFcuLEiZ07d27dujU3N5fP58O3xk5Rb8HExES789JGRkZWVlabNm3Ca0pKSvrZ5pw5cwIDA48fPw5DvBwcHJycnHx9fQEA3t7eAAAC4Y8crhrD+N1331UoFGKxGH7frobxzp07ra2td+zYkZ+fHxcXp6GrhUOlUpcvXx4TE0MikX744QcAgJ2dnVQq1ekwJpFIPVwG7gaFQtGTN7BOWWKvimvAPnTolzGGr4O9/SJojXCgIZCNVO08TPk/Ezei7EQFp542u7+x/1a7Lyn5LdKq4n620xMwDKPT6QUFBbgT4Pnz5/Hxd/z48UuXLgEAxGJxTEwMAGDs2LEVFRUikUgkEqm3Y2JismvXLiieUFdXl56e3tbWxufz4W4tLS3wnq+rq4N+BGw2G/ovKJXKtrY2+N/a3NwsFArhO01aWlpjYyOLxUpOToZBjf7+/gkJCQCA0tJSuFTzthIbG3u8M+BPAElISKBSqXv3/k+MjaGhIT4tJpfLlUolhUIxMjLC31okEgnuygtt4bZt22pqarqxgrBZ9Ra6CkjQLy9evCgqKsJfiE+ePIm7ohw5cuTKlSsYhkml0sjISADA2LFjKysr5XK5hikik8mHDh2CC9VNTU2pqant7e08Hg8KRjY3N2sM46qqKrlcDocxl8vFh3F7ezvsybNnzxobG9lsdlJSklwuHzVq1PLly2EfGAxGdnb2QF2egWOZPSGqRqXSx0IheiMcaCj244b/865G5dAlG+UNDF701f4k5gUAyCoLqeMnU92n9KeRHlJaWsrhcExMTLKzs+FEjZmZWXh4ONw6f/58W1vb27dvW1hYwESpAQEBra2tDx48WLx4sUZT3377bWJiYnh4uI2NzYIFC27cuHH27NmoqCh3d3cnJycAQElJyS+//BIZGRkXFzdlyhQAgJOT09OnT5ctW8blcquqquAk3oMHD4YPHz5r1iwrKysMw9LS0sLCwq5evXrp0qW4uLiIiAgHB4fp06cPwMXRFx9++KFGKIIGRUVF1dXVJ06cYLFYw4YNwy3T8OHDBQIBLAsEAnNzcwqFMnz4cFz4VyAQqK8LRkZGLly4sLi4uLa2Fs6RdsqIESPUm9XIufZXoLy8nMFgWFtbZ2RkwCVGGo0WHR0Nt86YMcPGxubWrVuWlpbBwcEAAF9f36ampsjIyI6R8lu3bk1NTQ0PD7ewsFi0aNGtW7fOnTsXERHh5+dnY2NDJBLz8/N//PHHiIiI+/fvT5o0ycDAYOTIkVlZWfPmzZPL5VVVVcnJyfv374+NjXV0dJw8eTL0lc3Kyrp169atW7dOnDiRkJBw7949e3t7/NXwbcKeRrCkErI42GTLAQ+uxxC94cCBA9999x3+UalUCoXCXrWgaGtuuXVCJZepV8qbG9tzkgQpEX3oEp/Px8usU1vac5JldeW9baSoqMjNza0PZ/+r8eWXX7JYLPzj8uXLdX3GpUuX3r59W9dn0Qo1NTWnTp2qrKwsLy//5z//qVQqFQpFaGioSqXCMGzq1KkikQjDMDqdHhISgmHYkSNHwsPD4bFeXl4SiQSWw8PDr169imGYVCrdsmULg8FQP8vhw4ePHz8OyyKRaNq0abB848aN06dPa/HrZGRk+Pn5qdcUFxfb2dlp8RT6Yvfu3epXdQCGcUhISGhoaP/bEYlECoWiz4fvz1Hsft73wzEMk0ql+EDtOeiNcKDBJCJRTtI7SzcSDP6cxW5/Fkc0NYPJmPrDsBVbxKXP5Y1VQ0c69rOpN5R9+/b99NNPTk5OBgYGjY2NSNpDna+//rqgoADOQru6uhKJxNbW1uvXrwcFBRkbG588efLMmTPz588PDQ09fPgwAOCrr776v//7P1tb2+fPn//jH/+AU6PQWQn6asI50uvXr8OFOplMduXKlby8PADAhQsXvvjiCyqVumnTpps3bzo7O+fl5R09erS7/iH+y44dO27cuOHo6Egmk5uamjqqSL6tLLYjrnqsPOY90Of9Y+EX0UMOHjyoVCoPHDgAP8LEvL1NeagS8ogm/7OQLm9giHKTjVx9DB09etslgUBAo9FgWdHSBAAgEImkXirUFBcXr1y5UiOnB6InBAUFLV++HE7/vgU0NTVZWloSiX96D7S0tBgbG2uoJfQKpVLZ3NwMgyi0SGZm5rZt2zIyMvCakpKSwMDA6upq7Z5oMLB27do5c+bgbtt9RiwWUyiU/nifOtxV/D6P5PJOH2dHYfhEb6Wp0BvhgKNSiQvTjScvUK8zsLZVCXkqkbCrg3oIL+a6kfNEqqf/63ftN2KxuFMnPUtLy1GjRsnlcgMDg544LvcEGF9PJBJ7KGEsk8n645fRz8PfaDpquMCQgP5AIpG0bgW1hVQq7fT5z9zc3M7OTqFQEIlE9ceCfhIVFaVQKHqYEmdwDuMPbQlRNVifDWHfQF6jAw2mVLQ/f6RRKcpOJFBNqB79dXIx9p0rrcjv2L4uePHixfnz52UymUqlWrBgARQTKSwsPHbsGABg1apVXYVO9wECgWBqaoqre3fP48eP8TSWPURdRjkrK8vBwaF3/UO8sZSVlZ08eVIqlWIYFhQUBAP1Xr58CbUFPv300x6Ouh5iZWX13Xff9WTP58+f9zapeG1trVwuh+Xi4mIrKysNWdc3gqX2xLuVA+06it4IBxoCmWL59WmNSspIRzH9CSYVEwyp/WncaNx7BCMqcQitP430kObm5jNnzsAQZhMTE3d3dy8vLy8vLzjZfvHiRS3KIRIIhJ5HEE+fPj05OblX7UdEROzYsQO+v3p7e6srhCHebths9smTJ2E8+9ChQ11dXeEwlslkAICTJ09qV/8dJlXtCZMmTcrMzOxV43FxcWvWrIEhTC4uLnQ6vf8B8gPPTBsCkQCiB1Z3dFC/ESqVysTERFz/MC4uLjQ0NDIycuD/B8kjHRVclrKd3892eL+HyhuryVZdurNrERsbG1wOWx1XV1exWNza2goDp+rr6/Pz8zEMKyoqqq2tBQC0trbm5eWpy2pUVFQ8fvwY97PXgMvlFhYW4mFekPz8/LS0NPhvVVNTU1RUJJFIYLZnJpMJVTxEIhHUR4a+ZK2trTA2saysLCkpCY8Dq66uPnfuXGtrKwwVYDKZUBAHfgv1w9vb2wEAMLSLyWT2+xIi9I+pqSm0ghq4urpKpVI8/q+xsZFOpwMASkpKoM4Zj8ej0+lQCAYC4x+6CnVva2srLCzE39ggRUVFqampMIKzrq6uoKBAJpOVlpZiGPbacVhRUZGUlISnMq6vrz99+nRbWxvsAFS6AQBIJBJ4uEqlkslkra2tUAOvpaUlKSmpvr6+35dQyxAAOOBF3J8zoAGFg9oQJiYmRkRE1NTUwI8VFRV5eXkcDsfHx2eAeyKre2VgbmNg1t91FMqIMcLUSHFeWt8Ox5QKQUqEtKIQACB6/khETwUASEpzhE+iAYbJGyoFSeEq8R8LmV1dJV9fXz6ff/jw4atXrwIA8vLy5s2bFxYW9s477xw9evTy5csFBQXGxsa4ysmxY8fy8vImTJiwcePGjnrcFy5ciIqKGjZsGAwlhmzatEkmk9nZ2YWEhCiVyszMzI8++ujBgwe7d+/OyMjIzs6Gkh9lZWULFy7cs2cPhmEVFRWBgYF0Ov327dvFxcU+Pj6bNm2qqKgAAFRXVyuVytzcXKhHmpeXB4O0Kioqli1btm3bNrlcXlNTExgYmJ2dnZCQcP78+cmTJ589exZqfyP+cmCYMDVKUvYCACDKfSzKSQYASMvzhKmRQKWUN9UKksJUwj/MVTfDWCgUnj59+ty5cwCAwsLC999//969eyYmJhcuXDhz5kxubu4777wzf/58lUoFADh37tyTJ0+mTp26ZcuWjg9J165d+/XXX83MzCIiIvDKrVu3tra2enh4rF27ViaT5ebmLlmy5MGDB4cOHXr06FF+fv7s2bMBAJWVlcuXL9+6datcLq+trYXjMDIyMjMzc/LkyVu3boVrnFCqMC8vD34sKiqaOXMmhmFVVVXBwcGbNm2SSCQNDQ2BgYHp6elPnjw5fvz45MmTr169isu2/XX40JZoQgbhVarX76ot+hOx8RZw6NCh+Ph4WI6IiICRVd3s3/84wk6RNYiJnk4AACAASURBVNWwz+/s27HqcYQYhgkzH/Y5jlAlk/LiboqLszAME6RECJ/FYRgmoj/hPfgZU6mkVSVtsT8qBW0dD3dwcHj8+LF6za+//vr999/DsrOzMwyKunPnTnBwMKx0dXWVSCQVFRUeHh6w5vr16+fOnVNvJC8vb/bs2bDMZDK9vb0xDIuLi1uxYgWs3L59e2JiIoZhUKcNrvTAxmEhMTFx9erVGIZxOBz4Q9+9ezc2NhbDsMuXLx87dgzuNnr0aBhLB8FDKtPT05csWYJhGI/Hg0fZ2dk1NzdjGAbNJPZGxRG+ZXQZR6hU8B78LMp/hmGY4Gms4Ek0hmGiwgze76EqhVxa+6ot5rqirbljg+7u7jExMeo1cXFxO3f+cWN6eXkVFhZiGBYTE7N48WJY6evr29zc3NDQ4OTkBGtgvgj1RsrKyvB+CgQCFxcXDMNSU1MXLFgAK7///vuoqCgMw8aMGcNkMjsO44yMjEWLFmEYxufzYQ9jYmLCwsIwDLt169a+ffvgbh4eHur/BuPHj4ejOj8///3338cwTCwW//bbb7Dl6upqDMOamprmzZuH/WXiCHES6lXOYXKF6vV7ahBWLn1YLe3tUWiN8E94PF5aWhqDwbCwsOgqu6yOIFJNFGwtzFGI89MwuYzc1yBCApliGrgOlk1mLIUFqqc/FfgDACj2LhR7l761DCVFyGSyjY0NrCGTydBhD5cSHjp0qIvL/7SfkZGB+wvgnnt5eXkqlQoe4unpOWrUKHisqalpx/POnj1769atHA4nOTkZuurNnz//0qVLUqm0vLy800PUmTx5ckNDQ0NDQ3p6+qJFi7hcblNTE5wiUyqVK1as6NvVQHRKZWUlhmGOjn+OXviyPmbMmN41RCThKTlNpv5xI1PH+1HH+wEAKKOcKKOc+tZDOHrJZDIukQNF4V++fIkPYwMDAzybI+T58+e4+A6+aJefn08kEuEhY8eOhd+aTCZ3mnnRz88PJtSEuucAgICAgIsXL4aFhZWWlmpMt3bEw8NDLBaXl5cXFxfPmTMHzr6WlZWVl5cDANasGbj0pT1nzgiC9RBwq0K1zqkX05aR1aotWSB+Tq8nVd9+Q9je3n779m2NSmdn5xkzZmhUrl+/HgAwZcqU8ePHD7AhJJm8Myz49QlLXw8G+A9vG9q79NkW6hqNgIoxY8aoK2JrTI3a2dlBjVDwX81iAICTk1NxcbHGIV05BRAIhLVr1/700092dnZwn7lz5545c8bPz6+1tbWxsRGqHkMl5YSEhICAAPWcDACA9evXX79+3dnZ2dDQkEKh0Gg0b29vqKfccSIX0WcePXoUFha2YMEC3BBiGLZr165Nmzb12hAOOKNHj1ZXxO44jPGVPHwYOzo6JiYm9nAYAwA2bNhw48YNOA4BAIsXL961a9ecOXNUKhWdToca9HAYP3361N3dXUPy+/PPP7927ZqnpyeMOba1tR0/fjw053/ZYXzIi7Q+Vbl6DJHcM1MYX49teqaMCQDOQ1+/swb6XCPk8/mdJurk8XgJCQnqHu2vRSgUaqz60ul0qLlsbGz8eQc6WkGxWBwYGAgAIJPJ6gvgAwSRaOSshfRAVE//IZ7T+t9OzxEKhQ0NDe3t7TU1NXA9HwAgl8uZTCabzYZr+3w+v6amRiaTQRFhsVjc1tbW1tbW0NDg5uY2ZcoUaO3odDpctMOZN2+egYEBfG5NSkpqbm5uaWkJCgrCQxjv37/f3t7O4XA4HE5jYyNcreFwOHBP2Mgnn3xy+vRp3FuvpaXF2tpapVJBtwIog+Lq6vrq1SuBQGBgYAAVkFksFtx/zZo1V65cgbl+CATC2bNn//3vfwMA2Gx2SkrKAFzhQcKcOXNgrhKclJSUThOM6IL29nYmk8nn82tra6FfCQBALpfDESuVSmFq3NraWjiMORyOSCTi8/lcLpfJZNrZ2QUFBcH1v+Li4uLi/1G99/f3t7CwgEt3MDF1c3MzTLcJZxdgJRx4NTU1MOahtbUVzkDARtasWXP16lU85xQcxhiGQdcwKCUPhzGbzTY1NYXDu66uDu6/YsWKsLAwPKzozJkzUB+cy+X+BdcIIf7WBM93CUGJirYe5FdNZWJrUxWRcww8zfpyLpJGYvGB5Ouvv1YqlRr54RgMxtGjRz/77LP09PTs7OwJEyZ030hLS8v169ehdBPMkwIA2Ldvn5OT0/jx4/fu3TtjxoyuUnLweLyoqCgqlerq6kqlUg0MDMaPH5+RkUGhULrStE1NTcUwbNasWfAjhmEKhUK/UasymQz38JY31QJMZeTaa2cfDodz7969zZs39/bA58+fl5aWBgYGkslkBoPh6OhoYGDQ1NTE4/Hs7e1pNFpBQcHs2bNZLJaZmVlbW9vYsWOJRGJ5ebm/vz+bzXZ2dl64cCFMQ2ptbe3p6aneOIFACAoKysjIqKqq8vDwMDU1hanvli9fnp6eXllZ6eHhYWtrm5ycPHfu3Lq6Ont7ewqF8vjx47lz57a1tUGZ/yFDhvj4+Li7/5EDcvXq1SkpKY2NjStWrIBKmDQa7f3333/y5ImHh4elpWVKSkpAQACXy4WvJoaGht7e3hMnToSHu7u7v/vuu6mpqQqFYu7cuQCAu3fvurq64u0j+kxmZiY+PQ4NQGVl5ahRo7oK66yvr4+Pj8cT8wIAOBzO7du3t27d2ttTwwQUc+fONTY2ZjAYDg4OFAqlubmZxWKNHTuWSqWWlpZOnTqVy+WamZmx2Wy4ilxdXe3j49PW1ubo6Dh//vympqb8/Pxhw4bhf0Q4S5cuzcnJYTAYbm5uw4YNgyuFQUFBubm5ZWVl48aNGzNmDBx4DQ0NI0eONDIySk1NheMQ6s5rjMOVK1fC9BRLly4lEAg+Pj5Dhw6dPXt2enq6i4uLtbV1WlrajBkzuFwuTPNkYGDg5eWFewaNGzdu5MiRycnJ+AtAZGTkmDFjXvt/+1oUCgWJRNKWBMEye2JuM7bruWrWcIIltfMQewyAiyWqrzKUv8428LcmwMcIjXmd16I3ibWsrKyzZ88GBARopHHZvHlzSEgIfH739fV9+vQpmUxWKpUEAkH94srlcnXz9u23344YMQIKHtbX12/atCk2NhYA8PPPP3M4HDy5qAY5OTkw44ylpeXYsWO5XG5mZmY3VhAAsHPnzqqqKvXFoYCAAJh7U1+oS6xJX+a0hZ23+OYs0aSTwIZuKC4uXrVqFZJY6wNBQUHLli1btWqVeqUWtUjeJmQy2c2bNzUqHRwc5syZAwA4c+aMra1tUFAQAABOGx4+fHjKlCn4c6cGSGJNi/x1JNY6cqdStS1TeWUaaXGHyMIqAfa3J0qZCtyYTnIaSgBvlsSaSCRisVidTv0nJyfv2PHHapmBgcGLFy98fX3ZbPaJEyf+9a9/QTv/4sWLR48e4cnQNUhJSTE3N4dlc3PzsLCwrgzhpEmT1D+amZnBh6Nu4HA4xcXFd+/+mUfJzc0NTz2qF6RS6Z/PBHZuYAhNzG0mGfROGRKOHu13bhCAYZhcLseT+QEACASCfodEN4jF4pqaGnt7+47aoXw+39jYmEQiQV9ouMikUqnKysq6ihntFDjtbGb25xRVS0sLh8MZN24chULpiX50RUVFXV1deHg4nU6Xy+XwFafHXxHxtrF6DNHRlLAoQTF3BJGqZrIeM7GVSYo9E0hbxxOJ/VNk048hjI6OXrFiRae5JVksFq5hTaPR4FKNjY3N119/vWfPnqNHjxYXF9+7dw+q43cKm83u2IK2GD16tJ2dnYboNp7aWy8olUq8A5hUTJi7imrfSc7r7jEyMtKWLuhgg0AgUCgU/Y6BHpKRkcFgMGxsbLZt2/b3v//9gw8+UN96+fLl48eP29nZDR06NDQ0dOjQoa2trfv379+yZcv9+/dNTExeK/TK5/N/+umnZ8+eeXl57dy5E1ZeuXKFRqNNmDBhz549Bw4c6OZRXSwWw+V5R0dHOC/99OlTPz8/ZAURPhYEHwtiaIVq47g/XgoxAHZkKf8zjbTUXguzLzoxhLW1tVlZWR3rjYyMPvzwQzqd7unp2dW7M1x1g2WlUolr5dnZ2W3atGnz5s3Dhw8/fPhwN//aGIbhR6m3MBhQcBp4sdeN3CcTSG+/PzCit1y4cOHUqVPW1tampqbz589ns9nqU7jDhg1LSkoCAHh4eMD6c+fOzZs3b+zYsWPHjvX391+wYEH3M06mpqZfffUVjKyFNQKB4Jdffnn8+DEA4L333rt48WJX0zNpaWnQ+OXm5kKXkIKCgmnTpvH5fA6HY2Fh0fEQDMPa29tzc3PxmkF1sw82trsTP3+q/Mz5j5e/2BqVCgNLtGEFgY4MoYmJCfRT0ADO4P3nP/9577330tLSXrx4UVtba29vHxAQgO9jYWGhntJa/QZoa2uj0WhCoVCpVHazFmphYQF9sTq28NZDHu6AyaQqIY80tL8ZAxBvHyQSicViWVtbjxgxoqWlpb29HV9dBgAQiURPT0+JRIJbx/j4+MWLF8MylUrNysqaPn06h8M5e/bswYMH4W6NjY3Xrl3rSkg6LS0NT15hbW19/fr1rgwhzA6vjoeHh4dHd1nJmpubGQzGZ599htd8/PHHaIa/b2AYJpFIoPpaf9DFGiHEiwZMDcj3XskCR6gAAAdfUHa7KtqFEo3d4CqPemylkZHRa31ndGIIzczM1FcINLh8+TIs5OXleXl5QSvIZDLNzc3JZPLMmTNxx3eRSIS7C9Pp9N9+++3UqVO1tbV79+49cuRIV76g06dP//XXX2G5ubl52rQBDSfQM0TS0CWfk0z75EGMeNsJDQ2Fhfj4+Llz56pbQQCAWCz+5ZdfLC0tY2Jidu3aNWLEiIaGBnyVwcTEpLGxEQBgYWERHBy8f//+Q4cOwcX7btLt1tfXq69TNDQ0aPHrWFhYuLu7azjL/PDDD1o8xeCBQCAYGRn1XyifRCLpyBACALZ7qC6WklY4G8TWqqQq1YqxQzouDb5JzjIAgNTU1Nzc3La2NujavmjRov379y9atGjbtm1Xrlzx8/NLSkoKDg6GTgf19fXR0dFwRhTOkZ48eXLv3r0AAKlUmpCQAB88bW1tP/jgA3t7e0dHx5KSEqj7derUKX19x4FH1c7nRV0Z4tW5lx3iraempqa5ubljPcyuB8tsNvvGjRvh4eEa+6xbtw6aRpFItH379l9//RVqZcGtBAIB10l3cXH5+OOPd+zYoVQqjx8/3k3OXqVS2WkLCEQf+Gg0cV+OKpONHaKrDnj110FGHb0ZQnd394cPH4L/Opo/e/YMRuO5urp+++23ycnJ77zzDu4XOnLkSPV4x9GjR0MrCAAwMDDw8/OLiooCAOCvw2fPns3NzU1KSjp37pyGwoJ2aWlpKSwshNq4ekEikTx+/HjRokXwI3EITSUSYEpFH9YIWSzWnj17tN3Bt5/i4mI3NzehUKjFtFN9pqmpCab40EChUEBDKJFITp06de/evY5LBhERESEhIUQi0draGuqJm5ubq69TqE/zmJmZCQQCc3Pz7oNo3333XfUW+p/jt3tSUlJaW1vRMO4DL168gEEs/YROp9va2o4cObL/TXWERABfuRFDUpRDDEBXPjIVFRVKpbK3cb16M4Qac6fqt5O5uXnPfxISidTxliYQCBqhETri6dOnN2/e1KMhfPXq1b59+3BDCAiEd1Z+3QcrOHr06N27d/fB10Aulx88ePDQoUO9PVCLHD58eMuWLRoTfQPGhg0b7t27N3fu3I6rXAOPr6+vr69vV1tVKtXVq1e//fZbGo0WHh6+cOFCKpUK85gLhcIffvjho48+GjJkSGtrK7Safn5+MKEVAIDH4+Hh2E1NTSdOnDh//nx1dTWcI+0qbtLPzw9fCuFyud30rf+0t7fv3Lnz4MGDGhm7BhL9DkUAwA8//BAYGGhvb9/bA0NCQjrqbfWBy5cvz5o165NPPul/U53yN2figRfKq/6krt4Gw8PDZTLZG2MI3w7+givzxj59eayjUql4+GavEIlER44c6Sqmc2A4c+bMl19+ict5DzwxMTH6OnWv2LZtW05OTkxMjEQiwTDso48+4nA4tra2bDabRqNt3LgRelmHhobCZb/NmzffvHkzICCgrKzM09PTysoKAMDlco8cOfKvf/3LyMho3LhxH3/88eHDh/fv3w8AUKlUJSUlUE4a5jOxtbW1s7Orra0dNWrUw4cP+6D50lu2b9+u61N0g96HYnR0dHBwsH4dI3T6r0gjg8JlBiOMu4sa6EOzyBAiEIOFTz75ZO3atbAMJ3ItLCxevnwJ32DWrVt3//59Ho934MABKHYxYcKEzZs3x8fHS6XSixcvwgOHDh166tQp3FXN3d0dingBADAMk0qlMIIQ5hIiEAhXrlxJSUl58eLF9u3b1TNLIBB9Y2TXVrDPIEOIQAwWNKRcIbgTDYlEwoMlcJycnKDWJQ6JRNLwCcQ99EgkEu7mjUMmk7Wy+IRA6A69aY2+oaxfvz4tLQ2PkoRJD/qvVNtnhEJhUVGRn5+fvjqgUqlSU1O7UoMcGNLS0nx9ffUofZ6Tk+Po6IiLkBGJxAMHDujxRxkkPHjwIDg4GDe9aCgCAHJycpycnHTqIdg9xcXFw4YNw/M1DjxVVVUqlUpdv3Pp0qWvTSeADGHvKCkpgb80/CiVSltaWvT4q6tUqrq6OvyhXi9UVVV1lR9gkHSgrq7OxsZGPWjXy8tLv1LsgwGRSHT37l2YmRmi95Gg9w50HIoDDIvFotFoelQcbGtrwzBM/e5zcHB4bUpLZAgRCAQCMahByWIQCAQCMahBhhCBQCAQgxpkCBEIBAIxqEGGEIFAIBCDGmQIEQgEAjGoQQH1vSAlJSU/P9/BweHly5c7duzQ0Fe8ffu2QqEwMTHhcDhffPGFLjpQVVUVGhrq7e1Np9M3b96s4aC/Z8+erKwsGxsbiURy5swZW1tbrXcgPT09Ozv74cOHDx486Lj1xo0bZDLZ0NCQz+f/7W9/0/rZAQAvX77MzMw8duzYy5cvO27dunVrYWGhlZWVTCY7f/68LpSuWlpawsPDSSRSamrqqlWrNJK8t7S0nDlzZvLkyUVFRStXrtRvWMvbDZPJvHTpkp+fX0FBwbp16zR+64KCgri4uAkTJtDp9O3bt3eTH6PPyGSyw4cP+/j4VFVV+fj44EKskPj4+F27drm5uQkEgr///e/z5s3TegcqKyufPXt26tSpJ0+edAwczMnJSUpKGj9+fH5+/o4dO3QR2tjc3JyUlHTnzp0tW7ao55SFREVFHTx4cNy4cQKB4JtvvtFFfCeGYTdv3iQQCHQ63dzcHOr8qW89evSom5sbl8u1trZesGDBa9pC9ASFQuHv7w/Ld+/evXjxovpWJpMZFBQEy99//31SUpIu+rBkyRIWi4VhGIPBWL9+vcbWf//736GhoXfv3oUpwnVBbW1tcXGxj49Px03V1dUwLSqGYbt3787IyNBFB1gslkAgGDZsWKdbT58+/dNPP4WHh4tEIl2cHcOw7777rqGhAcOwxsZGU1NTNputvvXLL7/Mzc3FMEwoFAYGBuqoDwgMw9atW1dWVoZhWEtLy9KlSzW2zpo1SywWYxiWnp6+Z88eXXTgwoULt2/fhuXZs2fDlFU49+/fv3Llyo0bN2pra3VxdgzDOBwOj8dzcHBobW3tuHX69OlyuRzDsMTExAMHDuiiA3w+n81mr1ixIiEhoePWsLCwmzdv3rx5E94vuiAqKur+/fuwPHHixMjISPWtMTExR48eheUlS5ZwudxumkJToz0lJycHjxJ1cHCIiIhQ3xofH4+/gdnb28O0UNpFLBZnZWVZWloCAOzs7KKjo7H/jQE1MTEJCQlZsWIFngpV64waNaqrfMi///47HkpsZ2cXGRmpiw5YWlp2k+3I1NR07dq1y5cvh2ksdUFdXd3vv/8OALCxsTEyMnr16pX61ujoaCi8aWxsXFJSwuVyddSNQQ6GYbGxsVD7zczMLCMjQywW41sbGxtZLBZ8C7S3t9e4VbVFVFQULrJKIpGys7M1dvjwww/Xr1+vHu+vXczNzU1NTTvdVFlZKRKJYFi9g4ODjm5GGo3WMfOPOkuWLFm3bp3u9EYEAsGdO3dg2c3NjU6nq2+Njo7G1QHNzc0TExO7aQpNjfaU6upq9Wzd1dXV6lurqqrUM3FrbNUKTCYTF4wgEokymaytrU19dpTH44WHhxsaGhYWFu7cuXOAdZ6qqqrw+RkdXYHX0tLScu/ePTKZXFxcvGvXLl3oa/z444+wwGAw5HK5erYXuVze0NCAPy1RqdS6ujqNdGMIrdDW1iaVSgmEP8SXyWQyk8nEhQ/Vb1XdDUX1W97ExKSmpkZDVC86OnrEiBF5eXnr16/XUX6+HvZNLzcjACAiIsLCwoJOp3/66ae6WKdYs2bNmjVrAAAqlSo7O3v9+vXqW6uqqvCH5tdeBGQIe4pYLMYXBclkcnt7u8ZWfB2i41ZtdUBd7JhMJguFQnVDuHTpUvhfUF5efuLEiX379mm9D913D//T19EVeC3Lly+HV6CwsPD8+fPbtm3T0YkwDNu+ffudO3fUH8klEgmBQFD/dxYKhTrqwCBHLBarP+VoXGr1W9XAwEAmk8nl8q5mMvrTB/x+7PhbT5o0aebMmcbGxvb29mvWrElJSdHu2V/bt27+rAaGqVOnDhs2jEqlWlpabtiwoVOvAm1x7ty5JUuWaKxTavxA3V8ENDXaU8zMzPCxzufzNRxVut+qrQ7gyb4BABpWUKVStba2wvLo0aPh9N1AMgBXoHsUCgWPx4NlXV+BS5cuffHFF/Pnz1evNDExMTAwwOfo4Fqm7vowmIGDDV8a0LjU6kNRIBCYmJho3Qp2PIvGb81iseBJR48e/eTJE/U7dwDovm8DA5vNxq9AYmKiTCbT0YkyMzPFYvGxY8c06jUuAq6J3ynIEPYUd3d3fDTz+XwPDw/1rR4eHnw+H5YFAoHGVq1gaWk5ZMgQePO3t7fb2tqqr5a9evVqzZo1cKtIJOr+V9cFA3AFuqeoqGjDhg2wrNMrEBcX5+3tPW/evLq6uuLiYryeQCC4u7vjxlhDAh+hRYyMjMaMGQOf8TEMo1Ao6gtRTk5OcrkcljveqtrCw8MD/607DviQkBDo2CwSiQwNDXW3aN0pLi4u+AOZ7q5A96xYsYLBYAAARCKRsbGxLp5FAABlZWVVVVV79+4FADx8+FB9k/o/0msvAjKEPcXBwcHKygq6P6SkpHz66acAgIiICJjpNCAgoKGhAd5+GRkZcOZau5BIpJCQkPT0dABAcnLy559/DgB49eqVt7c3hmFjxozZuXMngUCA7lJ9SzffE+rq6rhcLv6odefOnY0bNwIAFixYwGAwlEolACA7O/vjjz/WUQeam5vFYnFdXR38WFBQMHXqVACAi4sLnAtVqVT379//5ptvdHH2R48enTx58tq1axs3bgwJCYH/v1OnTi0oKAAAfPbZZ3ASLD8//4MPPsAT9SG0zueffw4vdXp6+po1a0gkUmNjo4eHh1QqNTEx8ff3Ly8vB2p3itb57LPPUlNTAQAtLS1mZmYw5/CUKVPgSNixYwd0pfntt9+2b9+uo3QQfD6fz+fX1tbCj1VVVRMnTlQqlWZmZp6envAe0d0VAABIJBIOh1NfX69SqQAAKpVq0qRJ0IPsH//4h729PQDgt99+27VrF75koEUaGxvhMNi4cWNwcDA0e7t374ZJpNetW/fs2TMAgFQq5XK5/v7+3TSFsk/0Ah6PFx8fb2RkZGRkNHfuXAAAm82uqanx9vYGANTW1ubk5CiVSgcHh0mTJumiAwqFIioqikajtbS0rFq1ikAgSKXStLS0999/HwDAZDKTkpJEIpGnp6dGVJO2+P333xsbG42NjQUCwaxZs5ycnJhMZmNjI8wJx2AwCgoKpFKps7Nzpzlg+092djadTjc1NeXz+W5ublOnThWLxRkZGbNnzwYA1NfXp6amCoVCHx+fiRMn6qIDsbGxTCYTlslk8ieffAIASE5Onjx5MpVKhU8hVCqVyWSuXr1aR0/BCAAAhmGRkZEmJiZNTU3BwcEkEkmpVD569AjOV0skktjYWGNjY7FYvGzZMh31ITk5WSaTsVisxYsXwxkIfCTI5fKIiAipVEqlUj/66CNdnL2goCAzMxPeC46OjrNnz5bL5Y8fP4Z/TSKR6P79+8bGxgqFomO+Za3AZDLhRZZKpcbGxitXrgQAPHr0aPr06YaGhlKpNDIyUiqV0mi0oKAgXXSATqerO+suXrzYysqqqKiIRqPBEN6srCwul8tms+fMmdO98yoyhAgEAoEY1KCpUQQCgUAMapAhRCAQCMSgBhlCBAKBQAxqkCFEIBAIxKAGGUIEAoFADGqQIUQgEAjEoAYZQkR/yczMZLPZ+u4FAoEA9fX1L1680Hcv3jyQIUT0l9WrV0MtJQQCoV8OHToUGxur7168eSBDiOgXtbW1LBbrvffe03dHEAgESElJmTFjhr578eaB0jAh+khzc3NNTU1CQsK4ceMKCwutra1HjBih704hEIMRmUxWWFjI4/EqKysNDAxKS0tdXFz03ak3CWQIEX2ktbWVwWDcv3/f3d2dwWDQaDR99wiBGKRIJBIGg5GcnOzu7s5kMpFwZm9BWqOIfjF69Oiff/4Z5n9AIBB65IsvvrCysjpw4IC+O/LmgdYIEX2nrq6OxWLB5BsIBEK/pKSkzJw5U9+9eCNBhhDRd5KTk6dNm0ahUPTdEQRisMNkMmtqavz8/PTdkTcSZAgRfSctLQ26qDU0NKAICgRCjzx58sTX1xcmxUxLS9N3d94wkCFE9J3i4mI4L3rv3j1bW1t9dweBGLyUlJTAmzE2Ntba2lrf3XnDIH3//ff67gPiTaWtra2kpKSiomL+/Pnm5ub67g4CMXgxNDR88OCBt0fczwAAAHpJREFURCIxMzNDy/a9BXmNIvqFRCIxMjLSdy8QCASQyWQkEolEIum7I28eyBAiEAgEYlCD1ggRCAQCMahBhhCBQCAQgxpkCBEIBAIxqEGGEIFAIBCDGmQIEQgEAjGoQYYQgUAgEIMaZAgRCAQCMahBhhCBQCAQg5r/B/YVcp59T9peAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydZ1wUV9fAz2wvLG1haYKiKIoFwQZ27Cb2aEyMxhp8iK8xMTGJMdZEjf2xG0sw1idijDFGELsIqChNEBAs9La7wDa2zn0/DA7LFrqisv8fH2buzJw5s+zeM/fcc8/BEEJgwYIFCxYstFYoLa2ABQsWLFiw0JJYDKEFCxYsWGjVWAyhBQsWLFho1VgMoQULFixYaNVYDKEFCxYsWGjVWAyhBQsWLFho1VgMoQULFixYaNVYDKEFCxYsWGjVWAyhBQsWLFho1VgMoQULFixYaNVYDGHDiIyMjIiI0G/BcbyllCHQ6XQWBVq5Aq2TwsLCLVu26Le0+D/CogCO4y2bthMh1AgFLIawYdy9ezc2NpbcxXG8srKyBfUBAIVCYVGglSvQOsnOzj537px+S4v/IywKqFSqlh0baDQatVrd0KsshtCCBQsWLLRqLIbQggULFiy0amgtrYCFludIBj7WHXPlYCaPJonRvsdVvg42Dbb0pdLNvD79k4O34WJ+fNNyXj+5crQ+ASemC6gYrO9NtWPWOGFNvK7QyJNky4BNfan6LQot7H2ML+th9q3x6FPqh97gxG4etVszYrHY3t4eABQKhU6n4/F4IpGIz+e3tF4WzCK7c5HjP4TC4bW0Ik3CYgibyuXLl5ctW9aCCiCEMKxJtqdMBatpwKSaPirXgg4BgwIAoNDCX3Sg1bQIpAIVaqBTgFPv7xSDwYiLi7Oysmq86rUSnosyKtDHHSgAcCANv1OMj/eoVl2igW2P8G39DB/7hzjd4q6UNtzqj/SBEK14oFvclcIy8xFtekwf1wEBvClvAG8jSUlJ4eHhIpGIiH+5fv36vHnzvLy8lixZMn369JbW7nUzZsyYzMzMRlzY9N6gwXdUVWIMJmCUllLAgAULFixdurShV7VqQxgeHh4ZGTlx4sShQ4cCwOrVq6OiogQCweeffz548OB6CsnPz+/bt+/69etfoaLvKP369ZPL5a/OEMYL0QeelODOFAB4IUXxQhjvUX00QYi622HEUX3OvcATREjfED4UIg0OKWWot4OJX3hJJcg0qB3PYgWbhK+vr0qlCgsLI1vy8/PpdHoLqtSCpKSkhIWFOTk5tbQibxmnTp168eJFIy5s1YZw7NixDx8+JEOMunTpMmXKlHbt2tnY2DRIjrW1dfv27V+Bgu84VKqZEVYzkShGM72q7JyfA3Yyq0ZQdaII9TTlxfXnYwmiGiYzSYQ4NEgQmjaEiWLka4csZrDZuXXrFo7j9vb2vXv3bmldWgAPDw83N7eW1uItw8HBITc3txEXtmpDaACDwaisrExISBg8eDCFYgkjervR4pAiRr4vTZ0fH/vmXo2o7gQRGuBkwn75OWCnaprMBBGa6klJEJlenJQgRD3sWngt6VtEfn6+SqXSb6HT6e7u7gan9e7d28bGhs1mjxo16syZM7a2tq9RRwutDkt3X42tra2fn5+rq+uSJUtaWhcLTSW9ArXhYryXrrUO1liFGgmV1SfEi1AvUyM8Pz6mb/OUOsiSoFleZg1hvAj1tGvJFcRvF9nZ2c9q8vz5c+PTrl69qtFoAMDW1jYlJeW1q2mhdfHujwjlcvnJkycNGjt16kTMC+pjb2/PZDI7der0559/7t69+zXpZ+HVkFDT84kB+NpjiSI0wg0DAKUOnkqQj50JQ9jBGitXI7EK7JkAACllqKM11leApZQhHQKq0RWJIvR1p7d4RPjvv/8KhcK0tDR7e/tly5YZRDocP36cwWBoNBqBQDBq1Kg6paWkpNy5cyc1NZX8BRUVFYWGhvr6+qalpS1atKh///7mrkUIkWuxnz9/TkwQSiSSzp07N/7xLFioBy1jCCMiInJzcwsLC+fNm9emTRuDo3/99RedTi8vL58yZQqHw6lTmk6nu3jxIpfLHTFiBNFSUFBw5coVa2trFxeXgICA4ODgOoVUVlZu27bt+PHjGo3GEq79DpAgRP41B3x+DljCS0NImDeTUaAYQA97LEGEhrtiABAvRP4OmDUdnNlYRgXysa0hU6KBfDnqyHtbR4SPHj0Si8WzZ88GgKCgIBcXl1mzZpFHU1NTY2Ji9u/fDwBz587t2rVrnbNWCoXCzc3t8uXLZMsXX3yxa9cuZ2dnNze3H3/8cevWrSYvfPz4cVxcHJfLvXz58ujRo2fOnHnt2jWhUPjNN984ODg0w6NasGCeFjCEly5d6tChw5gxYx49ejRgwIDExEQ7Ozvy6Pnz53Nzc7/44ouSkpLFixcfOXKkdmkikejMmTPR0dEDBgwgDCGO48HBwWfPnmWxWMuXL+fxeF27djV57Y0bN9LS0qRSqZOTk6+v74wZM27fvn337l3LcPAdIF6EVrjX8Pz78bHLeVUWK0GI/Ez5RQn8HaoNYYIIESsj/R2wBKGhIUwSoe72GO2tnWF4/vz5jh07COPXp0+fqKgofUN47tw5Hx8fYtvNze3ChQshISEAsG/fvpCQEHLseOTIkVmzZjEYDADo27fvrVu3SAkKheLevXvOzs4A4O3tffr0aXOG0MfHh7wXAHh6enp6etaufHFx8YMHD/R7j3Xr1s2dO7cBz9/cyOXyZlk80LLpOt9qNBqNTCYj/OoELBaLRqvD0rWAITx37pyLi8tPP/3UvXt3a2vrW7duTZo0iTx65MiRTZs2AYBAIHj06JFQKHRwcCgoKJDJZJ06dSJPu337NrHCgc/nh4SE5Ofnk4fi4uJ4PB6LxQKAvn37HjlyZPv27SY1CQoKCgoKInfHjh0rl8sHDhxYS6TM06dP79+//+jRI7KlW7dujfgQLBDI5XKZTNZ0IQa9DwJIEjE6sVQyWXWH0pmNbSily2SVAHC/iOZjjWQy0xmKu3Ap14uoMk8NADwooU9x1clkeFce7X4RTHTW6p95t4DazRozUADDMC6X28SHej1MmDBh7NixxHZKSsqECRP0j2ZmZpIzCDweLysri9gODAxcsWLF+vXrMQzbvXt3+/btCStoTG5uLtkHsVis0tLSyspKNrt5Ug84OTn5+fnpjz4xDKtlNU5lYhSzoy+Fa90sdzcJQqhZlgO17FK8txo6nW5lZcVkMus+VY8WMISrV68mfhs4jpeWlhJviyQJCQnkN4nD4SQnJw8bNszJyWnHjh1z5swhxnabN2/u06ePOfmJiYmkBB6Pl5iYWH/d6uy/nJ2du3bt+uGHHxK7NBotOzu7uLi4/rcAgBs3bkRGRj5+/Pj48ePW1tYAsGvXroiIiOHDh3/99dcNEqWPWCz+9ttvbWxstm3b1mghrxk2m10f73ft6HQ6AyHPpIhHR+52NTpcPxbkKXQ4nWNFh0cSfGYnjGMmmU4/F7QzA3E4dB2CtApdH1c6hw59nWFzso7DqdHjp0rx/k5YszxFS0FMxUVGRlIolM8++0z/kFwuJ1fyMZlMiURCbPv5+el0urVr19rb23fp0mXkyJHmhMvlcv2XcQaDIZFImssQAgCVStUfEUql0lpOlt48Bwix/eq7RPgtQiKRnD59+tKlSxMnTpw3bx4AJCUl7du3T6fThYSE9OrVq9GSz50798svv5w9e9bDw6Pus99aWsCn4+7u7uLiAgChoaFBQUEBAQH6R8vLy4nBHABwOJyysjIAoFKpv/zyy9GjR1NTUwkrqD+SM6C8vJz8pXE4HLFY3IzKc7lcwhASTJo0qc5BtzFBQUF+fn62trZkBoQvvvhi/Pjx5qzg8+fP4+Pj6xRrb2//2WeflZaWNlSfFoTyakgUY34OmEEjg0bxscVSyjGEUVLLkJ8j1dzl3eyp2TKk0FGeSDA3LmbLpFAoFH8HSqIYDIQmisDf0YSElv5cG0ZeXt6FCxfOnj1rsLLT1tZWLpcT21KpVH8NQ+/evWUyWVJSEjkxbxI7OztyxI/juEKhaOgi3WaE3bUfwt/NglnW1tYLFy7s2bPnt99+m5GRAQC+vr6ff/75/PnzzVnBs2fP1kfylClTHBwc9D2N7yQt9ovNzMyMjo7+/fffDdq5XC5Z2Egul5Mv2oQtDA4OdnR0rMUKGkhQKBRvrJNq586dN2/e/Pfff4ndWjqIiIgIpVJp7qg+jbDK7yQJIuRnKuCJmPzLqEAuHMzafNISGgV8bLFHZYicIAQAARs4NCxbWu1rVengiQR1MxV6+hZRXl4eFha2c+dOFot148YN/UOdO3cmR4FSqbRLly7kod27dwcFBf3f//3fjz/+WMuElqurK+nlk8lk7dq1I19zXz/Mjr6cXrV1HW873t7eK1eu/OSTTwi7xWQyzXkIlUqlQV3VWmgN+X1apt8sLi4+f/78oUOHMAzLyMjw9vYmD7Vt25b87clkMv3x+NatW9euXUs4FfXn1Q3w8PC4c+cOsS2VSt/YEb2VldXBgwdnzZqVnJysH6cqlUpPnDjh6upaWFj42Wef3blzZ/PmzfPnz8/Pz58yZYrBO3tRUdHp06fbtm2LYRg51Xrz5k2JRCIWi+fMmQMAeXl5Dx48wHFcJpN9+umnALB///64uLilS5fm5eU9fvz4s88+4/F4AHDq1CkrKyuRSOTg4JCQkLBq1aqkpKTExEQ2m21vb1/7u/8bRYII/ccodxoA+PGxB0Jky4A6M4P7OWAJQvRUivTP9ONDgqg6mxoZevr2vi0rlcqFCxf6+flt3bq1rKysbdu2QUFBhw8flkgkS5cunT59+ooVK4gz09PTv/32W2J7586dPj4+hEcUx/G1a9euWbOGlCmTychRIJPJHDduXFpaWpcuXe7evUt8/VoGhEp2fc2f9f076RolWbx48d9//71ly5YffvhBvz0yMlIikQiFwoEDB7q7u69ZsyYuLi4sLMzb27tHjx4GQk6fPo1hGJVK7dGjB9E55+fnP3nyJDMzc/LkyUT2g8uXL+t0uszMzClTpri7u2dkZOzcuXP06NEYhimVSg6HM27cOADIy8u7dOkSl8tlMBhCodDX17dv376hoaHOzs7Pnz+fP3/+GzJQaQFDKJVKf/755wkTJty4cSMrK8vPzw8ADh48OHz48A4dOkyZMuXZs2fdu3fXarV0Op00eJs2berbty8R3rJ8+fI5c+bo20KtVkuWZh4xYsTOnTuJ7aysrIkTJ76Gh7pThCZc0dZ52nBXStjwaks2bNiwqVOnLl68+NSpU2Tjhx9+uGvXro4dOx44cOD333+fN2/egAEDhg0bZrwAS6lUTp48OTw83NbWNiAgoEOHDgCQnJzco0cPe3v7wYMHjx492sXFZcOGDcSNFi1a5OTkNHr06JCQkG3bts2aNWvMmDFPnjwJDQ394osvIiIibt68efDgwd27d1dUVCxZsiQvL+/LL7+8du0ahUIZP3589+7d35bkh+aCQv342KEMvF6GkI/FC9FTCfq+J0W/MUGEJrd7eRcRenNKbTSOp0+f+vv7E9t2dnaEr6V3796EB8LDw2P+/PkXLlyoqKhYuXIluYwhKCiI7D179erF4XA0Gg0xbrh48WJGRsaIESN+/fXXSZMmOTk5bdu27cyZMy9evMjNzf3xxx9b4CEJMMxq0ARlZuJbZAjHR2qji+sOH708htbHsep7SKFQQkNDe/fuPW7cODKCKSYm5sSJE8eOHdNoNCNGjLh27dqiRYtSU1OnTZtmLC00NDQnJ2f16tWXLl364Ycf/vzzTwDIysqaN28ejUbbsGHD/v37CwsLv//++4SEhJKSksmTJ0dHR3t7e/v5+R0+fPjcuXN0Ot3Ly4swhNOmTTt79qyLi4uvr29sbCyNRvvuu+8GDx48fvz4qKio1atXm4sifs20gCE8ceJEenp6eno6sTtjxgwAePHiBTHRvWTJkq1btzKZzKSkpD179hB+lby8vP79+w8aNAgAqFTqxo0bycBuhUIRGhpaVFQkEon2798fEhLC4XC++uqr48ePc7lctVr9elLXD3DGnn5YtwPBeOHaxo0b/fz8zpw5Q+zm5ubev38/Ozs7Ozsbw7CYmBhi6tskV65ccXBwIGZu/v33X3t7+/j4eDc3N6KQjUAgKC0tdXFxWbVqlUajiYyM1Gq1mZmZo0ePBgAMw4iAI2dn56SkJADIy8sjApdYLFZWVpaNjc3hw4ft7OyuX78OL8OOiGvfcIorQYODO9eEiephj6WXIw4NfuxZx6SAHx87koE/lyJfe/0RIfbbk+q18++AIezatavx4qKePXuS28Z5JwDAYAyh7zIdN24c0QOScLncll3SQGI9agZGe5u8fGeG0ZT1mNM0KC7Wtm3bjRs3fvrpp8eOHSNajhw5Ym9vf/XqVQBACOXl5dUibe/evQcOHACA0aNHky/f3bt3BwBnZ2ciMNDZ2fnMmTOJiYmFhYVkbk8Oh+Pt7U28DzGZTLVazWAw8vPzBQIBhUKRSqU4jjOZzMOHDw8cOPDq1atarTY6OrpBH8irowUMYUhICLEaSZ8NGzYQG2w2e+XKlQAwZswY8mibNm30191TqVTyXYbD4SxatMhAmsFP8TWAGX0d6wmHwzl69OjkyZO/++47AFAqldbW1oQTcsSIEQsXLiTPVCqVZWVlRJwRgVQqJScFSeeq/hwMMUq+cOFCRkbGunXrUlJS9KdzyPkDIp3HlClTgoODz58/n5GRQRSWUiqVXl5epDKNebyWIN78GkE2DTx5WEyx6XTb+vSwx5LFSMDG9KsM+vGxBFH1bqIIfej5lsXFtFo0eVni09tt3p/D8unb0rrUFzYN2I3qoRcsWHD+/Pl169YRDlKlUjlo0CD9HzK5EubFixft2rXTv1YmkxG9CpVKJcOjyL6C6FKKioq+++67b7/9duzYsfpxCcadz+LFi/fs2WNjY/P9999bW1vrdDq1Wj169Ggi+EO/k29ZLD/jlkGn05G+3MDAwLlz5xLLkNu3b29nZ1dYWEgcIhq5XK5cLheLxQaJ1YcOHZqZmUlUz5DJZA8fPgS9pbjEBo7jX3311S+//MLlcokA2osXL5pUKSMj4/PPP580adLWrVsJF+i4ceMSEhKIo8XFxeQg/g0nXoT8zds5Pz7mwsHqLKLLoUFHa8xATlseVqlFxZUAADiCR+K6DaqFNwQKz47RtrMk/HhLK/IK0Y/tPHToEBn6NHny5Li4OGI7MTGxoqLCysqKmMc1Xl02bty4u3fvEttE/2McDHX48OEePXoEBARUVlYqFIonT54QoarGZ+I4vmTJknnz5v3nP/8BACqVOn78+Pv37+vLfxOwBBm2ANevXz958mRcXNzixYuJ9Blr1qzZsWMHAFCp1LCwsB07dvTr1w8AiLUls2bNIupsEamwSFxdXf/73/+uXr2aKOw3cuTILVu2lJSUXLt2DSFUXFx85syZtm3bhoSE7N+/v0OHDoMHDz558mSXLl3+97//0Wi0HTt2TJs2LTIyUigUxsXFeXt7jxgxgs/n63Q6a2vrnTt3+vr6BgcH//LLL927d5fL5SZnFJqRH+J0WRLDRhsG/DqQSjFjbk5m4X9nI62WQaNVu5AeCNH63mbf8Pz4WLm6Xmk7/B0wz5pltzEAPz72yQ2tPRNT6sCJjdmYXkdu4Y2DasO3m7pInf+spRV5JUgkkt27d4eHhzOZzI8++ggAXFxcDhw4QAzRpk6dmpeXt3//fiKqrmfPnjY2Np06dTp58qTBMm4AWLdu3apVq44dO2Ztbe3q6nrlyhWhUHjy5Ekej3fixAmxWBwZGTlhwoRt27ZdvHhRpVJ98skn//7778iRI69duyYSiR4+fPj06VMA2Lt379KlS7Va7ZAhQ1gsllqtnjJlypIlSw4cOLBx48bi4mIisfPr/6xMglly+TSIdevWEUuJiV0cx/fu3ZuSkvLrr7+2rGJNZ86cOeQvJzMzc+PGjb/99tsrvSMxPUmMPiu14HBCEzqYapBSY+ld/MpYamdb05Zw8EXtKDeKB7NGshIM4D13CsfMO55YBSWVyJxAfZ5KkBXdcOyYWoYel1f9ZNpZYUSQglQqJcJuLbxO7t69+9VXX8XGxpIttfwjFA+v68pKWd0C6c6vMIy8ub4Jbdq0uXfv3ttej/D27dspKSmff/45AOA4Pn/+/JUrV77S0q0HDhxISEjYtWvXW5BZxsKbiZOTU1paGhHE++TJEzKY8PXwqAx522Aftjccyf3xDCWITNstBJAsRudHUuhqnMerr5Pfngn2zHr5MztYmzitqx3W9S1fONg6wah0ipVtydZFblv/aWldWgvOzs5///03ETUjl8upVOobmz/dYggtVPHLL79ERUWFh4drtVoPD4/333//dd49Xmg6ApNYsfBxBxOXZFYgeyZmzwSp+pWrZ+Fth91zEADAO5pZ5s2kU6dO33///aVLlxgMBkLov//9b7MkYn0VWAyhhSowDCPymLcICSLToZ7+fGx7iulqf+/A6gULrw3Z7b8Znj6cvmbTolp4FTg6OurXVHhjsUSNtgDnz5+fPXv27t27N27cOHLkyO3bt+/atWvGjBnXrl0DgM2bNxcVFTXXvfLz8z/66CNiRUqdREdHE+tnG0dcXNzp06frf77+7HSCmVBPoviRycsthtBC/VFnpyOlonTnUq2o2X5cbxTTpk1bs2YNkaxq/vz5Bw8e/PHHH4nwusTERHJNYbNw8uTJjh07lpeX13kmQmjdunVksrBGsGHDBpFIVPd5TcNiCFuA58+f79q1a/HixbNnz7569eqiRYu++OKLrVu3PnnyBABevHhB5kptOm5ubrNnz649Kz+JWCxuaCUN/Zw4ZWVlDTLh+EsDp0OQVo562Juwak5soFMgV27CFtZeU9CCBX3sZ33H7OjL6haIMRq14PfNBsfxHj16rFmzJjg4mMPhCASC4ODgn3/+mUgwWV5eTq7IahY++eQTe3v7+gRa6nS67OzseqZKJiguLiaGBACAEGre/tAcFtdoC+Du7q6fYpvInuPq6krMJO/bt695b2eQnrQWxo8f3yDJarU6PDycyA0EAKNGjRo1alT9LycNYVo5cuNgVmaSfvg5YPFCZJwpJklsOrN2K4HoHZqxpNG7jTz6X07fkdajZ7S0Iq8EkUhEzmtgGEYmOu/Vq5dGoxk6dKjJDEFNoZ75/Wk0Wp3F1Q24dOkSmTYEw7CDBw82WLmGYzGELQBZCtWA99577+7du3v27Fm6dGm3bt2Iwo3Dhg2Ty+Wpqanz5s27d+9eTk5Ov379iNIq0dHRT58+xXHc2dnZOEdDSkrKw4cPnZyciLWuBH/99ReO4wUFBUOGDGnXrt26detcXFy8vb1v3ry5bt26tWvXWllZrVy58tSpU7du3erXr9+8efP++OOPqKiokJAQrVabk5MjlUrZbPbkyZOlUunq1atjYmIOHjzo4+MTEBCwatUqDMPWr18fFhZ27do1X1/fkJCQv/766+rVq8HBwXw+/++//3ZxcREKhcHBwaBnCM1NEBL487EEEZrYtkZjnhwhAFczBQVbA1euXOFyucOHD29pRd4OJJdPsnsOkl45zfT2Z3bo3tLqNDN2dnaBgYHG7aNHj6ZSqStXrlQqlVu2bLl58+avv/4aHBwsk8mys7P79eunVqsrKipSUlKWLVtG5Ms+fPhw27Ztnzx5snDhQoPYFq1We+LECUdHRwzDyHwgIpHo1KlT7u7ueXl5ISEhly9fDg0NXbJkyf379319fQlL9vPPP9Pp9AMHDiiVyiVLllhbW69Zs6Zdu3ZLliw5d+4cl8sl+jc+n3/r1q0NGza89957OTk5s2bNevDgwf79+3/44Qc7O7t9+/bJZLLFixc7OTmtXLnSyclp+fLlJ06csLKyev78+YQJE4hky40EWWgIa9euXbVqFbmr0+l27doVHBysfPoo96uxiuQYnawib9nEikvHEEJFG4NLD65CCIlObi1YNQPhuIG0/Px8AFCpVPqNwcHBkZGRCKGcnJx27dplZ2cjhGbOnLlx40aE0LNnz4YNG4YQyszMHDlyJHHJ2LFjS0pK9IWkpaVNnDhRp9MhhHbu3LlkyRKEUERExMKFCxFCKpVq4MCBOp0uMTGxR48eFRUVW7ZsUavVycnJkyZNIiSMGzfuzp07CKGMjIzz588jhEaOHBkXF4cQGj16dGZmJkKosLAwMDCQvOnTp09JlT788EPiKfLy8k6ePKlSqfr27VtWVoYQWrlyZXh4OELIxsGpqKgIIfRVrHZTks7cZ372mW5CpNag8UK2bky4htiWSCTmrn09vAYFTp8+/d577wUFBfV6iZubW1RU1Ku+75tMbGxsQECAfkst/wituBghVBF+vPJx3KtTqbm+CW5ubnl5eaX7lhdtWYQQKr9wJO/bSbpKuSLhdu5XY1XZ6ZqSvLyl78ui/zW+duHChcuXL9dvKSwsHDBgALG9YMGCtWvXIoQyMzO9vLxycnIQQnPmzLl16xZCaP78+VevXkUI3bhxY9myZQaS586dS3zlKisr3dzcxGIxjuODBg3Kzc1FCO3duzc0NBQhNGXKlKNHjz58+DAiIgIh9MEHH8THxyOE4uLiRowYQYjavn27Wq2+evXq1KlTEUJ37tyZNWsWcSgkJIToHwhmzZpF3DQ1NZV8ip07dyqVymPHjhG9sUQiIXrF/fv3BwcHK5XKhn7glhFh88Bs363N9kvEttvm88SG0/dVq+ztZzSg7jzp7GKz2VZWVoSXXyAQEDloBAKBUCgEgNOnT/P5fCKRroODw+PHj4cMGUIKOXDgwPDhw4kKsR4eHs+ePQOA33//3d3dnbiEwWCUlJSw2WyBQGBtbf3NN99AzVSBISEhR44cGTBgwIMHD4hcFceOHZNKpRcvXqRQKDk5OV5eXgaaG1y+f//+kSNHRkVFTZs2LTY2ViaTPXjwAAA4HE5CQsKYMWMQgEgFTgDxIrTC3XwuGAfsq7uGgaMJororSLwzxMfH79+///3339cvjRsREUEkibVQNwhpy0qodr7y8iIAACAASURBVALrMTNbWpUG4BBSlYHZZvw8m/HzAIDdc1AbYh0IgNs207kSjdH/YbLZbCLNukAgoNPpRE0lolfRarUnT56cPHny1atXlUrlo0eP9IWUlZVduHCBSLLBYrEEAgEAZGZmZmZmEkUUKBQKkbCNzWZ7eXmRC5HJDq13795SqTQrK8vNzc3Ly4tOpw8ZMsTLy+vGjRsFBQXPnz83qTx5uY+PD4PBSE1N7dixo5ubG5PJPHr06MiRI4kOTSqVNqV6sMUQvtHo50cgi6oQ3Z9Wq60lI7ZMJjPOraDRaHr27Kl/iUQiMbeyZ8yYMcuWLROJRFQqlUKhIITWr1/ftWvX4ODgCxcuoJrz5JmZmR07dtRvGTp06JdffllYWEihUOh0ukaj4fP5BtpSAB6JURcPSBbXFv/pycNkWlSqBEe9kq4JQjTDq7UYwpSUlPDwcLJINYGPj09rqJjaLGjFxWUntzmvDFU9SUQaFatrv5bWqCUhexJyAwB0Oh2O4ziOjxo1ivheGZQuMNel6BcJINvNVRkMDg7+7bff+vTpQ9SxSU5OXr9+/Y4dOzp16kSUvNDX58WLFwbezoULFx46dGjkyJFELUytVtu3b99hw4ZBk6sCWKJG3zj0bQyqmUFbH/1EutnZ2WQ6eYKJEycSxZUAQCwWEw79qVOnkvmoYmNjFQqFsWRyl0KhzJw5Mzg4mJhmz8jIuHHjxn/+8x8KhVJaWgoA586dI1P3pqamGus5d+7ckJAQIl1qv379ysvL5XI5AGi12ps3bwIABYMUMXouRVY0zMF83XIMoIc9liiqoWd8a1o70bFjR/2JXoIuXboYD8otmIRq62A3/QsA0JTmqZ4/bml1Xi2Er8+40WDDuJHBYIwfP57MuE2GbhK4u7u7u7sT0ac4jpeVleE47u3tbWVlRcaKE5cYKKC//dFHH507d06hUBBvdVu2bJk+fbqHhwfh5SKmYIheRS6XZ2dnG1w+efLky5cvl5aWWltbQ80O7fr1601xkFD1S0tbqBPCk07ULwUAwvFdUlLS0HhLAAgNDb127ZpMJisrK8vPz+/WrRsA3Llz5+rVq4WFhb169dq/f39eXh6Xyy0rK4uMjCwqKurSpcvhw4fz8vI4HM6IESO4XO4///xDXD5gwAB94d7e3tnZ2Y8fPy4oKHjw4MGNGzd8fHzef//9rKyshIQEsqjYnj17cnJyNBqNn5+fVCrds2dPfn6+q6sr4Ybt1KlTTEwMERRqY2OTnJxcVlaWl5fXvXv369evDxgwoF27dhkZGaWlpXw+38XFZdeuXfn5+U5OTsR7nLe3940bN+bMmQMADAZj0KBBBw4cIGbmhw4dymAwtm7dyhy+UGBjVaKEjzvU9k6WLEYyLQxwqrJ8ZSr4JUm3qW9VYlK1Wt3Q1ILNy6tWwN3d/eLFixqNxsXFhXB3A8D58+cVCgXxn2qd5OXlXb58ecGCBWSLuX8EBojC4mIMFqONF9OrB0Z5VQOA5vombN++/bPPPiO6+/qTkpJy9uzZpKQkqVRaUlJiZ2fH5/M1Gs327dvz8vIcHR2LioquXLlSVFTk4+ND9iQSiSQiIqK0tNTHx+fDDz/8/fffhUJhZmZmp06diMqmJCNHjjx06JBMJktOTibKpo4aNWrMmDH79u2TSCQpKSkBAQF37tyJiooqLCx0c3MTCARXrlyJiooqLi4eNGgQjUaj0+k5OTnvvfeeo6MjANjb2xPziMREpqOjo5+fn5OT0x9//FFRUTFmzJjo6OgbN24UFRUNGDCAwWBQqdTS0tIhQ4YQYaV9+vSJiYl58uRJQUEBj8fz8PB48OBBUVGRQXGoetHQScVWjrlgmRZU6e3FUeDU4VDeijjt6oeGsTAGHMvUfXS9+pyr+fjgfzTk7jsfLIPj+DfffMNms5lMpt1LqFSqJVimnsEyioTbouObEEI6aflbFCzTLKJaFZZgGQtvHxQMChUoqgh91b3uevHrE6r9Homi1lUI8ObNm2VlZWFhYfqjjYsXL5Ih7BZqh+bswabSAEBT+Fx6409Wl94trZGFNwuLIbTQknS2xaKK0LGhdVi1zjZYnhzJNEAsuk8QoRGurcgQ5uTk7NmzRz/2DwCcnZ3rnyqhlUN3bkt3bgsAjPbd7D5oxVkYLJjBEixjoSXpbofZM6GtVR1WjUaBrnZYkrhq2vyhEPm3puRqvXv3vnPnjkEjl8t9x9LKqNXqtLQ0Yru4uDguLk4kEsXHxzddsiTihOL+FQDAqDRkKUBhwQjLiNBCS9LdHsun1cuk+TtgS+/qCJOZK0Nd6lFZ952ha9euWVlZf/zxh6+vLxnyfu7cud69e7dr165FVWs2EhISIiIixGLxli1bACAuLm7Lli08Hq+e+eJrh2JlQ7UTAAAul5Tu/d715/81XaaFdwmLIbTQkkxuS5lkXS//3o89KTElVSPCL7vR6K3Jl/H7778TwbcGGA8T3178/Pw0Gk1YWBjZcvXq1eZaKGk1sCqom8Lh2U4ObhaZFt4lLIbQQkvCpYOTqULwxrhxsWmerWgUqI+Dg8PSpUsXLVqk33ju3LmmpNJ484mMjKTT6XK5fPLkyU0UVf7XAd7QKVQ7AWAYu8fAZlHPwruExRBasPCm4+vr6+np2b59e/3GDz74gCwy8BYRHR1tUFWHSLVlcFpQUBCHw8EwbNSoUYGBgc7OznWLxnWy/d/xvjVRvEVT8By9XJdd/EuwYOkuCrdhS/QsvNtYDGFTsbOzO3jw4OupFfKOwWKx3rFwj1dEmzZtjBtFIhGGYc01R6hWq/UTbumjVCoxDGvQOnFjaRUVFUTpMU9PT4PqdCb9n9u2bfv8888dHBzs7OyysrLqZQgxCsY2nS/QcdEmcpvTKwijNcnjKr3xJ4XJ5vZ/rylCasfW1tbkP91CnSxbtqwRV1kMYVOZPHkyqkeByleHVCrl8XgGjZuS8BIl2tbvdYTXm1TAQjOSn59PhlMS4Dh+6tSpYcOGEQW5msK5c+eSkpLS0tLOnDljfHT9+vW+vr4qlUoikcydO7cR0lJSUsLCwkaNGhUZGbl48WJXV1dz12o0GrVaTWwLBAI7OzscxysqKnx9fev1JBjGnWM6skZy5bT1yI+Jbev3ZtdLmnlY3v7QhLF46d7v7KZ/SXNwqeWclJSU+og6nIHfLkTHhlIBQHH/iupFGm3sXB6Pp3h4Q1dWwhsxvT5CVE8SVc9S9NORu5zU3J9EM64AagBeKVNnZ7A69wKElOkPWF36AEBlZSWRAqbmqTpR6M/8+avJBqTVNPF1xBxqtboRHXJrN4QJCQk2NjaE0+nmzZsymYzH47HZ7L59+7a0ak0iQYTGebx9fjMLJrl169bs2bPJtw2dTieRSDw9PY09io1g+PDhfD4/OTnZ+FB0dLRYLCaSLy9YsCAwMLBz584Nlfb111+HhYVZW1u7uLh8/fXXv//+u8kLHz9+nJqa2q5du8uXL48ePXratGkRERFlZWW7du2q5TVLrVYTlVUIuPf/sZocjDFruBmQRi27/idpCMvP7uEGjKG3aXyaVgrPlsJsvCeD1ckPYzRPQr7YYhT4Mu8gu1cQ23egTK0FAE6voPoL0UnEFF5VVRNcIS0/f7Cf4MvYYuTevo4ORJ3zRHbzHKtzL1whFZ/c6vrzH2ZPpVD1rSAACA+utBk/n+He0dwVr5lWbQjDw8P/+OOPGTNmEIbwwYMHjx496tKly5IlS1pataaSIEIr/VpTYOU7DZ/P37x581dffUW25OTk/Pnnnx9//HHThRMeS5NcvHiRnJh0dXX9999/CUO4atWqFStWEM5SHMfXrVu3YsUKwsNpIK2ioiI1NZXImenu7v7PP/+Yu5ePj4+Pjw+5y+fz33///do1Ly4uTk1N1S9N/M+HfVkDJ1JsDJfMW325SyqVEtsaoMhlUurL3UagCNsHVCpnyiLjQ0QO+tpRUxkANGiCAiTRRcx57dRSKQIAXFQIAAomDwBQuVDzNJnRa1i9pHj3AQDi80GVMlVRrr+X+lYejHXU1nGhY1va8I+lUikAxp6+lJBgckSIKoTquKvMER+RLZQOvkqgqZrjQzCAGBGSrgUAYLFYdYYft2pDOHbs2IcPH5K7HTp0IMryve3INJAvR942lhHhO0K/fv169uyp3+Lh4TFv3rzz588TpSJfETk5Od7e3sQ2j8fLzc0ltoODg7/++uutW7cyGIzly5d/+umn5jqa/Px8MiEOEQIqk8nMVf5qKE5OTn5+fmT9ATDjpUdqpbpYxHSqcsnypn7exPvS+gzDpWVcM+PUOqcJCiJPWHl4Mb16NFGNcjUUVGr6tbGiUQAAJHf+AhrdKmAcj8dTC3PVafd4QyfWR47szkVWR1+akzuhvfXS/wYVoWX3dTxeHaNepFbiFCcqjwcAujaexAaNRjM2hOqyAo24oMYnM7oZ3uFMQhjChqY+twwaqhEKhTdv3vztt99u3brV0ro0iUQR6maP0Sz/23cFW1tbJycng0YOh0OUtXp1qFQqstgFlUol6nYBQJs2bb7//vvvvvvuhx9+mDNnDlHotU4JAECj0UghrwJN6l2dpMygUZ2dLok8Se5WJseoniQ25S7s7oFNiZThDhiHtM2w7uVuCerjWP0z5/Qdye1TVZOP4eljP3dFPeUo0+J0cgm5K7l8sjcfUsSosq4BYWVilCSi6oMt3vI5UivNncnw8DZwjUoun1KmPzR3/uvn3R8RyuXykydPGjR6e3sbz68sWLAAw7D+/fv7+/vXc7L6zSShNdXqaw0kJSVFREQYNN66dWvDhg2v9L729vakR1EqleoX5XF1dcUwrLy83GBRhwF8Pp+UoNPpKisrbW1tX53CmqQojbUN1afGBD/Dw9t2wmfkrrYkFyhUZqeeRlfXF+GBFYBRHBb+1LjL2d37M9rVMdVaC4/ESI0DAPyTgwcIqn/mFCYbY3JAqQIAQEiVEc/2HVQfgfy5P+rHrchunXcJmtrFlnr2Be5jiwGAA8t0EkSGpw/VzpHYth4zC6NVxwnny5GbXqyNJv8ZrpC+EPSQvXwB4Kqo2jK1SojsmNCeV0M4AkgSIR0CAMAAevIxipnOTFPwHJdXMDs2/l9J0mKGUK1WV1RUEFWpDFCpVCkpKe7u7gKBoNHSsrOzy8rKfH19uVxucHDduSQqKytnz5595swZBoNRUVFRz/u+mSSIkP4vxMLbTnp6+oYNGzp16kRaEQ6HM3PmTAN/abPj7+9fVlY1wKqoqCBqLAMAjuPff//9Z599xufzly9fvmHDBoOE4CRubm7kCpmKiopu3bqZW6TRLLDGzSddoPpQ7at7Et6wafqHZNEXKSxug6JL6O4dtSV5jdMQl1WU7v2WP29V4ypgpJSh/v9oyVmPvf2rPZDlfx9mdekNHXsBAK5SlP2xs56GsDL+JqfPCDIO1vnH3zAGc6YXvjMFBwAcQXEl5M8wYSlofBcavyr21WpwtRtWh8DnrPb+JBqppzIjXiGT+UX7+FRnRvwAigGKdVkSJJpFp+p1V7cK0eQr2g7WGAA8k6L/DaONcjPdm6kyEzXFuc1iCFvAfSYSifbs2TN16tQ///zT+Gh+fv4333zj6up6+fLl8+fPN07apk2b0tPTeTzesmXL9GdNDUAIlZWVicViAGCxWJMmTQKA5OTkCRMmNObB3hgsI8J3DD6fv2vXrri4uCsv+fvvv4mCyU2noqIiPT29oKCgoKCASFWzYcMGYjHWtGnT4uPjEUJarTYrK4uMXvnhhx/mzp3btWtXZ2fnpUuXfvfdd1qt1qQ0KpX66aef3r59GwDCw8P/7//+r1l0NotWgysMw1VkURdkN8+Ru7pyoeppVVArrpBVnDugzk5v0E1s3p/Dn/tj4xSkcHjs7oENvSNJdDGa6kl5MIlG/PXTe99l+w5ktK2a0KWwuA7B9R2wloXtRrpqN6g6NxNp1Eu6Vd0lfjINw+CF1MSCBOmtv6TXq1Lile76RissJLZTykCigZji6ku4/d9L7Do1UICRmkf7PLrT8cGDSTQXDpZSVkN4dDFa4F119w/aUbJN3ZqA6e2vevqono9ZOy1QoZ7D4fTt2zclJcXa2rpPnz4GR1etWjVt2rSuXbv6+vrOmTNn7ty5lFrLSRPSUlNTeTweIa2oqGj37t2rVq2yt7cvKCi4e/euubUQN2/eJKZeNBqNs7Mzn8+PiooSiURffvmluZwd4eHhOTk51tbWz549e/bsWV5enpOT0xtVHl2Nw7f3dVv7UevIxomQrkJEYXGaXYHXzzuvgIeHR7du3V5R0aXbt2/T6fQRI0Y8ffpUIBBYWVl5eXn5+/vb2tpyOJw+ffpER0cnJCQsWrSIz6+KxvTz8/Pw8CC2ra2tAwIC2Gw28ZMxljZkyJDU1NRnz57RaLTmMt4ExhXqpVf/h8pKmJ4++qdhFCrNyZ1q40DsqjIT5XFXOT2rRktUO0dyZUU9ER/bWJlyj90twHg1Yd3fBAxjduzJ8vYHrDGDkL2P8QAB1ttU6RW6oA2FwyMVQColxcpsPLA+7B79qdbVTm/x8U0Mdy/y4wKA6GJkzYDu9oY3xWUVVGs7mqANAGhL8pjtu1JYHK1WezGPcqMI7JnYeI+qZ9SW5v+ZRxdYs4a7VrUo0x5oi/OYnXrGCxFC0NuxWviWZN04D4qPHQYACSKoUKMgV9OfFS6roDu40t1qOOeJIp0NrVBv9uyYmJj8/HwXF5eBAwdGRkYeOnRIIBCsWLGilvWwzcKVK1cWL15MbFMolMTExF69euXl5e3bt+/nn38mjGJ6evq5c+d++OEHkxJu3LhB+lQFAsHBgwcNkjSSBAXV8Ie4urrW+XR5eXnR0dH5+flky44dOzp06FC/h3slyOVyfbOdKMY8reg6ZR1x3Nr8p5UXD/MWbmx2BV4RqqjzmK0jo/uAllKgFgwUwDCMy+U27y305Z8+fZpOpw8ePLj+cwe1MGrUKIMWF5fqtd6enp6enp4GJ5AWkcDOzq4WaRiG1bkQormg+wexeYa50xjtuujvsrr0IbtOjErl9hutuH+Fau9U/zBOrbhEKyxEWk0jlgOqczPFxzfZTfu/xjn0YorR0m6mrYLw15U2E+aDVdW/RnhwlePizVRbE3NPNcB1SFPDZ2Y79XO6czv9lkAnLLYEfWzUybG7B5LbNuPnkduxJTC7I+VOUfVIThJ+vJwydPDw6iyvVv3fRwgHgEABdqcY/eflvwgB3C1BBwZUfdvbcCGm2KzuspvnqPb1SDlUD8wawqioKCqV2rt374cPH77//vu//fabv7//5s2bt2/fXvsQrYkUFBSQ0dVWVlaFhYUA0KZNm1mzZq1cufKnn37Kyso6ePDg5s2bzUkoLCwkuyEej0dIaC46derUoUOHtWvXErs4jldWVjZ7r9cgEEL68egZ+XgvR1RnhDpq34Uz7f8YzRHIbqDAKwKnUhm29ixTN3o9CtTCq1YgLi6usLBwypQpxO57770nl8vPnj07cODAHj2aGoX/LkGxd6ayDWcrxcc3cQNGk4YHo9JwhQz4AAAVl47R+M5ApSnTH9bfEAq+3IF0WozamAALqrU9je8si/qnEYZQpILiSkQMlQBAU/iCauNA4VR98eiunhRO9foE3ugZFG7dI0J13tPyP/cJvvpvtYZGtjNQgP3xFDe+Vnr9LN2lLZFQRhJxgt0tgEhTcLcUzo6gnMrSVqjBhgEAwA2aeuqm8zK9YZ9OWqYtzmF28uvvhG15VC08swJxaRgZaONuheU+M3FrAu6AcaLQn9g9BtCdPep80toxa9Lc3d2/+eYbT0/Po0ePDh48eNasWV27dh07dqz+YOhVgOM4MbYlIGf4unTpMn369CVLlhw+fHjLli21jHx1Oh2OV312CKHXlqFfmRbXLFHRTaT+E4TKjGYoefraoAvaVCa9O1WHmoKNjY2rq+uHH374tq/zaXa0j6LLLxw2aKQ5e+h37lpxkfh4VepRmoMLw6MTt+9Im3F1Z4+rAiFJxInKpDvGk5H1gWrD589bpT9+qj93S1BfR4yMK5FeP6t+Xh3cbjN+HlUvkwCnVxBGrzsuiSZwsx7ziX6L5OLRysQo/ZbeDlh6BVIYraZAlXJ4OerD5RK8UgYAIhUmUqHudpifA3a/tOpwFlXAteI56L2iaPKyZFEXAMDHDhMqUenLlRexJai/U3X31YYLeeaXCNH4zjZjZlF5zRCHbNackJ7uGzduTJ9elbPuNTigHBwc9CO2HRyqXdUMBkOr1dLp9NqHpI6OjmSGJ6lUauDGeXVUXDhiP3s53bnt67mdOeKFaJpn3UP2yqQ70it/NHR2pAVRxN9s+hrkt4v4+PiTJ0/KZLLi4mKFQnH58mXyUGVl5Z07dy5cuNCC6r2BUFzbM60MXaMGX3KqncDm/TnENjdgDLEhvxvBaOdTn4EF0mllt/+mu3Wg2vCZHbo3VENl+kNV+kNOwOiGXggAscV4oF50jP0nNbJ/iI/9Yje9OiVW2cmtnH6jWN7+tcvE6Exmhxo/K7b/EFrNQSGTCl3tsIdCNMi5Rv9v/X511lbbD6rSFNwTQh8HoGAQKMBiitFINwwAmIeWjhq0FaBaLLOTH7GEHwPo44DdLcGJCcXYYqT/jO5cLFduNlhGdHitzaTgZikkYrbHLC0tlUqld+/eTUtLI1z8crk8Pj7e3d296Xc1RiqVEplSBwwYQEZsy+Vyf/+qf2RGRsbBgwd3795N+EjJMZ8x/fv3Ly8vJ7bFYnFgYKC5M5sRXYUIV0hpjm6v4V4kn0XpRoZrJ95ijAzXkn9JYuRbjxEhvY0Xf47pSdY3E03+M26juo+3F39//23bts2fPz893TDI0N3d/dixY926dWsRxd5YqAJ3tt9gg0ZR6HqkVpG7GJXG9PYDAKRWle5bTjTqyoXKx/frcwuMRndeGWr30RKDqcd6glGpuFIhPrq+EdfGFKNAp+oeWxZ9UV9nrbBAP3iH0b4b1ShYRisqNAhYlUf/K4k8pd/C8vavyjKjR6AAiy0xNEiy6ItaUdXEkzItTp2TAQD3SrEAR+zlJVW9dFTb97q3qaEMRqWRc5OBTljsyxDT2JLq7KkAwKMDFYNyM4H/bP+hytS70utnTR9uCGZHhFOnTl2wYEFcXNzmzZv9/f03btx44sQJFou1aNGiJpYa0Gg09+7de/jwYU5OTs+ePQlDNXTo0JUrV06aNOnLL7/83//+FxAQcPfu3XHjxhFTL/n5+UeOHNmyZQuVSu3cufP06dM3bdq0fPlyQtr9+/cfPnyYnZ1NSOvUqZOjo2NOTo6rq+u1a9fWr2/Md66hYDQ6y+e15umuUMP/nuF/jaApFCoOp9oHYs0A23qs1KI7e+jKSgDH4VXO+DYjgq92iI/9wl+wpqUVed307dv36NGjBQUF5ByhBXPoSnJF587zZ9d4w9OJiw2+5EU/zXVZdwpXKijcqq7MetQMgHqVLEA6rfpFGs3RDVXKsfqFZerD7NiT4dlV+Si27lNrokPwUIj66k2zSa+dYXh4k92OYOkuAABV1eyM1cBxxkLUL9KU6fH2bauX89Od2xJhnySyqAu4QmY9ukZ8b6AAO/3U8PNRpt6nO7cllhKqnqVSudYMD+97Qmx5TwwA+jtRZt/S4QgoGGy2+SDMuUbMs7Y0X/z7RqfvfwWAQAHllyQdAEg18EyKetQMT23DxXJlyNYoZpV4RtWTBF2FyPhQg0GvHbVanZyc/PTp06dPnyYmJhKNIpFIp9MR28+fP4+IiLh69SqO40QLMe2nL4Q82aQ0jUZz8+bN8+fPFxYWNq/ya9euXbVqlb4aMpmM2BYeWl35+H7z3q4Wbhbg/S9oEEISiaQRl1dcPpW7ZLSmNL/pmjROgQahU0ilt/8WHlrdUgrUzqtWAMdxIoOiPsT73yu97xtObGxsQECAfktF7rOysD11Xlj+z29IpzVolMWGayvEdV6rKcop2vhZ2bkD0pt/GR+t85tQmRKrSI7G1ao6b2RAghDvEqbRb9GKi6sVxvGKiJP6CsjuRcrvRRoIwdUqjbCOLlGZES9/cM2gMUeGC04YfgN1lfJqySolrlZpccQ7qi6VV322Hf7QpJbhQrE0cnmItkb/jXCNWpF4m9guUyHeUbVGh67m44P+qfGMCKEx4ZpLOTgyRdHmEONPUqVSKZXK2p/RGLMjwrCwsGfPnrVt2/ajjz7au3fvr7/+6urqunHjRj8/vyaaXjqd3r27oW9dP3tTu3btDMqNGk8Kki0mpdFotGapUFN/ZNEXEa6juxgGmr864pu2ap5m52gzKZhq1wzx968BTeGLyuQYx0W/tLQiLQORzCwqKkomk5FVbe/cuTN//vyWVexNA7NxsJ1aY60UUlXK7lzkDa+RTYYIjVHEXaPaOjA7VhU7VL9IBwqV23dk7begObrazfgaozPrE4pijKYwG6PRC1fNcN0Q1qCihgZRJICQpiQPcJxq3RsAkEYlu31efxiHYRRcZZjWVRJ5CqMx9E8rD9vD6R3E8KzOFsvsZKKHd+diDAr2XIo89dKhqTITWZ17E58DLqvAlfIUZrs2HGT3clFJfwEWW4zaUJDIzota81kxGp3l04/YtmWAhxX2qAwZTBAStKmaJjTxWdEc3PBKuSRst92Mr42PNgizhrC4uNjHx2f06NFXrlz5+uuvo6KifH19V61a1b1794auVWwVIOAGjKUa1X95dSQI0RCXl18OhADhQGnAgmtOnxHN41J4LTDbdbGfuaz8z302ExY0rgN6qxEKhX5+fjweT3+hzosXL+qTO7BVgbSasj926seM6CpEioRbBoZQFLreZtwcVVYy27d6WartlJD6TBMghKjWfArPFhoVIk4Uy9WWCxt6YWyx3u8dQCctLzuxBVdI3bZcAAoFY7CcVxzRP5/TZ7iRDKDZCcrP/1rDXjJZHgdNRAAAIABJREFUGLvGyh9NXlZlcrRx+eIAARZTXMMQSv49She4ExOKyrQ4TeHzGJ/P+zlUe1CJBYguHA42zKiwHUKFq2a4bqya3gsUYLHFKLYE/6yz4b/A3QrLMxMvw5+7AlfKtcICk0cbhNl/vKOj4/jx4xkMxunTp0eNGtWnTx8GgzFmzJjs7Oym3/Xdw2rgOHV2uvx+5Gu7Y4II+b9MMCGPu1pxMbRBl0vCj5Xu+lr1JiWArwVtWSkgXJWZhFe+2noLbybXrl27cOFCWlraAz1+/fXXWtIHtlIQUj1J0G+gCdoYOxKoPBtAyO7jr/Tn9TEGszI5us5eVZWVXHZmZ2XC7fK/DzVCQWXaA62wwHZScENr3BtEkVCtbOxmLuMHryOMN9Jq1DlP9M/XluTJYy4ZCOH2f8/+4xqDJ5sJCwwC3RFCJl+RjeNl7D75hpxfZPsOsBo8KbYE9XNENS4pRvmZTyc8M6rZi2HcftW5FwKdsJgSdL8UBQgMTZK5FRRIVVl2ejuFxXX8YpuJww3ErCEkC4zdunVr8OCqQKyKioomRsq8q5Sf3UtzcKG9Lk+jUgfPpIjMYMtw9aQ5NCzjj1Zcwuk9nNbSiz3qiSzqQmXSHcGyvVRru7rPfuegUqnG6V1GjhzZu3djEje/w2B0hvPKo/otugqRptDw3d126v9R+c7SG4a5jnXlQmPjYQDduS03cCy9TSMLCioeXFfnZopCf9ZJxPW/qlQJQiXqXLPCKN3Vk+7SDnAdAGiLcyv++U3/qE4irkw1jIMt/+sA1cEFULWtKvtjp36iUQBguHe0+3ipsQ6BTtjdmoYQo7NIc46xrTAm+14J6qs3Iuxmh+XJUUmpyB038bA2k6r9GYEC7O9s3IqOORvVQDS3ggJXKTVFOQAgvRaG65WRahxmDaFIJEpNTT1+/Hhubi6RjTo7Ozs5OblZsjq9eyjTHnB6DzfpXn8VPBKjTjYY86UrVPT7RuOo8dqx/+Qb67GzaPzmSVDUvOByCVJV6rdw+4xg9xysTHvw5rhztcW5lY9iXs+9xo4de/ToUYMlQzExMQkJCeYuabXI7vyj37Mr0x8ojPw08ruXFQ+uK+5fMWjnBX1gPWZm7fKpNnx29/50Zw+O/9BGqGczcQG7WyBGoxMGrJ7EFuP9BDWqESnTH5aH7S7/60Bl6j0AoDm5203/Qv8SplcP4/VROnFx2ent+pk0lGlxBucgVaX0WpixDv58LL0cyfT8waX//YqsQajKTCo+tVOoRN56i/poFOjlgD116eM03USydeGhNaQB62yLMSjQ31TNHHMjQqq1HZEQR5kRry1tqnfU7GzfzJkzV61alZSUdPbsWS8vr59++unSpUscDufLL7+0DAqNcV4ZWpl0RyctNxm13OwYRMow3DuKj/3isPDn+kuQXj+LKuUUnq1+/ZQ3hLI//svxG6pv2ilWNlQbfuXfh0CrYfesV3GZV40s+mJDR+GNJisrKz8/PzAw0M/Pj6zEFBMT83qWBr1dSK+FsXsMJD0H7G6BxsvetcICmoOrQ8gGAFjxQLewM8WDqLeHYZr8ZzqJmO07EMygeHBdk5fFHTS+4q9f67+YJ6MCLY7RIYC2kpICLkvj8DXEAkBdpW9fkiODT7xqDFpoAjeO31CMxa4qhIRh+mmyAQBwvPJRjIG15s9frUi4pZ9nx2XNCYN74SqlPPaSwawqADCp4MvHRoVruS9rFw7pMO/2VSrCtABgrfbwoAUFOhnWDhzgjLGeJ6lfsI2XXVIYTPTybQADCBBg+r5fkjZcwznCJbG6x+XITiXyESVGuw5nuS9XpnEgTfvyueFzb/jAy1hSbZg1hGw2e8uWLeTukCFD2Gx2UFCQxQoao6sQqZ4+wihUVNmYrEuNIEFYwxDaz1xWuue7BkmQ3/mHN/KjZknK0BS0wgJ1zhODnyvLp58iMUrfEJbu+dbx8402E+ZTOM2pMNJq9EuSNgje8A9L93z7el4jMjIy/vrrr169eonFYqJqGAC87VUzXxGCxVv1/edIqzEuwmAzbq4m/yngOh2C3am4Jw9b4P3SxUdnSG/8WYshpNrwASGMwWrQbyeuFGEA3/agtj15oGTYQlbxU3mb7mqHBmTI7ONYw0jQHFz138NU6Q/k96/qF4fCVYrys3sNflmSiBPWoz8h/Zm4UlGZdEd/rg6IkdbXu03qcHwo9ZmeDxLrNiqAQloQB4ChX9kAQI0YoqXdqMoXD9W5TsaG0H72cv3d/QOoDiwThpBHBxoGZSogglErtXAkAz83kmb9LNs2/97AHqMYwjIKXqIUVCUF12pR94bPn9Q3/nPw4MGDBw9euXKlj48PWWnTAoE6O0P5KNbg//pKSRChWR2r3hDVD6/LWSzHL7Y2SILgm71kut6WBMMkESf0f654pYzdPVB2p0byMG7gWIq1PS6r0MnKafZOzXJnpKos2rDAZe3JRlyrykoGDDMo9/PqIOrf6tcbAoC///7bEixjjE5eTrGyIetCSCNP09t04AaO1T9HU5QtPrmVN2L6k7ZDpBqILUYLqgr5Ab2Nl+PiLWAecrmFyYk0c+TIoJcDNsINU0781MuzffnZS6y2Dmy3xs/QS2/8iVFpVHsn5eP7dh9+QXPx5PYdoX8ChW3luGiT8VUMdy/V0xSbCQuACKiJDTcwhACgSo83OdXSnoe1fzkOQmpV0YYFLmuOE7u6shJR6HrB0p2VNeY0wI4JaNxMMJWgXHbrL1bXfqQ5rxqUm4IYFNoxMQCIE6Lu9tgoNwxceuF+nTpbYbJnSdrSfFu/qjEgseDWnChz1BYuHBoaOmjQoN4v6dWrV1hYGBlEY4GE5dPH9oPPtaX58rsRr+F2OgSPy6vzLyB5BdXGXnrjT11ZSf2FqJ6lqJ+nSq8aRXO9XjCM6vTtfv2W8rA9yrQHTt/s1W/kDZuKUWmViVGyW3XXajaJOveJQVAAAGA0ukGQYY1LstO1xbkmD0mvnUEaddNXL9WT4cOHG1hBAJg4ceLw4SZC5Fs5Ff+EqrPTyF1Wj/7GdR7U2ekUK1t21353S5C/g2EwJKqUS8KPmZMvvxdJ5KQWn2pAsGK+AhEVFRjunTAG03b6EnbXfvW/3Bgq15rGdybHhTR7J1bXAMOTKBSoaRJcVh+n2jhijKrs14w2Xvw5K4yFi/+3g5z8M68BlaM3SYGxOAxP0znn1HlZYPTTAwDVizSduF5dlrsV5L6cJrxbggIEGADoKkQ6uQQAOL2G8YZ+UB85tWDWEF66dCk0NPSDDz7o1q1bcHDw/PnzBw8efOjQIcsiQmM0Bc8Bw7SiIuVjw5nnV0FaOXLlYLyXLyTMwZNZXfqoczI0JXn1lIArFWUntyIdrmv4eqbmBKHirZ/jsgpJRPVEBatLH1a3AEX8TSIkDAC0osLSPcsAgN29P7fPCNOi6qLin1D10xT9FozJ5g3/EMy7RisfxRKRCMbYz17O6txLfHJr40oQNIL09PTp06e3a9fu7t27ALBly5aYmNcUqvN2YT1mJlEMiIDp1YPm4GJwDsdvqPXIjzAmO6YYLexMKVAgcXUuUsDYXMXDmwbhWiS4XEIUmVE9Sax/wEuODLlzAQCKNy3EFTJNwXNN4Yt6P5MJOH1Hsrr2ozt78IZNBQB5bLgk/LjBOaLffiJzgQKxxCI7nd6mAxkQpJOVI40KjHAM2UAaS3NgVJp+2CeFbWU7+T8mz6z45zfjwF0AsJ/5LbNTvWpR6U8TxhRXJRZQxN9S3L8KABQ21zh1QEMxawgTEhKuX7/+5ZdfDho0aP78+SEhITt27EhPTycTW1ggkUScUGens7z9X88QQX8FIVJVVv5zCADsP1nGqnfMKoXFcQhey/TqbpCG4/Vj/d4cCs9Wcf8KrpACAFKr2H6DKSyOOueJ+hlptzCmZzcAoNo5UvmN9ItyegXRXdvpt8hunQcqldnedN5qrbDQasgkbv/3jA8p4m/i0nIAwKVlSG26u2xecnNzZ82aFRgYuHXrVoVCAQDLli1LS0srKGiGpcTvGAy39vqdeOme7zTFOQbn6CqEZWf3AEBsCRrojPXSKxgEABiV5vzjbxjT9AQQb9hUTu9hAOCy5nj9U1jkycHdCgMAbv/3KSy28vH9JoYcS/79XVOUDQgJ9/8AAFQbB5pR6QybcXOo1tUpPrTFORX/hsL/s3ee8VFUbRu/Z7bX7G46IQRC6J0Aht6kiAoWwAKigIIPrzwogmJDsPCoiAoqKCgKKlUQRWqQDqEHQu+B9GR73532fpjNZDI7u9ndhOr+f3zYnXLmLNmdM+c+931dFGVYNofe4jy+i7dcBFWooaboImExGJezbL0pSr9kFu+RmscmiurzWJd788/7/2l4qc+qoDhc7rPgkLXvSavwE3az/jueeW1YBBwI4+Li6MlfkyZN/v77b3pjs2bNrl+/XstL3n+oB4+WZLSlMK/nSt5tuBw7U4awGEh9MQAQpnJv/vmg57GgKIEmnnTa7bvX36JOhtQLklB2fxgRCBPf+ZH2FDWv+9Z1YjcAxDz8grxy6UIYm0QbvngLLxsC/NhquBDmNa/7liKrR8AoknQ5ONVXPkii4ts38fJCvJwnNGrd8gsgKADEvfxxzQ7gdcHu3bs3b9786quvsq1Unn322Y0bN96Gq99bWDb97DxcVS8hbdpOoOLmTqAqTczDY/WVxXldE5CcMq6bjWnNAsJc4d++8+gOrPQGADiPZJPuUOUdCuxUfQUCAOpBzwIqUPZ4lPcZK3QwfREQBCAI6bQBSUpbdpZ34IpKSltlsWWYhElp2qemAIJgNy8DSQKArE1XzuopjfHXud7CKzX0gODOhgkTv5e8IEbHm5LmPnMoREGP1MoKiqtWCkUQ+n8SlcrpX59AqYkZWlutwYADIYIgy5cvf+WVV7p16/bBBx/s2LHDZDItXrw4KelurDy7swiUGkQsxY2l1k0/34bLsa13hQn1FWPfBwBv/oXQVyi9BZcMyz8hXXbHoW01H33LMK+eT3vtIgKh5c8lFOYVpzWXts4CAKAod2VY0pm7x3l8FwAIY5PZmlihgwhFiqzBhqUfsDeq+jwha/UAri/hOwHVjphMeT3WLdzkcgBIeP1rOtrmPLEbDzkcXRusVqtWy72bm83mCJIC7nukLbuw5x/qh8awfdtpUKlC1rbbwcrivK6JqL/HkFCX6Ll21r9994Xj9HfGnrMFLw/JpdxNgJOAOClQmLd83n8BAAQCtjNUBMQ+/7YoJR0AEl7/GlCUY8lEY177jSvvQNV7ghDExANA0ns/0Xo0qDLGP24MAMo+j/uqMgIj0CXoxrDSAxGEs9jvg6JK57zIO79U9h0uD22lI1WBFNgpAMgpp7pXllhY/vrR59SNILK2AbN8QyTgQDhq1Kj9+/dbLBahUPjWW2899NBDOp1OKBT6/yD/5VBOW/lXUwBAlJCqfTaMRLIILwdwyki1rxwIncd2kqZyAJC166EaNCroqVUIY5OVPYcKY5Pip9SBOlHEiFLSxZWJl7ihxHPtjCJrEH3bIp1W8x/f07sIYzm92I7KVcrej0dyJQRRD36uWio5RRl/myuMT4kdyw2qUJjXffGEtGVnSePW6oFPc/Y6j+1kimQ8F3NrfnCuC9q1azdt2jR2jqjRaBw/fvxDD/E8zv/LkTbPFDeozAElyYpv3gh0ZE451TUBBYCsBORIBUVUv1erHnyKt2ReM2IynecS+/zb4vohVasV2KkUua9kQaBLBAD3+WO1fGi2Za+iVygdBzfjFUWk1UT5aZ9KmrYXaKsiFq6Te62blwGA8/hO3FAKAKYVX7j55mSytt1rTCnHDaW0xTy7S4zFYBUIEvPIOF49OQRFydDqzZiaerbOnLRNV3FDn5+Ufsn7tBtixAQcCBUKxeLFi3/55RcAGD58+MWLF7du3bpkSSTyevc5Ion6oTEAQEvf3uqrXbdRCiESX3kd+/6N9H0ZEUtIqynERlCFmv6Re66cviW9DA1l78cZmfLYcTPdpw86KsU+BJr4uAm+CZyq/wh5pSdA2acv17h64Y/n6mnTyi/YNX+kx4kVXAYA69ZfOQlyzqM7HIe3AQAilgp03PiH40g2bvJFzDRPvByk4KwO6dGjh0AgqFev3siRI2fNmtWrV6/69es/8cQTaWn3hkLe7cR5fJd1m89plgqazML4OcRKIFGGnDNxv1fOozv81w68187SXxjS46QXtmukwAF0pgwiEtMPXpKMtoqug0M5NxC2f9ZSJAkA3hsXseJr6oeek7XlBkvkmX2rngkARGnN5Jl9gX6Au3EBAKSts0QpPKt35vWLXKf2Be8Ari/2XD7F3uKoXOnnoOz9GG8LrlP77X4qd7ykKn1rhDllFKM+I2udxZReyNp1r2WFcbWBMC8v4BJXenr6oEGD/J2yoyAiMR1nn7LHWf7lq5y9j27HO20I798Df+J5Ru5vcvJBgt47ZCvBZMoAQNyEDwX10gGA8rorFoVayOjM3WNevwgAjD9/XGPmG1Z4xXlsZ4gtB4Oi2PqK7nNHTWur1e0KkxpKq+eU03cc+54NzA9MGFcPKO5yTo2gCrW0eabxl888l076tkgViTMW093Aq+dwy9p2046YDAAUjpXO4RYt6Ea/wZQPEjbz7QmNAsC8efNWrlyZkZFBUVRqaurWrVv9CyqiAIBApWVmM4hQFP/KZ7yH4STksnxueR3Yxemt/DW4rVt/xcoKAMC+Z0O1wGNgCh2+BULCarJs/JHupCi1aagfiY+k936iF940IyfL2vZwHN5OT/LYuE7tZ+upiuJTaH1UzZOT6Ac4RZcBvIY54gbN2Fk2vEibdtCNmcHekjB1vn9reFlBxbf8Wh/SFp3lnUKq/1EIQSKAAgd1yVIVDNMvepupblJ2f4Q3xhs61WohFi5c+N133wU5esmSJQsWLKjN9e4/PIe3EV6n8MHRCy8Ln+05PoW164adOq6nNg4Mr+DkqzNkdlE1m2aSgmWXyc2DhDIhAAD9owIA0m7xFl2Fek0AABFLdU+/FuIlBGodnWIe/8pnNWa+ETaT++xhOlOuNnjzzxlXfFFlFkMRHO0rjjqdbcdqacsu8sy+9oObZW26gVwFALHjZ0ZwaVFSmigpDYRCqCz+8Vw7CyQhyWgbP3kuO6GAdFi9hVelzTMBABGK1A89x2kKK7wiaNmZfu0+dwQ3lATKGq9zBgwYMGBAlVteYWEhANSvXz/wGf9GJE3bM0n5hFnvzN2j6stTZJZnpBookZjKvzxtGDShebVjhLHJmuFckUzNiFdE9RoBgLLnUFQqD6VLBQ5IVQIAkE6rt+AyAGClN00r5iVMnc8cQ7odqFQRqAUOFIF7Cy7T31LSasSNZa5T+4SxSRzpYEQsYRfwWTYtEyakKB4YRHrdRNlNcYNmZZ9MSJj6NSM+wOBfYu8PbionLXq2kSFWeIU9AfUhEgdKzBZo45GQNT3qK5D116l2sVUCy6Lkhszprty9uKGEtriKjGr36MOHD7/55ptIYH+Q7GyuTG0UVBkjVqWeNFI4IDuTB7BnNCf0VJYW6yB1+os8BaF/PWRHcbWH00sWKkGG9Eji/l3c5464r+SJ6jWh30qadwSKCsXeRdK4DT0IoTGxwU9xnz9GYZh21LTQ+x8IUYNmbKkLnvrf6ih7P4YqYgAg4dUv0ErLNOumZYquDwl04Sm/Ow5sQqQyxQODmC3u0wcF2gRJRltcXwwEzlSeuS8cd587Qt9iAEDV5wl2OxSBG376MGWub2lE3rH3HbSF2rlzZ2pq6n05EHq93q+//rp58+b5+flPP/10bGwYNp94eaEzd4960CigF56v5PEOhAeruxp1TUC+PM0TaXCfPeTJvxDz8AvMFlQsRQRCABDGp/DWiftT6PA914qS0uInfQIAghidLymskrI5LyVM+0ag1rE3EjYTKlX4G3Di5YWWP5fQ31Jv4RXnsZ265970H0elLTpLW3Rm3goTUkQJqQCA3bzoOLQtdvz7wqQ03nxO54ndlNsZPK/Vc+G4t+gqeyC0bl+pHjQaUqqtmwp1if5Pk74Wrp2x/bMmbsKHQa7CkKqAtddJtm1vtSpGlYbSh5S4FBC2XX1GRoY2KCqVKjTj+/uW2bNnz5w5k3lLEITdbqcoatE5Qrfce/KtFwiXndk766jn2EdTSj4eTxF46Jc4aSBbrsXYW1ZcIZ7cwdMCYbfgpgqr1Uq/rfj+Pfelk8xex7F/cKuR9xL2g5udpw5QFFU69/+8RdeCdKZi8fvuq6cdh7cHOaZo9hjS7QxyAA1WUYybKoxrFnhuXCQ97orv3qnxFMJhI3GM7iqN/sfZnvzznMOY/4FAWHf+7jy1H7cY9T9/TG8h3U4SxyiKsu3baFq3kHVFK24qZ95WLHrbW5LPbsp9JY/VP5w+uMYO1BKCIF5++WV/md/9+/ff0uveKT7++OOtW7dSFGUymZ566qlAh+Xk5GRlZbG3WK1Wb+EV/ZL3mS0k5uU9d9Qu/MeLBPMWJ6mYZV6Dm3uY++oZ6/aV7C3F7z1N2C0URdkPbmZ/c5gOUCSJm/XsjY9sw/7MJyiKwgylzryDvP3xFl2jSJK9xXXuSMmHL5g3LvU/mMS8zK+A9Hqw8kLXuaP0J2V/FXGzntN53ykel7fgCm83aBzHd1n/WRvkAIr+pRjLqn2Ewiukx+10OnG86mblOnfEtvdP3hZws962+4/gV2GYsA9Hf/CuvVb1J9Mv/ZD3vurxeNxuvz9kTVRbI/ztt9/mzZu3ZMmSwsJCIx/Dhw+v1ah7P+JY9QVhNZ0wUKMz0F0xnZEqFVo4Xe7ReC0xj46ny85CpKUGuWGnnKxnzVwD1TGWZ9KG64vZQXl5Zl+BpkqB3rp9lW3HGt5LEHYzvTSo6vskO6/Mn7iXZknSW5vXLwokueQ6tR9V6Si/oiJ/7Hs3uE4flDbP9F4/RzosNQaCsJJ8/aK38Ipitt5V7LiZ4rTmQc7iRdX3SVnb7qhURjp8a43uSyfp53p5p37sGQOuL2ar+IsbtkDYMokkwVY69t68ZFzOlXO8FWRnZ6vV6uzsbLYx78yZMzEsEpP0u59Vq1Z16NABADQazcmTJ02mULPAAECU0pgxhcDKbmIl/HXPB1lpFwAgQKBzPNdvDwAk6a1UA6plDqsHP0fHJ8QNWzC6o2xwfTGnvrvA7hPSxG5cpOXZgCR9dRQAAEAROIV7XXn72Wd5LuYq+zzBewmgKEGl4i4iElNej3n9In+VKMrrdp05xLw1rVlAL3kiYikiUxBWk/n3b3gaB5B37EML1gSDJDhTVVSl8z+KsJkDzZsFMbGB8mj8qa9ASArYM0K87CZzX6UwLyfhIFyqhUa7dOnSpUsXq9W6ceNGp9PZpk0bjvNnVNvQH8rtQMSSXD31VVfBQ5deep4SMfUlhywywbSlMhXiuZKHiKXiBiEtj4tQaKZB8ow+ST0AOKGnXm/DHUqxwquGpR8mvVtlTE+nhDFoR0zGDfzKI+oBz9AvZO17Inx6uECHAZe8Hzv+fUQkjp/yRaCEWOexfyT9RoSi363oMhBVa+ngD+l21qhRLoyrJ+vQWxhfT8cKzHqunEalMlFoaesMth2r5Z0fFMTExk/6HwBQmNf4yycpn24ABEGlcm95gaDSUVm/8O2k95cxkViOO537wglHzhZmnVKY1KCWZdEhUlZWNnv2bKm02p9AqVSiaBgPWPcQly5dUip9fwKZTHb16lVeC2KCIKxW644dO5gtlrgWGp1Ek7fV1OFRAIg9fBDFPBU9mnBOdOCUxUs101R7uOyagKy9TopRFADEAuiZhCAAhM1k370+5tGqem35AwPpIjxRckNRckP/XqG6JFu/cWwBJEZoVNo6S5zRBgAAQRBplXINdvOief33eEWhtFUWE6ukQ3+Ux4XrSziZIK6Tez1XT2vpnACKKv9ySvz/feLvLSqMT2Fr8ZMOK7MIUvbpywlT5uFG/hJ4vKLIc/lU8O+2fd9GEAqZOwkAWDf/LGncBmldLXlV0WWA36lV/TEsm0PHimskVQENlEiKoupPRie7+UDRWspb8twE1Wr1U089BQDnz59fvnw5juNDhw6Ni4sDgFGjQq1U+/egfOE9Uiw/Z8ba6ZCFZfPPXhvVo0UyAJS7QOi2xV/Khcx+FI5Z/v4p4dUvQ2yzYyySa6gaCE8ZqQ5x3BmhML5e/H8/R0RicPsqc115B7CCK7QIC2GuQCRS9qoYG8eBTZLmmcLYJPO6hdLmnWRtu/kfQ+hLBLpE+qEPEQhJl50ZHtjonn/bdGy3fc8fNVb4oSoNPQpSXnfpR2MTp34dfKkPEYlV/YaTTjvKWjjxXD6JiMThDoSuUwfoNDlHzhZRSmNxg6bxkz6hbwoUjlV88wY9KAKAdtQ09sd0HMlGpXImMV2YWJ9WdfJ9IqkiXD/kyOjWrVt2dvajjz56G651x/F6vR6PhxH3l0gkgQynTCZTUVHRnDk+wTBAEOuoH+tprXMOrZoDgwBADX1BjFhzeTw6JmSQDnu1kvZBCch7p4RzcgEAco3Ipr5YWy1FWi2uC7mCvr5yN4rAbfMmqd9YDABEeYF7xyrFs9PZjTgcjlNHTy08D4tb+E5x4eDAJVLcbrcDaTUCgaOICABkz79nt1c2q4wT9X9KotQ43B4ADwAQxdeI0hvijn2J4muOVV+op1abuhGxKYhYwZwue3ySWyjzOhx0B9hJHt6j2eLOvqFIMuJVNwDY7QAgGzzGo4qXPvsm0wgbvKTAfeog1TbYd5tMb4sIRezTkRZZeEysx24Xi8UCgQAAKJfdvWe9bPAY/ia8XlIg4u1A5TUI/MopYdOOANBWibyUIbDbfXEpyuvxHNkm7TGUOVb1+kK6Ka/XS1EUO1gilUprlMgOtrtFixYtWrTweDzbtm0zm83x8fEDBw6kP2EUGsJicB/afvWBZ9OUiFI5K2sPAAAgAElEQVQEcWK4aPDSlWW5BmqwuMB5aJsis5+0eSaduBwiHWKRXIMvSnPTTolQSGIJH1IEbl6zIObR8Rz1B0FMLJPN7zy2EzeV27b9xusd6jqTI0xuKIxNEjdoxjZvYyNMTNWO9EVv7Hs2iOo1UnR/mHMMVnSVdNoQuZoMMPVkU/7lq4nTvkaVGkQsjX3+bVSlqfEU4/L/kR6POKWResjz9BZl3ycBwq4jjJ8yj37QJiwGCseEcclVkSWhSPv0a75B0evmRqIwL+Gu0vMVxiZX+z8nidLZY5I/WBFuf8IlIyPj+vXr8+fPz8zMZEzQ/vzzz379+jVpwp3u3OuIxWK5XO5wOGgLYrvdrlbzl4jFxcW1aNFi586q2h6bzaZSqYi+C3ZqJACA60mBSoNIuFmRvHRXws5U3+sX9xGn7MJuqSgolerprEGIJPA2XenZKoHHU7GJzMyVhqIo1+W8zy7/ZbL+klovHgCKLVR9BaFSKgHAlvM35fUoH34eACwbFqsGj6bzTimJGDSdAcB746Ikow0A2G6cQwVCpVIJTdtKRrwirX4VUFbzeaA69Sl+Z2TK3L8AQSiKYnepaMvP2p6P0F9+y18/xDw63vdV7z0UL7lBWI3Slp3Bn7ZZZNO2wXNiqYxWCCqolmfXrisAuFwuZiD0lF7zOsyc/yL2x1BODJYp48o74Dq0xbtnvW7MjI71kjqybLBxvc15co9y8LPMFsfhbfL2vRCJjB4IJaH90RlqDq3QH2ndunVDhw4dNuyuczO/sxAVhXjhZUbzrHjI1D24L4sv10CpGzdnwnqUx0WXEIVChzgkV++73XPM6AEALy8EBPH3BRWnNWcSiOUd+6r6DfcXm6DRPf+WJL0VACiyBvkbZtJUfDuDKTFUdH2IVyfeefQfrOSGsFFLehoaHGXPoXQWKABImrTzz4XzR9yolbR5RxlbRJEkCQN/PCcgFOXK3UO/VA98Vtn9EfveP9law9KWXegifduO1Y4Df7NPVXR/mF2Gb9n4o/MIK3EaFbCz8m4dLpfrnXfeoRXwGVu0Dz/88H61gmnSpInV6nOAdTqdjRvzFH0HgdYCBQDLn0vc1Yu+Q6RrApJT5vsB2vf+WaXhgAroGlMAEGjiNE9O8j93YcPxn9R/8bDVF8cudEBK5YAia99TXuka6Ll6hqmOtW1f6Ti4iXTajMt9s1tV/xHM0rW0RSeO/ovlrx+cR6sCwqbV82UdevHmfie8/rUv1kpRjoNbmO3m3781r1/kuXbG/xQAoAjcc7EGFVDL+u+clT8r36fYtc72z1r2FklG29jn3w7SiGnVV0H0MSQZ7XSj31D2eISwcJc/hXHJHAdWx/5N/HKJoRFsILx8+fKsWbMaN278xBNPOJ3OFStWbNgQoRvc/Yo4o51i5Ku5Bl/osmvBdkOB70eYa6A6KRyM5hAikrhy94bYbDsdct5MYSQAQK6eYlfQE1aTKDGVmcSwoQjc+Isvd4N02YSxyXEvf8zbvudiLj3IOU/sduRs4TmCooDAmBJDUUo6bwWIavBoeppo/v0b9qBLOqz+Toeq/iNCKe1go+w5VNH1IfZKjDf/nGXzsrAaIV128wbfcgJFkfaDm6QtOrHVsyx/+H7SogbNOEUdhLGcVpmhEcYmCxNT2Qdonwm1drM2bN26ddKkSXR+MsOSJUvu12SZ5557Ljc3FwBKS0vbtm2r0/FkYQTBuPx/tHaXotuQyMyT6bJC+rV183LmV0zYTMbllWtaJGlc9j/OiRRAzIW9wm6P7Tf7Rr8CB8VYzgrUOiYUEf/qF4zFtCitmTi9tSAmVvfCOwBAmModR3awfyzmtV9jRVeZt8K4esL4qoplaasHOHU+VWBenw0ngiTN+oVpU5LeWjXwGfXAZ3lPIm0m8581iIiJGjQVJVQr3RElNRDGsdYpKcrfGYqD+8LxQA/rWNlNrPiaQK2Vd35Q3KAZYauWMEU67Xh154rY8e/R9Z2RwTMQut3utWvXDhgwoFmzZqtWrZo0aVJxcXF2dvaIESPu1yfQ2oAIRYwdRELZeZnhJp3wmWugOpTtt+/5w3eYWJI0M9Q7uFwIqUrkgpkCgFwDMDNCCvOWfzkFC+AWiyCoN/8CABBWo/779wDAuvVXXtEj87qFhN33xM3vqIcg8f+tkiH1Flwy/PgB5xDCZvJeP0fn2nhvXGILvHkLLnOk/7CSfP3i94J+aB7wiqKS90dhxVWJf+L01uoHR4bVCCpXVXmOU5Rl41JRvXQh6zcsa9udzgWVtc4SVfeyIaxGtqqOotsQTs6q8be5hMUQVn8iwOFwjBw5UqGolmc7ePDg+y8uSjNlypSysrLt27evXr36hx9+CPd03Zi36JxkSUZb/8BJKLTQIAYPVeYCAEh4Y2FVyTmOVRn4IYjnBtfv5aoVZt74+sXC3wSnd9NbCuw+fTUAMP+5xHV8F/3afe4II7Qka50lTm0CAOL6GVhJvvv8Maz4GrvZ2Jc+YKcrK7oNYQdypM06GH+dC3yYN3xPq6lRmJeRVQIAeef+qFwZKBVcEBMXN34W766qPjwwkLNUL23RWdauyqqXsBicJ3YHbyTpvZ8CRYZs21cxsj5Y0dWKBdNoxwwaz9U8W3V5NtIdquIdL9UGwlOnTr388stJSUnjxo1LS0s7cODAhQsX3nzzzYQEX1LDwoULI77S/Qqtgt1OhwCA7qnJ+Wndz5goOwbFDqpBu86KblXraljR1dBNyDrEIicM9EDICo2iqGbYS7y5avTepPd+Atokc+R/AcBz+RTvbTp23Ex6aVDesY+q/wj/AwhzhW3n78xbYXyKrDW3/t2dd9BdmZyd8PoCduaLtFlHaasskrW6BigqYdXehggiEgtiYtlWR6hU7q//GRzK62HCL4hQlDTj+5L3n2W71UtbPSBu0JSwmco+5WrEiBs2jx1bNX4bls0hHdZqjWPemr28a82AAQPWreOqMhYVFZWXh2Twfc8hFAonTJgwcODAKVOm0Gl6YcHMDMo+mcD5e4UIAtAlHjlcTgIAabcwM0KBNiF2/PuVByHJM7lG9keMgq97f1W/Qf1rDrELB2DpqwGAtFkHUWXquPPoP96bl+jX+kVv079TrPSm8be58gcGsvNUAUAYX49RuAUA89pv2N7u3oLLvIlsAKB68GlRUkMAwMsLrNurFrO9Ny9WfDvDE8i4DUGgplwQ87qF7CdUAPBcybNu+415K9DE8ftRsHCdCGiAHDPsJSbXT5zWXD1kDHuKLGnc1qfwXIl917pANtqhUG0gfOKJJ/Ly8ubNm1dSUvLDDz+wzc8AwOv1rly5MuIr3a9ctyMxYiROCgCAl9zoLy7MNVC5Bqq1DhHHaNiRNNJp449DAlBeD0cqkM6XMXjAjlENVQgA4IYS742LsvY9eVugcRzJJiwGisBkLTsDQNx/5vCOmojMF7fB9SW8zpx4RRHb3RCVKZV+sRdZ+57qIb7vIlaS77lc9bzpOLjZeSQbK6wK5ogSG3DqsUJBoIlPfGMRuzaDdNnLP+eqXnHwXDvLNopzXzhm3VrlpkS6HNJmmeyiEawk37BsDpCkv2wxAHiuVumSkxYjR4kj9oV32EGqWwSO42VlZRMnTlyyZMnaShYuXGizRf4IfB9j/PljWslM1r4nEpoKmj9dE3zeTJY/lzDhDdxQYt9ftYps3/sn5z5+qtTVNk6gyepf1Kgr/SDLHghl7XqKknw66ZrHJkqbdaRfo8oYOjNFnNpE1W+E89hOzjwJLy9ku+DipjJAWUWQap24Mb+MmSS9NSKRAoAwKU03uirBFRFJpE3bS3mLFAEAoPzLV4MbRVEEzlnpEMTEssOVjsPbapQFtu/9y1/NFQAcR7KBrNa+vH0vrCS/6ggUZdf7AoCy17DQncn9qRbqVKvVDz30kF6v//bbb/0PLSkpOX36TpoV3J2cMiFMtbvr9IEHzaJ1+gYeAjrGIpZNP4sSq0rNJE3aB8r7dxzNxovzSbdDlNyQTnjpEIv8fZM8rqfax/q+DpYNi6WtHqCTXALhPncElascBzap+j4padoeK7qKSOSccB/pslcsmFbv4zUAQJj1rjOH/AuGJE3ai6tP4Cq+naF77g1GAoqtdggAeOlN15lDkibt6V3mv35IfPM7drG/I2eLQK2tUVatRlCposYiXPuu35V9n2QUDsVpzdnxMdfpg8LqaxuoIgaVKQUxsTxaUBRl/PnjlLl/0aVjnPV5AHAe3yVKbAAx4Um+hcuePXtmzpyZnJzMrpkzGAwvvfTSLb3uPYr8gYG0TARnXhUWXROROSdJAFA//DwzxcQrij2XTzGiuI4j2ZKm7ZmxDQCUFw92V1/H0odOK9+bUz66eyLCCI0CgHH5J6r+I2jDBwoo0uUQiMQAoHuuUpYaQehkAo7apygxVc0yWePIkolSGsfwmUgAgHX7CoFap+w1DHAMFVelnouSG2oe/w8ikfGeBQDa4f8XPJ2NSSlnEMan6Ma85TTqQSQCAMufS2TtegZPCogd+y5bA8QHRVn/XiqdXi36SNhM+u/fTZ7tm3E69m+kMA97UihMSI1Ajr/qdPabzp07v/desIUco9EYZO+9Tk5OjtFo7NixY3JyGELmp4wIU+Sn6P6oqoI6cYbykNAtAZGo2gpj2ZW1gBVcEegS/YXSJQ1bStJbC1Qaz7Vz9JYOcchJA3WClSmjGTGZI0Xoj/bpVxGRhDDrRQ2aAID73FFEKOIMhKhEFvPoON91M9qwXUwZvAWXEaGIPZsUJTVg+1R4r56x/bOGGQhl7bqLKxW0EYEwacb3iFiKVxQzl8YNpaifUXgkIEiN0rpVwSsAAEDlKvaCiqLrQ5xgpkCt1Y78r/mP7zi2NfTl4l/5jB4FSbfTvmeDelC1/ALvzUsU5r3VA2FcXNynn346efJk9sbff/+d7VAYhYEOqZFOm/HXz0KUsvQnKwE5oadwEsQpjaEyDCBt1pGdfRP30mz2T9KGwWZhm1l9WgBFNXddW11GQZtqM0JUpWVmqI6Dm1GZQtV/JOmwWrevYKTbpS068TzsogJJ0/Y+WWCKsm5ZzhQUBUfatAP97XWe3Oe9flbL0uUvm/dK0ns/BRJ4knXoHTy1zbrtN2WvYf4hWcfW5ZgmLmbImMQ3v69RlJz0OBGvm3sYgiS9t4wzDAtUWra4qCSjHXtODACOnC2EuSJmaISWLNVCo6+8UkPQ6fXXX4/sMnc/n332mdPpHDJkyMKFC8NymzplQjpUznwQsbhVDHnWRB2toDrEIbK23Th2X56rp52Vq+VsBJo4UXJDVKmRte1m37PBff5YrAQ0EmTddZJeILT8/VOgZQA2lMeNl95Q9niE/n4rew3jsT1DBYwxdKA8aefxXRyzMc2Tk9hrdaLUDM3w/2O3iRVdpZfivDcvgkDkuXbWuqlK9SbmkbH+q4yRUf7Va0HyUygCt/z1g+PQVmaLdfMy56GqzE+BWsfOO6AxrVmAlxcKlDxDNarS0E8AhLnCfZ5rAh7zyFh551sut9StW7fRo0dzNg4cOJBXbyWK+Y/vXKcPUgQeZMZTI2oRNFAieUbKuu03ZvkAN5YxtRkAQFgN7ASNIxVUUrxK3iBDVK9RzLj3D5SRThzcBMRWptpoHp/I1KHKM/vSARLCbsZZ6W+IUMSb4GNas4BeA6MInB2eDY6kaXu6glmS3oojr6F79vUgMof6hTPYn9Qf18l9vMt7ikGjRWnNPZdOQgiyR7bslZ7zxzgbHQc3V2UkMSCItEUnZrFf3LA555lVkt6a42YTFtX62rZtDUXf7doFjCnf02AYtmrVqv79+yMIMnLkyA8/DOMpMs+EMBZZrlP78X9+S1UgFy1UKw1iXP4JZz1Z1W84x2wIAPDywoqvWfoUQiFhKgeADrHIMb3Pf8txaFsoXyzPlbyKhW+ZVn1Fv0XEUsLCncRjhVfpnFIAIB1W83oe4y1V3yeZgqfKj7aPXTaEVxSJEqtNNM3rF9HhfsvGn/DSG9Km7dnLirYdq3ncqyNCnNokiHYraTHa9/7JTlcTpTYRp/m5w1SHsBhjhr7Iq3RjWrPAc+0sAIiS0uJensM90WrAbr1JvVKp1Gq158+fnz59+sMPPzxhwoRDhw6p1epAleb/coQJ9VGJXKDSBi9iq5FuiUhOOSVtnsk40bvPH2U/yNr3bXSfq3o2yimj/nd2Nr2Upc1ZJUSRfaVV00EAMK/9hhk8RImpQm08AIgSGwQqc2Ijz+xHH48IRUkzfw7xI3gunzL/8R0ACHSJnIphjvcnB2mrrOBqwAlTF7CfjBkQuUrSPNPy91KCld0TCGWfJ/xXN61bf2EniDKYfp3LJCKY1n7tOp3D3iuq3zj4JwrO/alVGC55eXmMpJNWq923rwZ3ZoYSJ2AkpFZ+1yUZ7eSZ/TrEIS00iEwIqDKG80yKSGTewitUdRVaRCJT9a8qCVB2f4RetOsQi8iE0DwGAYDkWb8EEgVlI23VRT3gaWYRHiu8bF7HTfRFZAppZXW8QK3jdfgjrEa0urgo5fXglU+IFOZll9vT6EZPpxU7Y4aOk2S0QSQy9sTLvmdDjQ7AIaJ5clIgNRwAEOgSkj9YETuu6kPJO/apUZIt5pEXAmkVKnsOpdcU8Yoifxtez5XTgRKg6palS5f27t37wIEDXq/31KlT/fv3//HHUPUZ/m0ouz8iadoeK75u3/tnbdqh3XolTTuIK8Oh8vY92Y93qj5PSJplMm9zykl30yy6OtC+a31PnXftdbI+azTxXM2jKn8Fzty9dHmrN/+CJ4Sqf1mlmzzlcXkrF1BqBJUp6aVB66afHYe3h3gWAKj6j+BZvWPhOrU/SC289pmpdEFIcETJjVA511MlccZi3qplWcc+aKVdsCihvrD6YytWeIWpoo6AaF0gAEBFRQVTpKVSqYJkpZ8/f3737t0bN26k39pTuzQbNcdurwxnS5RUnKS12SsgEbvdLRz4HCPux2Df+qu070ghy6ySAgHS4oEq4UHM6965RjZodCuloHUM6nbaSX0xaTUI0/kn/hx1QbJxe9Am+FrTJIm6P8pV85MokayHmY0ETnn95P6syz9VjnoDZYcQW2ShAL6zSFIxcord6WJ3gFLGustLEJGEIhGv0wUA1vlTleNmoZp4AFBO+cqBEYAF1hUMGff+v4SpTYWsej72/wBpLKVwjCwvFDbLpJcZ7L98In9kPBrUZMN77Txp1iO8sodprV0AYLd7ju0i3U6ZrlpYlcpoL6iXwfkTIAjCqfmrJZcvX87Nzb1x4wajr2a1Wl988cVBgwbdl36EtcR1OodyOxCxNHhwr0ayEpCPckn32cOeK3kxw14CAIqiUNajrTA2iRnYKIDD5VTSoKH0s2/SOz9mXpN+cpJ4uEHVZIOtEy1KaUwvwrkvHEOEIn6XCRa4ocS08sv4Vz7zFlyx7VzLL43mh6h+YzoJQJSSHlZ6s3Xrr5L0VpLAeZimNfNl7Xvy2hkCQMASr+rY/lmDiCTsCi7XmUOBzAnYIhj+ysaITFmbLIToQAgAgKIoI9KBYVgQUf/09HSVSjVx4kT6LUEh8Q0lSqXvrue9fta6Y83UsbPdBCglYFr1lWb4/3G+K5KnpghiYtkLfqUfPJ/wxkImEEERuC13V/yTLz/RBHqkglImsR0+ibpdyrbVqlkY2OqCFIEXfzA15dM/Khe6lWTLTM7iovv8Uaz4OjMHLf7fzKR3l3KOETw6Vpqazp6DUpjXvn8jLftE2s1I+x7MXroDzotH3ReOiZIaUg6LcuiLAIAMelYWG4/KlJTH5bl5M8Sfbo2QFC7yOmUsAUP2/4B130FEIMLOHFLUS6N/UV6VWqmLRRVBV1i7PxRoj23n70CRqv4jZd0fBgABRzhRLsNxDyJXBBZUrAN27tz5+eefs+UT1Wr1/Pnz//7772jiqD+Uy44by9SDRklrtyzdXIOYvZRJrFVWzlrsu9ejKi0j4+I4vJ1J0LhkodoQReo/lsLEDwAAryjqrk4xeGRMNT1QlH3vBuYOLkpqQKeSKfs8jqA1CzgLVFp6JBM3aKp54j8hfgTK47L8/ZPmyUnyzH6hfmwAoN2d/BfqWCS8+lWgUTB0JBltOame1k0/68bM4M0K9FzJc+Xu1Yx4BQBMaxaoBz7LnrMKY5M0rGyacIkOhAAAiYmJTEmWzWZjBAT8kUgkycnJmZm+eAhJki5X1YqxQBMvadxGJgSZEACAXVrHIEpKw4quoimV902Kkrbpxg7HIwJh8qxfAQBFfFrbiq4PhShOhgiECVPmsQ8u/Whc8qxf2SlYlNfDXmPTPDYR9cspkDRpx4nEUgRu+2ctPRAaf52r6jec87QoadIeEUuEcfUQke9+zSzOe29ctO/5o64GQk4hLQd5lwGISCrv0IvRstKNfqM2lxPXb0y7GFIep/+iCFZ607jic/nEkKxkIsbj8fg/nMXExNyvNky1RN5lAAB4r59FJPLayG4hAA8kIEfEGcMG+OYostZZCOuRUZLRlrSb6dc5ZVQHLSmgfHXD9r1/tmzVVSLoxqwRUjhm3fILMxDiFUWWv3+OHfsOVng1FItNRCzVPjUFACgC440c8kJRJK1Talr5perBkaFPCtmLNQE6FJ5cIi/+VgSxL81mlOc4CGJi6ZpIACD8DKQoHDOv/Vr7zNTIehL9IQEAtG7dmgltlZaW9u3bN/jxgRBoE9iGlknv/czz0ESS+sUzq4rNEUTz+ETOId7r59jLUVjpjRptbBk4earK3o9zsmxk7XqwOynr0AuqP5ASFkP5F1M4zaJSedLbS5hT/H+6ArVW2qIzKlMyxSGOw9usm5YBgLhh8xi/zxgxWNFV99lDAXfjuEClQeUq+qdC4ZhpzYLaXE7StAPttWRas4CjGwcAwvgUdf8ayjlqT6dOnX7++WfOxnnz5nEkL6LQ4MYy5/Gdzty9dJZTbeieiL63x7Tw80WdNuCdNuC9TjbueiiFft1pA971SGr3c23o128fIxo3aSjp71ONUA16VtW8Q8dYJK1SaBQRiRNnfM+0jIgkqEIFrCyzGrFu/dV786Lj8HZGuLFGUKki6Z0fAYDCMUQQ3gTOtGJeoHV90mmr+PZN3l1h4T53xLJxKfPWe+MCAgHHV2F8ClMdEffyx9wlTARha1+ES3QgBAAQCASvvvrqsmXL7Hb7ihUr3n333cjaIR1Ww1JfxilF4PYDfFnOKBr3n/8x8xXzuoVsDUAaz6WTVWJsFKX/7t1A0rQ1oh74DGdu58o7yL5BGJa8T8twMCBiCa8nJ1Z8nXQ7gaLknfrzJqaXf/6KfklVlooouREaowMA0uWosQIydLDSG5yEMTYVi94mrEb3pVza155yO7zXQ80s4L9c2U16KFX2GibyK1tGRGJpm1s+GnXr1u348eP9+/efPn36Rx99NHXq1E6dOpnN5pYtI1GUvu8h9MXOE3tU/Ucqal3Z8lprdFkvZAhx/vsegu97CH4xffNz0nH69fc9BEvTr64unUO/3jhQOKrsTzzf92UTahOAotYPEA6sXzkjJHA6G5xGoImja9K1I14RVVdyDwiCEKZyaUY72lwzROwH/qYIXPfcG8HtP/3BKooIM3+dEipV+D++RwAqU7CLCK2bl2PVpbQ5GH+bS+vdWLf+yknVQQRCtkt52FBRKikvL9+9e7fVag1yzOzZs2fOnMm8JQiC7QlAOGwV379Hv8aNZSUfjg3UDlZeaM/ZSlGU6fdvcVM5Zy/htBGOqm64zh0J0qXgHTat/cZ9Oa/alvWL7Ie2Mm9tu9Zh+uIgLTBULJ7pOnvYtmeDeeNS3g5Yd6xx5u7l6cOar+0HNoVyiVAgcYxwOXg7QFGUPWcLRZKE3eK+eKJOLofpiw3LP6EoivR6eA8oenuE1Wyqk2sFZ/ny5VlZWTqdrnnz5l9++SVBELfhonczOTk5WVlZ7C2+bwJJEg6rt+ByoD9ZxNj2bfSW3GDe4oYy898/MW+Nq74y5h2iXzuO/mNcMY99rrf4eumnLzNvSRwzrvySbiSsPpA4RpFkoL3+d4OSD1/AjWWm9YuCnBUBJObl3e50OnEcj6xNb0k+FfRbXfbVa7hZT5Fk4fRh/h/Htns96fV4PB632x3upaMDYXgEHwirQZK4MeBXnLCZS2aPIT0B/mAk6b562vfS4ybsliBdCj4QWv9ZyxkIg/+QKIpynjpg2bzcf7u3JJ9w2pwn93munQmxA+XfzqAIwn35VLi/9iCQXo/rwvFAHWB+n4TDRlEUZih1ns6pg4viWNHbI3h3mf74/vYMhFE4BBoISRxzXThe9sUUz40LdXIh6441IY4izFcRN5S5zlT74pFej/tSbtVbHCt+fzRuKi/54IUQu0E4bJatvxl++5zTMm8HGHBDGUWSRW8ND3cgJOwW6441vLuw0ptlX07h3RXWQIibyi2bl/naLC8M8Ymcqvx1cyiZ8yKmL4lsIIyGRuuYKus7rzuI8j2qjEmaucx98YR9D4/FI4V59d+/R8/97Qf+5hiOhIWq33Da85rBc+kkWw7DtvN37pIbAgK+YgOhLpHyuGXteohD95EgcArziNOahxuWCdakqdy/OJLGc+2s4aeP6Ndln08ibCbv9bPuvAO1vCL9N1VkDeLdq3lsAoSQ9Rcub79dQzH4zp07d+/eXefXvQ8gLAbzmgXqh54TJUeeKcPGtut30uMCANOKebihmvurfsks0m4BAKCoat4LugSOsi4iEIpSMthvk2f9gsqUqoGhi9FTziPbxalNhHFhFEKQLjvpcSZ/sCLs9BYEse/7i3+PXClrXQcrApTH7bnqMwc2rfyixvpIz+WT3utnKQL3+hlgAUD8pE+EseFZ0zBEB8I6xnlkOz2Aea7kWbb8Gvxg3FDCu3iGiCWxL7xNf3HFac3DWhLg4Ll6mq03BgC2nWvZ9VWIQEBV93eVtemmyPITZgNwn/2LgAUAACAASURBVD9qWPqh/rt3Qr96/OS5iERW+vH4apZMtUMYV08XwA4XlSkYITdV7ycQoUjWpnvE8oMMruO7gCQDKTibVswjDZFbYwdCr9cfOnToWmD27duH1EXm3v2HUJugHTVNnNYsuGx06CROX0gvZVG4l6NqJElv6S24BACkw+pgKflRHlfpR+PYR7rPHzWt/oq9xXFwMwhFHOWzIKByVeJbS5Q9hwpDXFMEAADbjtUulmNa6KByFZ1o449Apa1R8jcUhImp2qdftWavBADd6DflnWqo8cCKrrnOHsErii1/8rhUEuYK2pA5kp5EdlqUQCTP9j15iRu2UCtqyHIO6CsNIG7QjPJ6ELFEnNYsFE2ZQFAet/fmJfbAphn+f2zNF//SVNuuddKmHUQp6dwuNWotbXUziJyEP67TOahULm/f079CI3JQFFVpgST852Gi5IZMJS9tUoFXFCGSCI14GJJmLsOKrjpP7uMvVBKJI05lCk6NSaH79++/Fde950EQoSahZNZzKZ+sr5Msf9xQisqUiFiiG/MWZ5eq/0igKMJYLtAlJE5f6CAqnS9FEk6NvDAxleOhZtv5O2E1UjgW88jYEHviuXzStmtd7PNvh244rOz3JGm3WjcvC+7gxguuLybtFv9if8+lXM/VMzxuLeHjOrWfFrEKJWik6PEoEDgIRdpneVSvbTvXyTv2FrToEkE3ogNhHeM6kyNr2x0RCBGxVFSvYcTt2HauFah1yt6Pl37wfNLMZRGPhdKWnbkFfCTJbs17/SxhMbJ/JN7r53jNngRqrar/yLCqaAljGeayx9Si0JUX87pFyt6PMd4XDNZNyyRN2kmatgcAx6FthEVPmMrFjVqG/tDNi+fySQrzBpLS146YfCt8Afv37+/xeB588MFAXigrV64kiLpRrbv/KP3kJWXvx+tkFAQA69Zf1Q8+JWna3vL3T+rBozk/AdLtKPtism7UdIFKW+VDgqJ02R+DMK4eR+09ftInWMk1Kpw/ovvsYbz0Zli/QVFSQ4rAI6umxQ2lziPb/QdCCvPURtCcTc0FiywQFHVfzJM068i2eKtq6sGRQl0i7r8jBKKh0TrGunk5Ya4AAPv+jbbs1RG3I2vXU9ygKZCktNUDtZoR4hhHq16/8C324iVuKPNcyWMfEDvuvUAVvqUfjAnkKM2LstcwWeuujAh4XaHs/RhvaTDpdTPShaLEVEQiU3R/WNoykidENvYDmxGhSD2Y6/9A48rdi98Iw64kRJ566qmlS5fGx8cXFBRgGNanT58HqzN8+PCoDVMgYh4eGxOaUVFIrQ15nnaWdx7dAQT3TovKlHHj33efP8pxSDet+pK9oOg8km3bUe2GQDqtkibtee2gA6EaNCpxxuKwBiHHwc2WjT9CRCowslYPaJ78P//t0lZZ7Frk2wbpdhl/+9x99rBlw2L/vcL4lIjFbqIzwjomdtx7Ql0SAIgbNIUwgohcGME9fwPMsKBwr3Xrr2zLi5ihL7KFbuWZfemCcQb7nj+UvR7jfZrWPj01vCdBirQf3MS2mK8TpM0zeb0s2LVN4kYtxY1akg5r6EGkQGiemOg+f9xz7YwknccHHCvNJ4VSaF03ujlsBALB4MGDAaC0tHTlypU4jvfo0aNJE5+W8YABA6hwwtT/KqQtOhl++ih2XDB31dARJtRHUBQAkt79iXfdUdyoJRoTi4jE1VbCKaBYS+OIVCGovr5o2byMMJbpXniHbe0bHFSmtG75hfETDQVJ49aea2ds2SvZZoShgiC4oQQQhJPK4Di8TZySwWtlektB5cq4CR+gKg0ilvjvdez7iyJwab8wpphVLde6b1GqgQiEtA6vpHEbTrpmWFCYt+SDMc4Tu+37N9amP6hUkTj9W/YWWYde7EGOdDk8F1iWhBRl2fRzoNbClUmjCMJ5bGft01U44Pri8q/8ftUkaVo9n73B8MOs8q9ew/3UmMIFlcjc54+Rdv4cYPWgUeIutQq91khSUtJzzz03duxYq9W6ePHiFStWOBwOoVDIWKZE4WBc+SWq0tRVa7ada+0HNwOAK3AGslCXKKgu+qx95jW2AoOsbTeOdaV6wNOoWhdWvIfyevwtUIIjqp8RM3S8Iiugmm5w3HkH/S1UPRdPEA5LZA3WElSpEahjpc24yyJAmy/6mTqF2mztehWFi3n9Iu/VMwBg3rCY7VUWLohILG2WSdotgpoybmoELy9kjJ9It6N0znjOXis7YoMgSW//UFeLK4hIrOz9mOdK5NJHvAi0CdIWXE9a0u3wXDvD3kLYzfIOvWovauM4tlMYmyhr2413L27W34rQKC+ZmZkTJkxISUnp0qXLf/7zH7PZfHuue88hSW+lHvBMXbUmbdFJktac8rjMa78J/Sz3heNuluus4+Bm98UT7ANEKY3jJnwYlikEKlfy+qYFASu+bl7/vSi1BieyQKgeHMm2faDRjprOeL3dZiwbl1YsfIu3okyc1lzSpH1kzUYHwjpG2fsxWudXoFDX8plU+9QUZa9hnLhlBFg2LsWKr9GvEVQo71hNSVXcoIn2qVeZt5THxRaCqj2kw0o6A9ZTRgYiEPon2qFyVdJbS9hbEl79Sj3k+dpr5MtaZ1Fed6DUUOzmJexYGE5vEWM2m7/99tvMzMw+ffqoVKqOHTsyrkz3ATabbefOnatX+57JTp48OX369O+++85fZDUUpM068kreR4akcRtxo5aIRBY/eW7oZ+H6Erb6JV5RRLkc7AOsW39lyl5vHahcid286DySHeHpSg1h0XM2Oo9kh5U9Xocoew6VtenKa/PkuZJn/C2MPxCb6EBYx0iadqAXpVQDnhan8htrhYh9zx9MWX1tiHlsgijRtwiBiCXcIQQVsKV1PdfOWmuR4+OPduR/w0oHCBHrpmWuvIPsLVhJPufe5z53pHze5NpfSxhXz332SKAsIWmrByQP1tnkg5fjx49PnDixfv367777bqdOnXJzcw8dOvTSSy+xjZnudcrKymw227FjvilUYWFhamqqXC5/6qlI6tVcZ3JqHxJncJ87alqzACgKwgljKrsNYRcYxAx7iVPAIMloh9fOMTEUBJr4mMcn1uhNHRCKqlgwjWMZb96wmPJLGro9SDLaKHsN412jEai0YUkNsIkOhHWMZcNiOqRuXr+IsBpr0xQqV2Ml+bWPUoqS0xjTL6z0JieHk/K4KhZMY96K05qpB4+q5RVvA8KkVIqoNkVznzvCcfrGK4pr49XJgJXko2ptoKQbRCCkhYDrnKKioo8//jgjI6NLly75+flLly4tLS39/vvv27dvDwClpaVlZXV2r7/jZGRkcApFXnjhhT59+kQ260WEolAc0kNEEBMrjE3Gym4afwnDb4vCve6zVYsjzqP/EJZqGtbSlp3ZVr23CopynT4Y+f8GgmhHTeM42CRMnV/7QEtkeC6fKpn5jPc6j6+IMDFVPejZyJqNDoR1jDi9FS3zgxVeCWRiEiLyzv2TZ/1S+y7Z92yokkoicM43GJHINMNZGdIIIkpsUPuL3mrkmf3kHXqztyi6DVFWT+lW9nw0dmyERiJsBJo4WbuAxci4qcy5IsKATBC+/PLLtLS0xYsXjx49+tq1a9u2bRs5ciR7Crhly5Zz52plrHE3o1arjx075nQ6X3st/FxHgJihL9a+bIZBlJKu6j9CqE1QDwzjPktYDNbNPzNvncd34hXV7JZcp/bbslfWVScDgiCeCyfwsoKIG5C26MyOS1EEfoue/EJBmJgqjKsHfG5NpNth/O3zCJutXa+icGHuzvH/nXdne8IgbdmFWd8SpaRXG/YAAIAt4WbbtkIQl6zs8ejt619kkIRh2f/Y4xxWfJ1b/ogKQvH+rhFUplQPDBj8FGjipbcgNHr+/PnOnTsPHToURdFVq1Zx9rpcrsWLF69Zs6bOr3urWbt2rclkYm+Ry+WjR3NrNHv06EHbDl+6dOn06dNt2kSegF17SIfV8teP2mdek7Z6IPSzhHH1dM9XCcZqn32dk1YqjEum8NtRCSpt05W33iBEzL9/I2vbg0kW8+aft275Jf6Vz+qod+EhUOsSpgZyGEUiHu+jA2Ed4zz6D4V5FN2G2HasrhM5vtrDlCQCgDf/PG4s46SBlX32n/j/fk7/SiXNM/192O9GUAFeUUQROJN9blo9P+6l2WHl4NUJiEAobNrhVrS8adMmnS5gyqvVaq0rZRmPx3Ps2LHu3XmWcm022969e4VCYf/+/YXCkG4X/q0dPXq0oqKiSZMmTZo0GTFiRCiNPP7444sXL05MTJRKpRh2SxTswgIrL/RcOmk/sCl2bMhauwgCJAkURa9u4KU3BcoYQKqezEQpjf0dLm8FOj5BstCRte3Odo0XJTeqE3G1iKlYOINXZA6VyhOmzo9MZSIaGq1rBAKKJDhS9HcWrOiqfvHMytfXsOLrnAPkmX2ZMmFp80xR0j0QGgWAxDcWsWuwNE9O4khY3Tbs86eEJbgTCpmZmUFGQQAYOXKkSqUKckCI/PTTTzNmzPj8c56YktvtnjhxYp8+fTp37jx58uRQxl3/1n7++ecrV64MGTJk8+bN+/btC3RiSUnJoUOHLl68ePbsWQCYNGmSUCgsKChQq9UdOtyS54zQQRXqhCnzULVO2jS87HzDTx8xOTum1V/hZm765T2BrG13du08IhKLGzS7k/1p3TXQCqVtx+rIFqSiM8I6hpls1couuU5BVTpRsi9rVNH1IfATvGGLh5V/9WrsC+8KNHG3r3+R4rl8ksJxX0EhSYgSG9RV+WO4iDP71bkT08SJNTiAZ2VlBT8gRMaOHbtnz56vvuKRwVu/fn3r1q0VCoVCoZDJZDt37hwwYAAA6PX6uLiqb4jRaNRoNHQk07+1L7/88sSJEwDw3HPPPf7443v27OHthlQqfeSRRx555BGxWAwAgwYNOnTokMvl+vHHHwOZbLhcruLi4jlz5jBbHnzwwVs0atr/Wa3sO0LcJTn49BTDMPYByofHkjIVvUX5xCRKqb3Vs1tOB+oE79XTnrwDqsdfpt86tq8EsVQRwDAAwzAEQcjqWaZ1i6TrEBwA+D6mbd9fSLveIFOirOwegUCAojVM+aIDYR2DFV31Fl6Rd+qPlxfwKsPefgRqbcyj450ndovTmpM2E6pQc+KHzqP/uC8c1z33BgCIUhqjMsUd6ml4EGa9N/8CPRBa/v6JdDtrKUcXMZL+T9eV489dxf79+9u18wkua7Xa/fv30wPh559/PmbMmJYtWwJAYWHh3Llz582bx3uvKS4uNhqNAoEAADQaTU5ODkmSvEdqtVqtttoSWo0jPX3TNxqrcrNNJtMtEiJ3HdyMKLWUyy7rOSzIYQRBsDsgbN4JtxrRmFgAQOPrE7dyeODtQJ1AyVSUSMw0i6Y0RpUxga5yKzoQOtpX52MCMVW9DzWOghAdCOscwqz3XD4lTm1q3rCEo212Z6FcDuvmZYhULq6fwRkIZe174npfPpt2RB0U3t0e5J36MxWKsjZdRfW4vlFRaoler5fLfZ4bSqXy0qVL9Os5c+bMmDFjzJgxGo3m008/nTt3bqDlw4qKCqYFFEXFYrHJZIqNrZsHRLVanZaWxg7D2mw2qVRaJ41zSJrxvefSSYLAgrePYdUOIGymsq+nJs9cjojERXNfTpnL73Nbh3A6UDekNVGmVVVfSNsHs0elKEosFtOPPrcfT9FlcXwqIpWFW2IbHQjrGGmrByTNOgJFaZ54+U73pRqK7g8ruj9MmMoRGVcCGxGJ1Q89hxVdIz1OR85W3ahpvC3cdSCI63SOKCXdk7tPNeROrt7fzTgcjt9+41+ufuyxxxISgpnACQQCJs7m9XqZuxuKop988snUqVPdbvf8+fOD3HSEQiE7UodhWCiP53chWHG+pHlmICuuQAhUWu3wV+iIvXrQPVCeGwjjb3N1z06jP4h+ySzN4xOFcfzuYHcWW/YqaY+hovCF1qIDYR1Duh2ey6ekLbuIwnGRvm0ItAFvfITVaPzlU3HDFrezP7XEtmOVQJeItqib1bL7ErlcHihRMyamBhnbxMRExmrRbrcnJlalDhYVFVEUpdForl69SsdIeUlISGBa8Hg8CILUeNG7E9s/qwW6RHmH3pKMtmGdKGvfEyvJFyWl3SU55JHhvXmJwjwI7aCrjLlrV09iHh1HqCKJN0QHwjqG0JfYsldTOOY+d/SemVoBAIC0Raekd5eyHZrufmLHvy+MTbI5nDUf+m8FQRDO2luNFBUVeb3eRo0aDRgw4MABn99CaWnpCy+8QL8uKCj47LPP5s6dK5FIZs2aNWLEiNat+VX/4+Pj09PT3W63VCotLS3t06fPPTojjHlknOPgZry8MNyBEADMv38rz+zrOLI94dU6Nua8bbBVfLXPRCJxcHsQaOJJMhJNynvyS3k3I6qXrh31uqheI3nH3jUffZdxb42CACCMT6nzdM1/G2vWrPnxxx8vXLgwf/78oqIiAFi+fPmiRYsAYPDgwQaD4fLlyydPnpTJZExp4A8//PD5559LpVIEQd5///1169YxxVv+rX344YcLFiywWq2LFi1iZ3jeWwi08eohYxRdIzEz0oyYLKrfWJwSqdrnXYDr1H7a/onCvByzs7sK2651rsPbIjgRiXp7hsUHH3xAEMTs2bPptyRJulwuhaJaoAAruiZKuX2JGzabrU7qyaIduHc7cEu5cOGC1+tt2zbsmRCD3W7Py8tr2bKlRlNnHoEAcOjQoddeey0nJ4fZcuv+ENbNy7CSfM3wV4KnggfqAFZ6E5UpbkMa+S36HzCvWyiq10jR9SHCajL88H5gbRdwuVx3MFnGm38eIwhh/SbRZJk7DOmwVix6S9X3SUQiuweEyqJEqYnmzZvXfFBQlEplt278bo73CtLWWc5T+703L8nadI3gdM+lXKzoqvaZqXXesduDesgYRCACAIFaG2QUvOOIG7YArzeC2V00NFrHoHKV5vGXBepYYezdmFUVJUqUCBA3aBb30mxpcx5j9FBQdH9YVXdGwXcErOgqAOBlBa7TB2s8+E7hOp1jW78wghOjA2FdgyCytt3lnfv7W6hHiRLlHsV9/pj5j++RSCN+iEB4d9YbhAhWeNWyeTkAeK6e5pid3VUIdQmRqQ3/q0OjHo9n27ZtTZo0adGiBQBs2LChrKxMpVKlpaXxChCHSOkHz8u7PCjv2Of2KOpGiRLlViPQJXiu5GEl+f/OH7W4YYuYR8cCgLxTf44P6F2FKKWxLD41GhoNjwMHDvzzzz8FBT7njps3bxYUFJAk2bVrJMsADPIuDxKmcurO6QxFiRKlbhElNtA9+/rt9za5S0BEYlSpAQCs9AbceqG4iCGsRtvvX0dw4r96RtivX7+DB6vi3ampqf/5z38oiqplqVPMo+Nr3bUoUaLcRZBOmyvvINu5899G+RdTkt7+wZa9SpE1UNrqbpWwQBDcWB7Bef/qGSEHm8129OjR1atXr1+/vjbtGJbNMW9YfAdNnKNEiVLHoKjr5N46N9u6h4h5+HlEJFYNfEaS0e5O9yUgApVWO+HDCE68/2eEvFqLTZs27dOnD2fjmDFjAKBLly4tWrR44gl+k5FQQIRix8HN6gefqo0rdJQoUe4eUKlC2WvYfekxEiLyLgMQVCBQxiAS2Z3uSzAc21fIH3w63LPu2EBoNptNJlOjRo38d+n1+mPHjjVo0CCIhmGNrR06dMhms/Xq1UuhUEyYMKHGFlwu19ChQ7Ozs4VCocdTq8mcbtQ08vGJ95xKS5QoUYIQM+ylO92FO4n1759E9RqZ1n5T73+/sw2x7zZcBzfJ+jwJEJ4Fxx0IjRoMhq+//vqZZ57ZunWr/97Lly9/+OGH/fv3v3nz5g8//BBZa9OmTZPJZF27dp02bRqj+euPXq+/efPmpUuXbDabTCabOHEiRVF79+4dN25cZB+Nxr5/o/vs4dq0ECVKlCh3FeKGzVGlJubhF+7mURAAdG9+H8HE/Q58pNjY2MmTJ5eWlvLunTt37vjx40Ui0eDBg7t06TJmzBixWOz1elEUZXueOZ1O2ueMbq2srIzZdePGjUuXLtGGollZWd9999306dN5r2UwGGgfcIvFolKpBg4cuGXLFqVSOWvWrECdt1gsN27cWL16NbOlb9++HAMwT/55z7mjko59Q/jPqAPurBNmtAO8HbhTElNRotwiZO16AgDc9eXR+I0Lwkat4F6XWNuzZ8+MGTPo12Kx+MSJE1lZWSaTac6cOXPnzhWLxQCQk5Nz8ODB119/nbeFvXv3xsXF0a91Ot3KlSsDDYTNmjVjv1Wr1UOGDAnePZPJdPbsWaZORSQStWnTRqms5vAnHfaysGO/WsZXQ8fr9d62a0U7EEoHEASRye7qdZQoUcIFK7tpWvklqlDHvTT7TvclGI6dvysfVoIqPGncu24gLC8vZzSslUpleXk5ACQmJk6bNm3q1Knz5s07ceJEdnb2zJkzg7TAmGKrVCr2ZLH2NGzYMDU1lSO6zVyOxpt/QazWiuTheXhGDEEQ8tt1rWgH7s4ORIlyq0FEEgBKks7vt3X3oBo2AQ2/3POWDIT5+flHjx713y4Wi4cNGxb8XIqimCgTjuPM3Cs1NXX69Okvv/xyenp6kFGQhreF24Yrb7/35sX4V+be5utGiRIlyi1CqEu8J/wUUZUGyLAXSm7JQBgXF5eZyaNOG8rCSWJiotVqrVevHgDY7fb4+HhmV3FxcWJiosFg8Hq9dIyUl4SEhNzcXPo1p4Xbg7LHUM+N87f5olGiRIlySzGt/VratL1vsfBuxfHPGmFyQ2mvoWGddUuyRpVKZTofaWlpgU7Jz8+nV1n69u2r1+vpjU6ns2PHjvTrnJyc7OzsTz755PXXX3/99deDrAn16dPHYDDQr8vLy3v16lVnH8wPg8Fw+DA3QRQRi8VptXWuCRG3271r167bc61A8Gb/3k62b99O3lHZp3379tnt9jvYgSg00a/iLf0qeq+fg5ria7m5uSUlJbeoA6Ggj08vgrBX6O9A+YTL5VqxYsWePXu2bNnCpF8+/fTT2dnZADB16tQ1a9ZgGPbXX3+NGzfu/9k777goji+Az14/7jiqNEURRURExQIoFuw99sTYe40m9pJfjDWxayyxd8UYFUVRQZGi0gQFEVCUIr3ecb3f7u+PxfU8Ohyehvl++GN2Znbmsbe7b+fNzHv4gszc3NzQ0FDcIorbSA8ePEi0dvXq1bCwMKI1e3t7V1fXhIQEsVgcHh6+aNGixvtfnj179tdfuvGaZa8ixOG3Gq9Tbd69e/frr79+mb4qRSqVzpw504ACAAB++ukn/c4E15UdO3YQRgiIoZBIJLNmzTKsDAa/Fbdv356QkNBIjVutPMTsUsNw8Pjx4/ib3FD88/TFlaCwup5lgMUydDp9+PDhw4cP186MiIjADaft2rXbvn3706dPHR0dv/uufHjbokWLjRs3EpVbtmy5bt06orVhw4YNGzZMu7W9e/e+fv06Kirq2LFjjbqKodIJSKMegzAV9K8GgUD+UyAUam2qffllGQ3v3QCKkEQimZmZ6WRqTx9yOJwBAwY0pDUAgJubm5ubW72FbAgIjQ6dq0EgEMi3AnS6DYFAIJAmDWLYYew3x6xZs3CzLX5YUlKSn5+Pe7ExCGKxOCkpycvLYFFRUBQNDw/v3/8LudGplKdPn3p6elazkLixiYuLa9u2rampKX5IIpG2bNliwB+lifDgwYOpU6cSC9ThrQgAiIuLc3JyMjExMZQAycnJZmZm+LJ/g5CZmYmiaJs2n+Injxs3bsmSJdWfBRVh3UhJScF/afxQoVBwuVwD/uooiubk5FSzHPcLkJmZWanz9KYjQE5Ojq2trbYLwG7dulVqsYfoEalUeu3aNXt7eyLH4HeCwQWoeCt+YYqKioyNjQ3oX4LP52MYpv30tW7dWlsvVgpUhBAIBAJp0sA5QggEAoE0aaAihEAgEEiTBipCCAQCgTRpoCKEQCAQSJMGKkIIBAKBNGm+uniEXzNhYWGvXr1q3br127dvV69eTSJ99hlx5coVtVrNZrNLSkoaycFpZmbmxYsXe/ToER8fv2TJEp0F+uvXr4+JibG1tZXL5QcPHmzZsqXeBYiMjIyNjQ0MDHzw4EHF0nPnzlGpVDqdLhQK586dq/feAQBv376Njo7euXPn27dvK5b+8ssvr1+/tra2ViqVhw8ftrW11bsAXC73+vXrZDI5PDz8xx9/HDlypE7pwYMHe/bsmZSU9MMPPxh2W8t/m4KCgmPHjnl5eSUmJs6cOVPnt05MTLx3717nzp3j4+NXrVqFuyzWL0qlcseOHR4eHpmZmR4eHh4eHtqlQUFBa9eudXV1FYlEP/3009ChQ/UuQHp6ekRExL59+548eVJx42BcXNzjx487duz46tWr1atXN8bWxtLS0sePH/v6+i5fvnzgwIE6pbdv3966dWv79u1FItHKlSsbY38nhmHnz59HECQ+Pt7S0vK3337TKf3zzz9dXV15PJ6NjY2OU89K2oLUBrVa3adPHzx97dq1o0ePapcWFBSMHz8eT2/evPnx48eNIcPYsWOLioowDMvIyJg1a5ZO6YEDBy5evHjt2jWxWNwYvWMYlp2dnZyc7OHhUbHow4cPkydPxtPr1q2LiopqDAGKiopEIpGZmVmlpfv3779w4cL169elUmlj9I5h2KZNm/Ly8jAMy8/P53A4xcXF2qVLly598eIFhmFisXjEiBGNJAMEw7CZM2empqZiGMblcseNG6dT2r9/f5lMhmFYZGTk+vXrG0OAI0eOXLlyBU8PGDAAD31KEBAQcPLkyXPnzmVnZzdG7xiGlZSUCASC1q1bl5WVVSzt27evSqXCMCw4OHjLli2NIYBQKCwuLv7+++8fPnxYsfTff/89f/78+fPn8eelMbh9+3ZAQACednd3v3XrvWHpTwAAIABJREFUlnbpnTt3/vzzTzw9duxYHo9XTVPQNFpb4uLiiF2irVu39vPz0y4NCgoiRmAODg63b9/WuwAymSwmJsbKygoA0KpVK39/f+zzPaBsNnv69Onff/89i8XSe+849vb2VGrljnfv379PbCVu1arVrVuNEn/DysqKzWZXVcrhcGbMmDFx4kQms85xWGpJTk7O/fv3AQC2trYMBuPdu3fapf7+/u3atQMAsFislJQUHo/XSGI0cTAMu3v3rpOTEwDA3Nw8KipKJpMRpfn5+UVFRfgo0MHBQedR1Re3b9/Gf2sAAJlMrhiKfPTo0bNmzdLe769fLC0tORxOpUXp6elSqRTfVt+6detGehiNjY2rj/Y6duzYmTNnNp6/EZFI5Ovri6ddXV11IsD4+/vjdwgAwNLSMjg4uJqmoGm0tnz48IFQMGw2+8OHD9qlmZmZRKmxsbFOqV4oKCggHEaQSCSlUsnn87WtowKB4Pr163Q6/fXr12vWrPnCfp4yMzMJ+0wjXYEa4XK5N27coFKpycnJa9eubQz/GmfPnsUTGRkZKpVK27G7SqXKy8sjvpaYTGZOTo65ubneZYDw+XyFQoEgCH5IpVILCgoIx4faj2rj3Yrajzybzc7KytJxqufv79+8efOEhIRZs2a1aNGiMWSopWwGeRgBAH5+fs2aNYuPj583b15jzFNMmzZt2rRpAAAURWNjY3WCcGVmZhIfzTVeBKgIa4tMJiMmBalUqkQi0Skl5iEqlupLAO0YHVQqVSwWayvCcePG4e+C9+/f79mz5wvHKZTJZMRLv5GuQI1MnDgRvwKvX78+fPjwihUrGqkjDMNWrVrl6+ur/Ukul8sRBNF+O8NovY2ETCbT/srRudTajyqFQlEqlSqVqipLRkNkIJ7Hir919+7dfXx8WCyWg4PDtGnTwsLC9Nt7jbJV87L6Mnh7e5uZmTGZTCsrqzlz5lS6qkBfHDp0aOzYsTrzlDo/UPUXAZpGa4u5uTlxrwuFQp2FKtWX6ksAkUhEHOpoQRRFy8rK8LSjoyNuvvuSfIErUD1qtVogEODpxr4Cx44dW7RokU4UTDabTaFQCBsdPpfZeDI0ZfCbjZga0LnU2reiSCRis9l614IVe9H5rYuKivBOHR0dnzx5ov3kfgGql+3LUFxcTFyB4OBgpVLZSB1FR0fLZLKdO3fq5OtcBMInfqVARVhb3NzciLtZKBR26tRJu7RTp05CoRBPi0QinVK9YGVlZWRkhD/8EomkZcuW2rNl7969mzZtGl4qlUqr/9Ubgy9wBaonKSlpzpw5eLpRr8C9e/d69OgxdOjQnJyc5ORkIh9BEDc3N0IZ67jAh+gRBoPRpk0b/BsfwzAajaY9EeXk5KRSqfB0xUdVX3Tq1In4rSve8NOnT8cXNkulUjqd3niT1pXi4uJCfJA13hWonu+//z4jIwMAIJVKWSxWY3yLAABSU1MzMzM3bNgAAAgMDNQu0n4j1XgRoCKsLa1bt7a2tsaXP4SFhc2bNw8A4OfnN2PGDADAwIED8/Ly8McvKioKt1zrFzKZPH369MjISABASEjIggULAADv3r3r0aMHhmFt2rRZs2YNgiD4cqnVq1frXQCcnJwcHo9HfGr5+vouXLgQADB8+PCMjAyNRgMAiI2NnTx5ciMJUFpaKpPJcnJy8MPExERvb28AgIuLC24LRVE0ICBg5cqVjdH7o0eP9u7de/r06YULF06fPh1//3p7eycmJgIA5s+fjxvBXr16NXLkSDodxmduLBYsWIBf6sjIyGnTppHJ5Pz8/E6dOikUCjab3adPn/fv3wOtJ0XvzJ8/Pzw8HADA5XLNzc3btm0LAOjVqxd+J6xevRpfSnPz5s1Vq1Y1UjgIoVAoFAqzs7Pxw8zMTHd3d41GY25u3qVLF/wZabwrAACQy+UlJSW5ubkoigIAUBTt3r07voJs48aNDg4OAICbN2+uXbuWmDLQI/n5+fhtsHDhwqlTp+Jqb926dUePHgUAzJw5MyIiAgCgUCh4PF6fPn2qaQpGn6gDAoEgKCiIwWAwGIwhQ4YAAIqLi7Oysnr06AEAyM7OjouL02g0rVu37t69e2MIoFarb9++bWxszOVyf/zxRwRBFArF06dPBw0aBAAoKCh4/PixVCrt0qWLzq4mfXH//v38/HwWiyUSifr37+/k5FRQUJCfn4/HhMvIyEhMTFQoFM7Ozl26dGkMAWJjY+Pj4zkcjlAodHV19fb2lslkUVFRAwYMAADk5uaGh4eLxWIPDw93d/fGEODu3bsFBQV4mkqlzp49GwAQEhLSs2dPJpOJf4UwmcyCgoIpU6Y00lcwBACAYditW7fYbHZhYeHUqVPJZLJGo3n06BFur5bL5Xfv3mWxWDKZbMKECY0kQ0hIiFKpLCoqGjNmDG6BIO4ElUrl5+enUCiYTOakSZMao/fExMTo6Gj8WWjbtu2AAQNUKlVoaCj+apJKpQEBASwWS61WjxkzpjEEKCgowC+yQqFgsVg//PADAODRo0d9+/al0+kKheLWrVsKhcLY2Hj8+PGNIUB8fLz2Yt0xY8ZYW1snJSUZGxvjW3hjYmJ4PF5xcfHgwYOrX7wKFSEEAoFAmjTQNAqBQCCQJg1UhBAIBAJp0kBFCIFAIJAmDVSEEAgEAmnSQEUIgUAgkCYNVIQQCAQCadJARQhpKNHR0cXFxYaWAgKBgNzc3JcvXxpaim8PqAghDWXKlCm4LyUIBGJYtm3bdvfuXUNL8e0BFSGkQWRnZxcVFXXt2tXQgkAgEBAWFtavXz9DS/HtAcMwQepJaWlpVlbWw4cP27dv//r1axsbm+bNmxtaKAikKaJUKl+/fi0QCNLT0ykUyps3b1xcXAwt1LcEVISQelJWVpaRkREQEODm5paRkWFsbGxoiSCQJopcLs/IyAgJCXFzcysoKICOM+sK9DUKaRCOjo6XLl3C4z9AIBADsmjRImtr6y1bthhakG8POEcIqT85OTlFRUV48A0IBGJYwsLCfHx8DC3FNwlUhJD6ExIS0rt3bxqNZmhBIJCmTkFBQVZWlpeXl6EF+SaBihBSf54+fYovUcvLy4M7KCAQA/LkyRNPT088KObTp08NLc43BlSEkPqTnJyM20Vv3LjRsmVLQ4sDgTRdUlJS8Ifx7t27NjY2hhbnG4O8efNmQ8sA+Vbh8/kpKSlpaWnDhg2ztLQ0tDgQSNOFTqc/ePBALpebm5vDafu6AleNQhqEXC5nMBiGlgICgQClUkkmk8lksqEF+faAihACgUAgTRo4RwiBQCCQJg1UhBAIBAJp0kBFCIFAIJAmDVSEEAgEAmnSQEUIgUAgkCYNVIQQCAQCadJARQiBQCCQJg1UhBAIBAJp0kBFCIFAIJAmDVSEEAgEAmnSQEUIgUAgkCYNVIQQCAQCadJARQiBQCCQJg1UhBAIBAJp0kBFCIFAIJAmDVSEEAgEAmnSQEUIgUAgkCYNVIQQCAQCadJARQiBQCCQJg1UhHXj4cOHgYGB2jkoihpKGByNRgMFaOICNE0KCgr27NmjnWPwHwIKgKIohmEGFADDsHoIABVh3YiOjo6KiiIOURSVyWQGlAcAIJVKoQBNXICmSVZWlp+fn3aOwX8IKIBCoTDs2EClUimVyrqeBRUhBAKBQJo0UBFCIBAIpEkDFSEEAoEYGGlsMDDo1FoTh2JoAb55goKC1qxZY0ABMAxDMAzDUIRsmF8TwzAEQepxIo1Gi42NZbPZehcJAvm24N/8m9m5N0JjGFqQJgpUhA0lLy/Pw8Njx44dhhbk28PT01MikUBFCIGYTVkNEGifMxhQEeoBDofj6OhoaCm+PchksqFFgEC+AjBMHHYTIAjTraehRWmiwG8QCAQCMSRqXqGqKIdm72RoQZouUBFCIBCIISFzLMwmLSMZGRtakKYLVIQQCARiSBAKVSPkCQLOGlqQpgtUhBAIBGJI5G9iJZH3aPbtDC1I0wUqQggEAjEkZHNr4wGTjHoMNLQgTReoCCEQCMSQUG1aMVw9S/5eb2hBmi5QERqA0NDQDRs2jBkzRigU4jmHDh0aMWLEvn37GtIsj8ebN2/eqlWr9CEjBPJFyc7Ovnz58vHjx/HDyMjIyZMnb9iwgcj5DyOJuCeNDSYxWIYWpOkCFaEB6N+/v7u7u6mp6cqVK/Gc5cuXjx49uiodlpmZ+fLlyxqbNTc3nz9/fklJiT5lhUC+CCwWy8HBIT09HT/k8XiTJ08eOnToggULDCvYlwBBSCYWFnN+M7QcTReoCA3GX3/9FRYWdu/ePfzQxMSkqpqBgYFyubw2bVIo0EMC5JvEwsKCRqNp53Tt2pXJZBo8wN4XgNVrhJF7P4H/KVQiNLQsTRT43jQYbDb75MmT06dPT0xMtLCwIPJFItHly5ft7OwKCgrmz5//7Nmz3bt3z507Ny8vb/z48TreWAoLC69evdqqVSsEQcaOHYtnhoWFCYVCHo83a9YsAEBubm5cXByKomKxeMaMGQCAY8eOxcbGrly5Mjc3NyUlZf78+cbGxgAAX19fNpvN5XItLS3j4+M3bdr06tWrhIQEJpNpbm4+aNCgL3ZxIE0ca2trLpfr4uIyb9688+fP18+Z7beCOMyP7txVmZeuEfFJLI6hxWmKQEWoH54VYt89UtdYbaAd6frAT5pswIABEydOXLZsma+vL5H5/fffHzp0yMnJ6fjx4xcuXJgzZ463t/eAAQN69eql05pcLh83btyDBw9MTU29vLzatGkDAEhMTOzUqZO5uXnfvn2HDh1qa2v7xx9/4B0tXbrU2tp66NChixcv3rdv3/Tp04cNG/bu3btz584tX748MDAwLCzs5MmThw8fFggEP//8c25u7i+//PL48WMSiTR69Gg3Nzdra2s9XTBIE+X69etlZWXaOUZGRtOmTdOp5ujoaG5ujiAIn89/8eJF9+7dv6CMXxpFZgrV3qnZkp2GFqTp0tQVYUFBAYlEwt/vycnJZDKZzWaLRCIXF5c6teNtg6R/T62xGqOCc80///zT3d3933//xQ9zcnKeP3+elZWVlZWFIEhkZOScOXOqau3Ro0eWlpampqYAgHv37pmbm798+bJ58+bm5uYAACsrq5KSEltb202bNqlUqocPH6rV6vfv3w8dOhQAgCBIjx49AAA2NjavXr0CAOTm5trY2AAAGAxGWlqaiYnJ6dOnzczMQkJCAADGxsYJCQn4uZBvFIVCceHCBS8vL7lcXlBQMGbMGJ0KERERfD6fRCINGzYMH4Tl5eXFxMSgKDpo0CD8TqsRLpf75MmTcePGETn37t1DEITD4fTu3XvSpEm1aWTp0qWHDh2ysrICADCZzNr+h98m5jPWI2SKIu01iWlEbd7G0OI0RZr0HOGDBw9WrlyJqwEAgJ+f39y5czdv3mxpaVnXphAAzOg1/zErfHgYGRmdP39++fLlRUVFAAC5XM7hcAYNGjRo0KCFCxeePn2aqIm/vLTPFYlExKSghYUF/uZiMD5FcsHnV+7cuXPw4EFvb29nZ2dMK+YZnU7HEyiKAgDGjx+fkpJy+/bt1NRUfBWPXC5v27YtLoyvry/Ugt86IpFoz549Y8eO3bdvX5cuXXRKg4KCoqKiRo4caWdnt3XrVgCAUChcuXLlmDFjRo8e/csvvygUihq7OHv27M6dOy9evEjk7N69m0ajjRgxIiMj4/bt21WdmJaW5u/vHxcXFxYWBgBYsmRJcXFxVFSUs7Ozq6tr/f7fbwVp7GNMpVSkvZK/iTO0LLpgKqUs/kk1Ff4b85pNekQ4fPjwFy9eEIcdO3b87bcvtHBLo9FoNBpcjfXs2XP27Nnh4eErVqxwdHQ0MzMrKCiwtbUFAISHh/fr14/FYkkkEh6Pl5ubi+fj+Pj4/PHHH0qlkkajicXi1NRUAACh6vAEiqIrVqzg8/lUKpXH41lbWwcEBIwaNaqiSKmpqUuWLBkwYAAx1zhq1KjVq1fj6aKiorKysvbt2zfiRYE0PrgirLTo0KFDhw4dAgB07tx5xowZ69evv379evfu3clkMplMtrKyCgoK+u677wAA7969a9fukxuUzMxMe3t7/GaeM2dOeHj4wYMH8SIMw86fP48H7Bw7duzgwYOr6r1t27bascz69u2bmZlJpVJ3795d1f8iEomysrKIWxQAMHjw4H79+tX6YugfuVxOpdZsGdJB8OAi0qYzxWs4wLBaLovTrwDVgIr4grtnERePqirw/95oPHEp2bY1IQCKogYMLKNUKjEM0/7ip1KpNcrTpBWhDsXFxWFhYVlZWT169OjQoUPjdRQSEnLlypXY2Nhly5a1bt0aALB58+YDBw4AAMhk8vXr1w8cOODp6QkA8PLyAgBMnz7d19f3w4cPM2fO1G7Hzs7u4MGDv//+Ox7Yb/DgwXv27CkuLn78+DGGYUVFRf/++2+rVq0WL1587NixNm3a9O3b98qVKy4uLv/88w+FQjlw4MCkSZMePnxYWloaGxvr7Ow8aNAgCwsLjUbD4XD++uuvzp07L1iwYOfOnW5ubhKJpJZGLcjXjFgsvnfvHplMHjJkCIn0mUEoJiaGWLpMJpOTk5OfP3/erVs3PIfD4cTExOCK0M/Pz9vbu0+fPgCApKQkX1/fquJx5uTkiMVi3FZhbGz88uVLtVpdy7XN+KNRDRQKhUql4hMBAAAEQUxNTQ0b2wv/aKjrWeZLdpFNLTCFTF2SR2ZXuXq88QSorkFTC/MVB0lVt2ny40qypS3ysQL5I3qUoU6QyWQMw7QFqM1Kq/++IpTJZAEBATqZDg4O+AyZNtOmTWOxWDKZzMfHJyYmpvFEGjBgwIABA7Rz6HT6+vXlfiXatGmj8xXcu3fv3r17V9oUbrckDvfs2aNdhCf27t1LZA4ZMgRPTJ48GU8Q1tdZs2ZFRkbiltX3799v2bLl7NmzUPn9l6BSqYWFhVOnTn39+vWMGTMuX75MFKEoWlZWZmRkhB+yWKzS0lIul0vMz7HZ7NzcXDy9fv36Xbt2aTQaGxubq1evbt++vap3DY/HI9pEEIROp5eVlTVr1kwv/w6TybSzs9u4cSORIxKJ9DseqitUKrUeAmBSIdW6hTL3neTuuWbL99Z8gr4FqAbJ80fy5OfmU1chNEbFUg2/BM19T7e0IX3sVK1W12YE1njgw8G6XgRDzhFqNBoej1dpkUAgqOv+IaVSqXMoFosBAHQ6vVsFKsbRVSgUuF2UyWQSD3yTwtra+s2bN3j63bt3Xbt2Naw8EL1jYmKyevVqBEE6deoUHR2dlJREFJFIJBqNRswCyuVyGo1Gp9N1coj669atu3v37r59+7Zt26YzstSGTqdr2/oUCoXOZkEIKhGWnt4MAKC2cOIMn15pHfmbWGXO+y8q1kcQMlnxPl6Zm1ZpqTz5edk/B2QJ1U0ifhMYckR44MABc3NznVWRAoFg27ZtY8eOffnypYeHB24brAaBQHD9+vXQ0NA+ffosWrQIz7x06ZJGo2nevHlsbOyGDRuqCR+vUqlUKhUAgEKh4NMeOTk53t7eDf3fvkF27tz59OnTBw8eqNXqli1bjhw50tASQfTMjh07XFxcxo8fDwBgMpn5+fkdO3YkSm1tbUUikZmZGQBAJBLZ2dnZ2dmJRCK8FM8hKr9+/ZpOp7dp0yYyMrIqcwUAwMbGRiKR4GmZTMZgMDgcg+2TE4XeZLTvRrV1MJQAlUJiss2nrAIAIFQaxapFpXVUeRkAIRkkcq9RtwE0+3ZkM6tKS5ndfMhmzSjNmn9hqfSOwRRhWlpacHBwRcvbvn37hgwZ0rt3b29v7379+oWHh1dv4WWz2VOnTv3w4QMxO8rn869cuRIYGAgASE9Pv3LlSsVdSjihoaFmZmbZ2dmvXr3q3Llzv3797t+/X1xcfPZslYHBNBpNWVlZRkYGfvhf8uSCIEjfvn0NLQWkESGRSPiMgEql4vP5+KA/ICDA29vbzMxs5MiReXl5LVu2VKvVRkZG7dq1GzFiBOH5KDc3d8WKFXj6zZs3//zzz/bt20kk0u7du1UqVf/+/bU7Ih5GMzMzV1dXsViMW1aHDBliwK3xJIYRQFFD9V4lCEJzLF8WW7Rroe0WX4SqO2hm9x2LGOhVw/c7xvIahkpFZBOLiqXKrFSGSw8M/ea9/xjm4qIo+uLFi4qzdACAgIAA3PsJgiBKpTI5Obljx465ubl+fn7Lly/H6xQXF1++fBlf4k8mk3W2GYWEhBD7vlu0aHHp0qWqFGH//v21H2AXF5catw+mpKQEBwffvXsXP0QQ5Mcff6zNv6zN7du3b9261b17d7FYHBISMnz4cAqFEh0dPXfu3IEDB+7evXvGjBn4lr6Gk5eXt2rVKicnp23bttVYOSIiorCwcMKECfXrKzY2Ni0trU4XRCwWE3NI9Qa3gRsQHQEQBGGz2YYSphpmzZoVEBDg5OR0586dEydO4NuEzp49a2Nj0717940bN+7bt4/FYj148ACfV+7fv39wcHBYWJhEImnXrh2x4yIwMJCwiK5du/bIkSO9e/fGZ2Vu3LgRGBhYUFBw+PDh8ePHN2/efO/evQcOHBg7duyFCxeqWQL6BWD1HG7A3qtCkZksenjVctEOAIDxoMmgMjtz6fFfGR16GA/64YtLB5TZqSQjY1TEN530k04RplZxz2wxHbdIVZhtOm7hl5dNn2CGwN/fXygU/u9//zt9+rROkYWFRX5+Pp4eOHDgvXv38PTDhw/37t2LYVhxcfHixYtFIpH2Wb/++uvff/+Npw8cOLB48WI8HRYW1rNnTz1KvmXLlk2bNhGHGo3m0KFDCxYsqFMj+/fv5/P5GIbl5eUBAORyOZ7G/4XFixdnZGToUeb79+///PPPtal5586do0eP1qnxK1euEOmgoKD9+/fX/lxra+vCwsI6dVcpQqGw4Y180wLUHhRF8/Ly1Gp1VRUKCgrwG5JAKBRyudwGdpqbm1tNp/UjKirKy8tLO6f6H6Jg22xB4GX9yqBDPe4EFbdQHB1UfR3B/Yt5v37fSALUiJpXJH+fWEkBisrexCmy30meBxN5UqlU7z90nVAoFDo3cG0wwIgwKyvLwsICd25ZEYVCQRhPKBSKTCbD04MHD8YwbPv27UVFRXv37q1mGKFQKIjZezKZLJVK9Sq+HrC3t9d2sY3/v3Z2dvgX+t9//63f7mq/gmv06NF1almpVD548GDKlCn44ZAhQ4hVqf8FUA1ASOC/5eUSQRDtqb6KVDRFVPWo1qnT5s0NP41EtXXAlDX7BKgDGIYp5Qi9QY5vKObWFM/yp6bs6gGjbv3p7XR9HXCGTzfyGNyQXuoHppBJooPY/caS2JU4FUKlIpqDC4lhZJDJS/1iAEV4+/bt0aNHZ2RklJWVsdns4uJi3JESjoWFhUgkwp9GYuoep3PnzufOnevatWv1xjQLC4uUlBQ8rdPCV8Lw4ZWbaEaMGBEdHX3kyJGVK1d27Njx999/p1AoAwYMkEgkycnJc+bMiYmJyc7O9vT0xHd3RUREpKenoyhqY2MzbNgwndaSkpJevHhhbW2Nb7THuXXrFoqi+fn5/fr1c3Bw2Lp1q62trbOzc1hY2NatW7ds2cJms3/77TdfX9/w8HBPT885c+Zcu3bt6dOnixcvVqvV2dnZIpGIyWSOGzdOJBL9/vvvkZGRJ0+e7NChg5eX16ZNmxAE2bFjx/Xr1x8/fty5c+fFixffunUrODh4wYIFFhYW/v7+tra2paWl30RsHf7tk1SbVqxeIwwtCEQ/WMzdpN8GJbHBoqArVquPkJj1t4RL40I0/BLc7Em1d6o4QYipVaXHN5qOW4TKpSRGQ+cR6oS6JE8aH87qObxw2yzbbVd1SgX3ztPsnehtOwkf/YOv96kl4mcBCIXK8vqKPFUZYPtEp06dMjIyMjIysrOzS0pKiouLtUu7du1KhKsVi8XEtERxcfGWLVtOnTrl6elJ+K2olG7duhEt8Pl8Ykdwo6LISMpdOUL2OgqVCPPWjhU+uAQAKNq5sPTU7wAAnu++gt+ngo8rCFisyiNwslgsLy8vFovF5XJpNNqSJUsuX77cpk2bUaNGJSUlnTlzZtSoUcOHD1+7di0AIC0tbcuWLTNmzJg1a9ahQ4d0whC+ffv2f//7H+5WmxhhBwUFBQUFTZgwYeHChUuXLmWz2dOnT7948WLfvn1tbGyoVOq0adPwwIdTpkzJz893dnYGALi7uw8ePNjV1XXNmjW2trZTpkw5ceJEWlqasbHx2rVrra2tFyxY0Lt3bwqFMm/evNjYWADApEmTysrK2rZtCwDw8PDw9vZ2cXGZMGHC1KlTx48fn5ubiy9l+sox6jGI2bnK9ZCQbws1t5Dvd6zs30N6bJNi2gyQKRph5XvAaglCpZI45T4B2L1H0VpXcOWhUSM0hijkhjy5ETc3Vwq1eRvLBVsRGt2o+4CKpUxXD0YHD4RKA2pVnZpVpr/m3ziiLsnTk5h6wAAjQnx9CpfLxTfYOjg4AAB8fHzWr18/bNiwJUuWBAYGduvWLT09vVu3brjbCC6Xu3XrVtwi2rdvX4VCcfTo0aVLlwIAUBQtLi7OyMiQSqX44NLd3R3DMIFAYGJiEhYWRix1a1Tojh1b7L+Pp5vvLneoaL3+BJ6o0+cSsfaHyWSy2eyWLVsCAKysrHBHG1ZWVqWlpQCAq1evWlhYBAcHAwAsLS1TUlK0nUsdP3584MCBuIm4ZcuW+DLXCxcu2Nvb46fQaLTi4mImk2llZcXhcHA/Vdp+ShcvXnzmzBlvb++4uDh89/3FixdFIlFAQACJRMrOzsb1nDY6px87dmzw4MFPnz6dNGlSVFSUWCyOi4sDABgZGcXHx1ccwn5dYBjQaDRCHgyL898AlQhQmViR+hJMWqYvcze9XRebjadrrlctzM59iLTifYKqIIvd9zNn6Aidablgmyo/88u/WDxEAAAgAElEQVTfiuqSPIAgJCNjkzHzK5bS23XFx6/mM9bXqVmzaWuMi3PJpvrxq6AXDLb6/+XLl0uWLFGr1W/fvu3evfuRI0fwF/2gQYOMjIyCgoLKysqOHz+OV2YymXv27CE0xODBg4lxnkKhePr06ezZs1EUffLkycSJEwEAFy9eDA0NVavVS5Ys+abdYxJ+sQEAxE5k3Ee2Wq3GPWIDLScyBGKxWPtcHJVK1aVLF+1ThEJhVesbhw0btmbNGi6XSyaTSSQShmE7duxwdXVdsGDBnTt3MC1XfgCA9+/fOzl9Nk/g4+Pzyy+/4ME9qFSqSqWysLCoStqvEGVWavFfK5gdvSzm/m5oWSB6gNbS2XzqGkyj1pcWVHMLeZd2mk1aphFwGR2qdMVZI5KIe1S71vhAENNo1NwCnQqqomzFuwR279EaUVllDTQikuhAEsfc2Gd82b+HWB5DaA6f3qWqgg9l1w5a/XIQYBj/1nHT8Yvr0GxUINt7pPztC3q7Lgj5q9iBZjAhBg/+bO5Xe2NvxcB7FScFCQeDTCaz4mZEDodTMcTMt4K2jsE+96Ctzbhx4wivbFlZWSqVSnuINmbMGML8yOPxcDc9EydOjIiIwLc3REVFde7cuWLLxCGJRJo2bdqCBQvwxTupqamhoaGHDx8GAOBmWD8/vyFDhuA7B5KTk3FFqN3a7NmzFy9ejPtx9vT05PP5EomExWKp1epnz575+Pg05Co1NmSzZhYzN5JNzA0tCEQ/KNISAUBQiYDW2pXM0ce6AbWK6eatLs2XJUY1RBEqc9PIpuXhbhjtuzHa607lqIvzVLnpypx3/FsnrX7eV3+B6w6r53ASkwUAoFjYYJ/bPxEqzajHIAAAQBDpi1DTcYtq+4WBYQL/k+xeI8ThtzCVgtnpq/BeQt68ebOhZfiWCA8PxzCM2H2IYVhsbGxxcXFd11sCAM6dO/f48WOxWFxWVpaXl4d/Cjx79iw4OLigoKBbt27Hjh3Lzc1lsVhlZWUPHz4sLCx0cXE5ffp0bm6ukZHRoEGDWCzW3bt38dN1vOE4OztnZWWlpKTk5+fHxcWFhoZ26NBh5MiRaWlp8fHxeMgnGxubI0eOZGdnq1Qqd3d3kUh05MiRvLw8Ozs7fHTerl27yMhIfFGoiYlJYmJiWVlZbm6um5tbSEiIt7e3g4NDampqSUmJhYWFra3toUOH8vLyrK2t8RDBzs7OoaGhs2bNAgDQaLQ+ffocP35cIBAkJSX5+PjQaLS9e/cuXry44VvulEplxeFvg8FoLdoCMoVUizWBjSMApAZyc3ODgoLmzZtH5FTzQ0gi7mEqhfxNLMmITbW2b3jvJLYJ3dGVamVPd+5CrHCpx53A7OhFOJTBVEpx2E2642dhp6hWLRgdepCNjBFSzc5l9HsronIp2cQCIAjd0ZVi/llQbpKRMa1leQQSdr+xhNNttVqN25CqbBRBjLr1J7GM6U5dKM3sEKqeHxz8o7/Ork70tHmjqaCXfYQQnK95H2HBjrmqopy8DRMMJQCkRuq0jxBVyFC1Si3goUqFXnovOvAz3pT0dRSGojUKUBXimIcambhcSLk0/3+TdSrI018r8zNr2VqDbkUUVXE/ex7zf5+mFnAxDFPmvBeF39YuKj29WVWci6elCU9QubQ8XdM+QlQhV+a8x9Pyd/EasaD+AldG/fYRNunAvBBIVRh19aE0a27cf6KhBYHoB+WHN0CjRkgkDa+o4a1hKiXZ2BwfCPKvH27IwlFx6E1UUH46QmdabzilU0H6IlT54Q0AoOToelVhVr07qhF1aX7p8V+1czhDfiQbmwEAUKVCkZ6kXYTQmCTjcguzKOSmqjinlr0o0l4JHpSHPZG/iRM/u9tQufUBVIQQSCVwhk0DCGI8eLKhBYHUB3nqS53V+fzbJ9XcQnnqS+Ej3f1wFSn8c75GwK2mAkKlEbsSLeZuIhvXf9LRcuE2bV/byuxUTPVZIB3O4B+NuvUHADCc3RGkEd/YJGNThEaXvgwjcow8h+Azf3RHV4vZn+lI8+lriU2N5lNX05q3qWUvtJbOnCHljxVn6FSW51BVwQdVfmbD5W8IUBFCILqIQm+Kn/gDAEqP/6ouqu2nLuTrocx3nyj4X+0csx9+plq3ZLTvxu79XY2nm45fTKo2QK7w3gXi3U0xt0GlwnqLqi4t1F5mwr1/qfDDB+0KGiEPkCkAAONBP1D0MbtZFSS6kcnw6fjqGACAKjeNe/KTCwJx+C1iJ7Ts1TNJdNCnMxEElctq2QtCpVE/ak2EziSbWqqLc3i++/Ts9KeOQEUIgeiCUOk0+7YAAGqLtsCgEc8h9cN82hqW92cugUgM1uIoLExgTGlWnYc5AAAqEVIsbNFqrZ3K3Pcko/JFXtK4x6LH1+spKKopPbZBO2Nny6XL0z/TdrxLu3BzriLttTDwMmg0RKE3VYU5DJfyWAgIjcFw9SRKhY/+QRXl7ipVeenaHwqiMD+dkITVjKcFAeekcSHaOczOfaxXH1HlZ+IWYIPwVezhgEC+Kti9R+EJk1GzDSsJpB6gUjHFyh5o7eRBxfyio+vPOJwXKdTtH86y2+lXzemiR/8oc9+TjIwt5lTpks1y4XYizXDrWb0dtTpIZO2Nqi9KsXCpqUgkL5AybT9uGTMdu4BiYQMAQOgMVMyvZ0e1gGxqSWabFv+10nLhdhLDiGLVgq1ls7VefYTEKB8sckbM1D6R5TmU+CzAKfxjXvM/bwBSJR+R9LadKDYtK+Yrs1M1vCKaQw3xfxoJOCKEQD5DI+DyLu3C09Lnj2SvI7+wAAEBAV+4x/8Y4qf+t67fy90+D9Oo8RyEbhTdacZIe9K9XBK9//fVn85w9TQdv8TIo0r38fI3cfLkaOKQYmFLs29Xb2lprZyJ9JaX6AEkcKvm/vn3n+Im0lq74hqFZu9kOlE3FpIOmESA1dHhGYFRVx96uy605o6YXAIAEIXe1L75UYkQ39Gvyk0Th9/67F9o0YbM+SxaIbOTt+DehUp7YXbuTbWuRBGyeg434JQ8VIQQyGegojLChzKqUmh4xdXX1zsnTpxISkqquR6kCtA23bZj/Q7azZRryt9vCIW6Geu3tjOppzXyqG0NipDaog3VrjW9rVtVFRRprzRiwadjDCv4fQqoZXBaFC3et5wYraryM0tP/A9Px5ZgCVzMy6dXp+7uZ1JRvAYq5hftXUKcLbh7pno9J793Thr3uFaSVIB34U+NsMx04k+48zNMLtH28S2JDpK9egYAUKQnYWq19omS2MeCgM+CmZuOW1SVnbN43zJUWkkAUYRCVea8r5/kDQcqwoZiZmZ28uRJBFJ3BAK+TlDlrwFqi7amE5fiabb3KHa/sV9YAJVKdenSpd27d0dERHzhrv8b3JTatXVs8cHtu1Mf36sJT54uTT/Z0wqZ7Ehi3tylzEyp6lxlzjsu7ij/3A5FRnKldTgjZrK0x4sIwuo1Eqvg+6lSULkE06hUBR8AAH8koMMiOKJO5UEYNr/UbOhCYtm36dTRiU0BofkYAACh0rVX98jfvkCFVTpaw9Qq1dtYanPH2khSqWwIjabmFvD9jgEAOMNn0J0+BYRi9/mO2cETAMDuN9Z44GfOvGgt2mqPa1VZqWX//tVs2Z5Ke6E0s0PojIr5eJhfULvLqHegImwo48aN0++G0DohjnnIfXIXTwse+hIbexsVRWYKsZcWq/seXn7AOVGYH6pWyWRyDuerc2ktCDhHzMRo+CWSmIdfWICDBw/u2rVr7dq1CILs2bPn/PnzuB87SG1AxfxuV5YuaE/aVXY+KeSRXAMAAP48MwsXNwDAWAdSGOIoQqtcG0FisFjeowAARp5DSKzKAzFKogN13tcmo2bX0mcmyciY1XO4JDowphg7lKwZ0d6sZ+GQM6loTDGWXAbmOpNQqbjoz/nz25NOp6IAAITONB7waTOr1Yq/yOZWVTWOkCnMcUuodvVUhJYLt5MYLBKTrcrLAAAIbp8kbMsAAIqlHSCTNaKyiiuDqM0djbp9Ck+BUKg0Bxd1UU6lS3vMZ2yo9FohVJrFvM2GCv9ZpSL08/MTCARVlf5nePHiRXp6Op4ODQ29e/duWFjY8+fPDStV7WF5DKZ2KQ86wRn845e5jSTPHynSXwMApHEhgjt19r7PGfwjq/doVV6G8sPbRpCuochePQMUKp7WCLjS2EdfWADCTXyvXr2WL1/O5/MdHByWLVtGRNmEVENiGemq7bhBdoi9s7OVmfGZVFSsAn+J2/cb0h8AwKGCLPeJdzW6gVMIKM2a45v2jLr6VDqVBTBM4H8aw1DtPFHIDWlscG3EK/v3EN2pM6n3hGlhmqO9yEtAdDT13KFkdHiQemMXEo0ESEwWo6PX1LakwFyUqwDyty/4t08Sp6sLs5XZqVW2jqHkVi5Ff9Yn2CcqFuA7LElGxvhgThIXgmi9T5TZ73gX/lRmJKsr7J1Xl+Zzz+0gDinNHY19xpOMTeVv43Rqavil+HCzUqh2res2wYmi2qq6IVSpCDMyMrZv365W66ebr5P79+8fOXKEUIQvX7708/OLiYnp1KmTYQWrPZLI+5r8cvlLjq6v/+q1usAZNJnZpS8AgGJtX49YKoq0RKBWKbPeSuPDG0G6hmLz6xlidRytVfuqlg6qctPwvYZ65+rVqwCAzMzM9evX29vb//XXX6tWrdq4cWNmZuauXbvevDHYEvMvhkqlOnjwYEBAwNGjR3m8ujltOZHN4viMJSGA2bn3mKE9d71CL6Whe0S+Jnmv8QoLaa9LQ25XdXrRrkWoRAgAUHMLS46uq6QGglivP6EzpqFY2GC1myNU5WdQzK33R5b2tUEmtCYhNIZVC7uYMZQ/e5BntyPh7ZuOW2RKA6PsSZfeowBBtJ18Kj68kcZWOQUoiXmoeOZfMcB9bVDzCpUffcfIk6PlqS9tN1/SXvZJsWlp5DmY2cnb9PvlOuciVDpCpX4SI/KePCWWZGRs9Ytu4FhULKhm4avw3gWZ1nb+GhFHBOCRXxtOlYpQpVLRaLS//vrryJEjBQW6kUH+G4wYMQJ3D43j6Oh47ty5devWacfV+8pRfHiDfZy3pzSzA9X4utUfqFKOO5ei2TvpxE6rDYL7F9Ql+SzPoZyvz2+Lqihb/iZWO6eqiSJlXkYjWU0vXLgwYMCAdu3aJSUlnTt3Lj09fcOGDba2tiNHjly3bt3Dhw/rqhu+Ofbt2+fs7Dxq1KgpU6b89FMN6yS1kWqQziF7Z1MSAQAaAbfNw70dzcHqGE1Xthz5GMWsZzOAcfNL5JW3QLN3IhkZAwDIHHOyiUXFCqhUhCl0N48zO/dmedYq3rrVLwdv59MmRGw76CYCADCcu7K9RzHIYGF7EvXjsyu8d0HxLn5ee9KJt6jSsav2I8byGGQ8sMrFPpRmLajO3cwqKKraQGvpbDFvM55GJSJpzEOdB4HEMDLqPlAUerOiYZNsYmE+bS1xiJYVA4ABANSl+Tp+fKgt2pjP2ACqwKj7QGqtPdQAACgWNoz23SSR91V56bU/q1KqfG8uWrRo69atq1atmjt37uPHj/fs2RMaGooZaCbzy1BaWhoaGnrmzJnQ0FBDy1JbzH74mdKua3n6++UNcfVUe8qu7FUXfAAAABQtPbWZyFd+eKt4l1Dj6WbfL6fatUaoNFVhdiNJWG/kKbE6PhV553dUan4x6upDxBzQLxiGdenS5f379wEBASNHjtR25P/o0SNHR8f//JrSf/75Bw84amZm9vLly7Ky2sbhu5lNoptaWrdoAQBAqHQNn7vJnWzDRDpNX0hrWb6ag+PSJaHX4huZaKUtmE1Zhc8vIFSa9sudQJYYqbN5AACAqZRl/+iOfioiibh3JyJl4TONZvwKNocNAJBEB+noGwAAydgUlcv62CD9bZFNxwJexCUSRQiNoSrMqmqFKr2tG6VNJ1HIDVlinff8KLPfEU7pjHoMYrj1lFYYnBXvWVr5biIMK7t6gDgyHjkbj0tFYrJlLz+z+ijSXuOzKlXKX9kWw6pgdPCgt+1E4piLw6sc4teSKid4zczKX6lMJnPcuHG+vr5Tp061tbVdvHjxpEmTTEyq8z/0VSGRSK5cuaKT6ezsrB3PHWfevHkIgnh7e7u7uycnVz4O0AOoRs0tpFjYVLrbtK7IEp5irVyBsTEAQBh0BXcV3fBmq8d48GSKlT0AAJBIGkEJvnBAVZhdcng1y2tYjZYZhMYAJBKmlJee2tR8l+47xbCweg5HPp9ntVyys9K5fUlMULPFfzSGDO3atdu/f3+lRUeOHJFKpXfvfhV+ihuPt2/fEsG5GAxGenp69+7dK1ZDUVQoFAYHl0/OkUik0zyvbWPnkE0RAADJiN1s6c5mAKT/QBHcOc0ZOav8d0TRFSX/TCn9YaAd0s7ks99aHOZHNmtGhIwXh9+mWNvrBAhkOLtrx6fFQchkxbv46v8pmRrEPo08ZeMUMobiyu4CNGpApqhL8iouoSSGgH97k+NT03fEWHRANJvcyRQSLtUtVCLEJzJ1KD25iTpsJtXYFJWJqhemItLYYIpNS6qtAwAAIAgq4nOGTNGpw3D1wFcS6YIg8jexAEVxi5T48b+c/hMQKo3E4livO65dUf4mlmxiQW9T+dYUVcEH/s2/m/20u1YSY1jRniXWq48yO3oxO3pp+CVkE8t6L5KoUhFeuXJl2LBhJSUlx44du3Dhgq2t7bp162bOnImiqK+vL51Onz17NlLfXhUKRXJyspWVVYsWLSqWyuXyxMTEVq1aWVtbVyytFKVSyefzraw+rafKzMwsKytzd3dnsVgLFtQ8eyyTyaZPn37jxg0ajSYU1t9zYI2InvgL/E+ZTVrG6jWi5to1thZygz7OClhaAQDUhdmomA8aXxEyXLoTgyHr1UdFIhEAAJUITCcsYXb1qf5cVCoqObLGbvs1hMawmPVr9ZW/PMqMJMLFFA7F3AqgmopfLaLga+rCLJPRc5FaBCysE3j040ePHkVFRcnl8oEDBw4cOBAv8vdvlFnJrwqlUqlQKKgf55wYDEZVq/Z4PF5eXt4ff3z8HEEQt/Ebe0S/FZnOwDMUz+5QO/UmcczFMQ+RvhM+KkKN7YsbS38c1/suZbe7akJLFABQqkCuZJJ7vCv27O2gFpVrEYVajeR9UDX/bLM8KpWRjM3kIl1Nw1pxRCQS6azvPfWenCQgsSkYhQQeFZA7dPvtVHc1iyLmRYSgBRmMUfNIPpM0AIg+bw0VlSmjHzAGTwEAtJ00Z6ccWRCjnlmmOu6pAgBQv1uoRhBRBQEAABoKXYkC4/aeoEKbNYJ4DseYbOIsSVK0ytiCwv7MOEzy+V4GAKisZfaaEyKJBAAgk8lUT/yRrgPx5wItzVelJ9I9h5W30Gs0SiJXJRtGYQDrVrWUHNOogZkN3ikAQHJlP73nCIpTF6VSiWGYUvnJcTmDwaBqTWFW0VwV7Nq1q0WLFjQabeLEiY8fP0Y/X5efmpp669atOi2aJ8jNzT1+/Hh8fPyqVauWL19esfSnn34qLCy8fPmyn59fja2VlpYeOnRo1KhRf//9N5H5xx9/BAUFZWZmrlq1SqGoMvyYRqNZuXKlr68vhmEoil65cgXDsISEhKVLl1Z1SsV4hGKxuEYhtZEmRkhehCqyUut0VlWoinKEAj0H9KoBFM1bN57YpyGOCixLTyEKpa+jajhbrRJHB+FptYCHqlUNl0hv4QBRNHfNGJ14dSXH/yd7+6JiXTW/tHDPUnwbiX7jESoUirFjxwIALC0tccPMtGnT0C+yMeYrgclklpWV4WlXV9fnz59XWq1iPEJuzGPho3+Iw9IzW+WpLzEMQ1VK7WoaiQjDsPhS1Olf1Zxw9eQQtekF5axwteM/qn/SNdXLVrT/ZyKcnjbSV8+UOWnad8LF95q211Qn3mj2Jmp2JmgCIxJlKbF4kao0X/IiFMMwcXSgWsDTaUot4BXuXoynRc/uogq5RIV1uqk68aZcNmV+pvxdQqXiCYVCVK3iXftLO1OWEss9/4eqtEDNLeLfPavmFlU8UfHhjfbmK42IX6dnU/I8WCOTYBgmlUqVIj6RryrOLdr36SUve/tCX/EgdZCnvsQfRj3HIySRSKNGjfrw4cP169cHDBigPfiLiooKCQkpKSmpjd6uyOHDh52cnLp06bJr167r169HRUVpl+7Zs+eHH36wtraeOnXqrl278HDD1WBhYbFs2bLOnTsTOYWFhc+ePRsyZIiDg0PHjh1PnjxZ1bnh4eGDBg1is9mvXr1CEMTHx+f+/ftZWVmHDh2q6hSpVJqRkRH8kdDQ0LourGW69TLq6kM2bQbQymcp6gQqFRHWAPmb2C8TKoHVazjRqSo3Dc3LkL99wbuyB2AY78IfOkFkdEDIFKPu5VuOBP4n5a+jqqn8pUGQZot36Mz8sXqNqBjQHJUINWUlVj/vbwxD9NatWy0tLXNyckpKSng8XlpamlwuP3HihN47+mpxcnIirDJSqdTRsbYb46guPYwH/UAcms9YT3fqgsql8pTP5uGUOe9QqbiLBRI3lmJMA97WSOZk6qkOxQ+oV5dFapLLPq6EwDD+Ld3LzvIcoh01SfHx/YSQKYL754n85yXY6hiN/xDygvakVW6kdZ1JnoXPNIJSvJRiYWvU1QcAII15qOHrvkjJHDPrNX/jadHDq5hSbkQBNwaSf3uhiSvFAACYUs6/dVznLA2vWBBwDgCAkMjy5BjtnY40+7bMLr3JxmYI0wihUDUinkbALT25SXvyu/TU76j001CMxDap5c5IHHFEgLo4FwCAKRUqLX8FlGbNm/28jzjk+x2r+P9qw/Pdp+bWam2mLP6J9iwmvZ17PVawE1T5rzKZzO3bt1tYVLJu6sOHD35+fmfPnq1YVBvatWuXn58PACCTyebm5oWFhdqljx49WrZsGZ4mkUjx8fHdu3fPzc09evTojh078IUDb9++9fPz27hxY6Xth4aGEjZSKyur27dvV7XwrH//z+zsdnZ2dnY1eKbPzc2NiIjIy/sU6uzAgQPaS0+rR/U+QZUQbjTpZ6n/KUpLZ1q3gbU8sSoER9aSVhzDP1Nk8c/IzdvQWOWTu6ioDCAIiW3awC4qQh4wmTABkQdPlUukSFYS4uIplkjYs3+XKJRAUaUuVL15rkp5bjThJwAA4tZbyTHXNHi3uEQiqbeVXhtMJsHoxkodeRw6yjAMfJ6pjH+izkyhdfUhmVmRTCx1BEAQhMVi1VsMhUJx6tSn6Kxt2rS5du3aL7/8Uu8GvzmmTp366tWrli1bFhUVdezYsdK3UKXI7p1lT1hMfMqgwjI1twCQSOKnd5idehHVJM8CMM8hzI5eHCo46FVu9JakvrQ1YezrRB4frHk+hmJCAwBBZAlPTEbM0LZ+a89oHExCN73QXB1AGWmPMFw9Ga6ewqJ8FNEUkUwnBmtO9yF3MP10V5h8N09btRTtWdps8Q7zWb9WusBN+iKE3s6dbGxmtfIQHufByQQ57k3+/rEmbizFvFX7Zj/p+m1R80s0ZcUkAACC2G75tCpClhgBEASf+EQAnTNsGgAAYBiZY4YpZIhRudMAs4k/kVj1925hMXMDvshWU/hBFnLdyK0nUaRMT0IYRrSW7QAA5pNXUCyre8eS6ExMJqlNj6qi7M+CUqFowe9TbbfVHGyycqoaKvr5+cXGxlbMT05Ovn//fjX2xtrz/v17Ozs7Pp+vnWlqalpYWIinBw8efPduuduUN2/ebNy4UaPRvH37duXKlWq1WvusX3/9lTCN7t27l7BtPnnyxMPDo+GiEjTQNCp7EyeNf4Lhxo301w2XR/oynLDGaMQCVPHJJiB46Cu4f6HhXeigKs0vPbudONSIyngvnxKHan4pbiGpCsWHN5LYx/oVSV+WScFDX8H9izqZoif+gsDLOplqAU9Vks+7ekAcHahHAXDOnDlTMfPIkSN67OIrR6lUHjt2LDAwcN++fUVFldjxcHRNoyia978fMM2nN4MsKar09BZUpVSV5H3WfmGWRlb+2KIqZZnfcXlqPFH6U4R6zEM1+rFU58Tiw2swDFOj2PJItdtN1a0PGrsrqjOp5UZLbkxwzrY5vW4rdsR/ZmJVFeVIE55o5/DvnlXzSwljqQ6lZ7dJX0dhGo22YBiGrYlR972relaIYhhW5ndcRzzs460of/+KsN9yL+2Sv39VaS/aaKSiGutUg6ooRyMWYBgmEfDlOWnaRaIn/mV+x8urlRY0pJfqETz0RZUKPZtGIyMjjY11PQydPHly1KhRly9fnjlzZqVn1R4URVeuXHnr1i2dBagoimqbQ4k5z/bt20+ePPnnn38+e/bsnj17yFVHiUNRFP1odcQwTKWqpy/2xoDRvhuzSx8AANXWgWrr0HDHevT2XYk0qpBptDarqvIzKZW6xmggKKrtekpVnCu9vFP44CJ+KA6/JYl6UM3ZtFbtCdOo8sNb7pmt+pewvjCcuxpVWOxDtW1NMbfRycTkEoq5NWfoFKZbL6Bv8K8r7RyhUEjc0vv37y8tLdV7p18VVCp10aJFQ4cOXblypfYKuBpAEPaqY9rLmujtu5uMmYdKhAjlM3M32cQSU5RvJERlYoRKo7b8tCJmnxe5SIYdSkIBAOriXEXGp80qCInMcO4qVYOJwZoUPvZ0FGVsK1L4KPIfCei2eDQwF5vF6z252Zo+duS1jp9tG+f7n8Y+n+UxGTWbbGLBPbe90oC0ZpOWMVy6q0vyym7+rZ3/R3fy6Fak+U81ztfVbzML8t9+MkLKEiNUhVl4WpmVKkssd1RrPm0tvW0lHkLUJXll1/7C04qMJN6FPyvWqT3i8NuyhKcAAKCUkz4f47J6jeAMnw4AUHMLCA/jVaHMflcrHz0YRrxzCDiDf6z3jqYqFaGbm1tsbOygQYMmTZr09m25K6w///zT398fX1AaExNTvy5x9gwgaTUAACAASURBVO3bt23bNg8PD518S0tLYtWQSCSytLQkiigUikajqUYF4jRr1ky7hdrbVRobNbew9MRvxKHA/5TkeYN2ZGv4pcUHPlnMpC9CpNGBxCHVqkXFya2GQ2nWXHvHLt3Bhd5nDLNTb/zQqGv/qtZG4wgfXpW/KXe8RDa3atSI23WFatu6ojz0tm5GPXQt2KWnflfzihCGUWOE1c7MzBw4cOD6j6xZs2bo0KFZWVl4+vTp0xQKDCNaOTrTWgiZgooFkmcBOgEZ5EnRwnvnBbdP8q7sJRubmYyarR1mgUYCl33IOxI0SWWYuiRPHP5ppS6lWfMIlx/cb6nN6eD+UIoJDQAA2nKQiNGUu9no/+I0g2w0gXPa7+wGSg+uED/xBxgmibiHigWW8zfrfGMp3r8SBvlazN2E0OiV/Cdksir7HdnCxmzSZ9M6FBJY7UZKmUi50I983uO3TvEdhgeqr2Wgcg2QvgjF4/cCANh9vmP7TAAVIkZpQ2KZEHOWZI65UfcGTdOwvEfSXboDAGTP7kiff+aVECFTFGmJmEJGZptyBv9YfTuoTKwzoVt5NYmgoocdRVoi73Lttl5UoEpF2KJFi2PHjnl6etrb28+aNUsgEHC53NLS0o4dOwIApk6d+uLFi/p1CQC4du3auHHjOnfuXFpa+uDBAwCASCTCMAwA0Lt3b2L/rEQiwffVAgBSU1NPnTp1+PDhGTNm/Pbbb2jVK028vb2JFrhcbq9e+v9mrx+oVERr3YE4ZPcZU3GoUScQBpPlNYw4NOrqo+36lu7cDZ881y/KzJTPPKqQyPSBkwmH93gIm2pOx5RyYuMUmWP+FUW+RTUFv0+pOEZX84rKruru6jMe+D3F3FqWGCEM0t2i2nCuXbvWvHnzjI9kZWXZ29tnZ2fjaZlMppcJ0SYC9+xWWmsXZufe2pn0tp2YXfrSnd1NJyyp9Kw2HGSXB3lqqIbUoZfp+EV4ZoYIO3rs6qX7sQe9yGf6kqla705rJng+hhI3ljK7jYZNBYBEtt5wyqhbf0VGkjThSaXDFBKThQp5VX2qqvIzBQHnAIaVb+yrgJcVcrw3+R3n4vS2yNlU1OEf1QXX5aq2RHB5ujIzCQAgfRFS1X5lkhHbcsE2PE2xtCPsNPWDYm1PZpsAAGguPRgdvXRKpTFB8ncJCI1h1M2n+nYYzl3Npq2ptEjbfySJbWq19m+dChSrFmSOeV0lL6cqm+n+/fs1mnIzd2pq6o0bNzIzM5s3b05UOH78eJ2NuBiGYdjVq1cdHBy6devWtWtXOzu7zMxMDMO6du2K78d4+fLl6tWrMQyLjIzcuHEjfkpubu6aNWsIeV6/fr1jxw48rVQqnz59OmTIkKlTp0ZEROCZc+bMyczMVKlUM2bMyMvLw/RHw7dPaKORSRoeL4KYoELVKu35ueK/VgqD/21g4xURRz3g3/lsEkt7hkwt4BVsn1P71krPbcenFhqCXqboULVKEHC+Yr6aX1pycpNuZZUSwzA1twiffdHvHOG0adOqKd26dWtxcbEeu/t2qbh9ouIPIUt+rhHxsXoxMVi9IkqtyEp9l5E394na4qLy8Ymj4rSkak6p052g4hZW9bCgapUi84044l7Z9ermhgu2z1HzSzEMSylDt/lGWF1W/hYtlakr3whUEVlSFL5kQXDvvDThafWVq0ccHVR2/TCGYRKhQGcBB4Zhal6RRiYWR9zjB5yrualnARXfihqpKG/jJGINhCIrVVmYVenp9ZsjrNLGgs+04as0qVQqPnVHmCU1Gk29/XF7eHjcuHGDOGzVqhUA4PHjx3hEHnd3d3Nz86CgIAqFsn37dryOnZ3d7t2fxrwdO3bs0OHT0Mra2vrYsWMAAGI68MSJE5GRkQkJCbt27bKxadCoS19galXpyd+aLdmpnSm4fZLephLLWy1RfngriQmijJiDH8oSnireJZj9uAIAADAMlYp1wobpBZbnUIBVORwnszlMrQVjFRHcPcsZOgWhffSmgWGoXNKQ5Wr6AiFTOCMrmfkmm1hYzt+inSNLipYlPDGftpZsbkXi6N+n3aVL1fkR/u2336ophehAb+tWcnit2ZSVVQ2tquFEb3IXP3Wrl/FSkcB+8LzU76kW9MpHkPVD8sSf5VW5h1KETCFxzKhkJ+2tGhWxXnsMH246U4Rzkg9NWnN1ZSQ6PFDtP4TSbPEfyg8pmEqJezurAkT+Lp7ZpQ9CY5BNLauuVjO0lu1IdCYAQHh8o9n/2TvP+CiqLoyfmdlek2x6pyQEAiEQOqFJTQhFAZEqiIhKUREFGwIKFhBFwRfBggoiRZAiAaSFXkKABAiQhJDe2/Y2c98PEyaTbdmEEIr5//Jhd+rd7M6cufee8zxTFxK1e7qEq6chI4WQK3AnemzKw38IOvQiWFcWMuiq/t7oMmoms0Rz5h9eq/bW9iCqYzvBzZtXWxPDKexFyISEhOjo6MWLF8+fPz8kJCQvL2/dunUKhYIudN26deupUw/0BPGE0uAeobmipOzXFRYL9Rkp+jtXbG7vDIasW1XxvzMPoZaZaSRZtGpOgw9uD/2dK6aiHPaSej0F5388mdJrG7dJjdIhU53YpT7zj81VlXt/ZOciGjJT6edoU3Fu0aq5jdUANrdv3x45cqRCoVAoFCNHjrx582bd+/z3cKZHWBX/e+Hns5gc0Xqfoohaf1VdVVSIEEIUVbH7B8fb1+uXULL+Q8O9VHtri1bNNeam21tLQ+m16nMH6bYZMlMRQpVVyjlnzJ12mQpLKkrWf6i9dtr59jQKpX9vNGmsElApKm/hc05+C6ayQoseoT7jevmWVQghc0X1WIipNJ+dIc+gSTxWcXx3Y2aN9u3b96233jp9+nRmZubWrVv//vtvnU535syZ55577pVXXtm2bVvv3r3rHXX/wxAu7tay6/yW7dke0PWFF9imuioIAAA4nv6MTCKpqlCfPYAJxY3u+KxNPGbMsu+IBlC5c50x065Sq/eHP7Orsgx3rupvPibuj5i96njd1VMUq7aJFxxGp/7iUldBOxsamA/IuXPnnn322VatWr333nsLFizw8PAYMWJEWlpa3Xs2Y4WgbRf5qJmMr1Z96eGJzeooFugqKJ2a0qn1NiWnG4qk70j1mX/srZUOHKc8uNlakpsNokjaEJTSaWjDXhyD73oR41vi3/5+WO3iL4yo4y6tPr2fLC8u/+2zBzT2M5fklf20FABEQybZEB3EMMVLH1bt/YnJa3UEokhlLX8Vfstw14lvA0DJd++airIBgFJV2kwyEkUNEDVMurK+kTM3N3fPnj0ajaNasacYix6h7u6N4m3fOrNjxa7/mZWWWkoIoaJVc5nHnPqiS03UXD7OPIQac9JKf/6Efq1PSy5Z/0HDDusYc3mRxbOYxVOw8sh2XWqizX0pg06blMBeoj5/iKkxajCN3iGzwGKupXTjx6aywofXgHnz5ul0OvaSnJwcazHCZpzpEVIGXdHXbz7gicq3rVGd2oesygqtqdcvwZB1S5Xwt93VFFV1cIsxP9PxQeg5QuXhrVX/bGI3YO2p3Nlb6i4frNixVn3hcMGyFx8wWcFcVVb+5zekqrLoh4+s5wgRQpTZVPTNW6aS/DoPVXVwC7uc15ifWbnvZ/q1/naSuaLEVJpf8Mk0e7uXbvtWW1Fa3/bb7REmJSXNmzfPeiLQz89v5MiRIpHI5l7/NXCxDBwqijHobyXhttSZhRG96mfKzMJclEOW1ejyYEIx4+HJb9Xebeoi5YFfH9yqV316f+XOdcxbUl0JDitYpAPHWQj2M5iKclTHd7KXiLsNlo+c8YAtfHAQaS7btNzeWmPmTfYjKsbj4/f1OErWLWzw12cTrVbbuXNnC0dMf39/P7+HrqX+VIJIM0fh84AHkQ1+QdCuq6kw+8F979jwAts4sPPUXTtNVpU6M7VpSE/mh0TSXtkME7v6/WZqa6pLxlH+7Cxxl4HeH21qsG8DDSFzcx3/BjIb7WnQm/LvAkly3Ov+LsRdBwk71XwWQ3oy4VqtncYP7QSIIqSuLuPm2tudqiyh7peROI/dQLht27Zbt249VtXojyEcd1/R6Fed2dL7vQ01GSIspINfcKw55ABJv9FSlrctR+Ejvz+fbC7NJ5Xlxpx0UvmggZBwcdcmHmPeVvyxmhYVtIe5tMBeUQHPr6XblNqu3xhmzLhu2+SsCaG0KgfG2ZqLhw1p15i3blPfY8rOMA4PHmxMyQIej2fTB9tgaPyCxf8CuFDiNsWGrWC9IFw9kUGnu3JCf6vhNWP1hevXUn/jgmPlXgAwlxVW/bPJumzJlQ/BUuxqWR0zIxjBUZ/826ka9roo37KScPGQPG9bC5Dr21LSb7QzxyHcPMnKUuaKk/QZKWF5P1XsXKdNSrApEUAjn/Yhpz7uvjR2A2HHjh03btwoFNYK72+//XZ9T/DUo/3nF0pbh1qmLvmsPaNzSqsuWbfQ5qo60d+6zI5JlFbNSEVoE4/qks+4z/qEF1DLREadsNuUn1mvswjb91C8UpM2KR85w3EmGwAy3E6yuYLUKK2rmjCh6MF9NR8QQupqLd7III+dJgivTr0zFdxTHdnGrHKf9Unj2jBxOJyCggK2WgVJkps3b+bzbZVdN9NUVO3ZyFH4SPqMbLIzcjz8cKkL4HZv0TT8Fu1cx79ZtPJ1UmlpX9zHGztVWHeKgPrMP3o7F2y9MKSnGO5cNdp5qMUIjk0PRXuoju0AhLSXj2lql+fLh09Tn9rT6GL9dssnwsPDv/zySz6f36FDB9ok02QynTx5snFP/xRAFmWRVaW4SOJgG+2VE+Kug2yuwoVijCcAhBowNKFLOsFv0wlC7+cKU6QpN51+Keo+FONwDRkpuEjKHl0xZKQwVt1Oovr3T46HH6VT40IJAPCC2zqWpee4+3rM+8rmKu2Fw5Rea1FEzwsIddaK86Ghv3UZ5wt4LcJtrsUEIqTXgkAMAObiXFJV03dUJ+wWhPcAvqNvv74sXrw4Li6uoKDA19fXaDRmZmZGREQcPvxAIkTNPCCy4dPI8sIGJ900DK8F6+reCMMwDofrFcAWPqTp44Vtu4vmOxJ6AgDwmP0FJmiEqS6fj39THf+L1Ose/FCCsCh6esWYk26hyMP1bSHt9yxbmaRRsHtH+/rrrw8ePOjv788EP5Ikc3KawuXnyUL60hJuXVYDbhMX2BXBwzCLMjXnkcW9hAvFan31oBkukXu+/V31OorCxTL9qb24QMwOhKKoZyhD/X6pZFWZ/s4VU3GubMgERJoLl77o+/lfjndRn9kv6tyfDpxsBOHdAbPxhIsMuort37pNfvcBJyqsjosog9aZm5f+xgWuf2t7gVCXctaYecP1hbcAQNgxmi1TYsy6xfEKTBa16SICfh3af86iUChOnz69ZcuWM2fO6HS62bNnT548uW5n0WYeJryAkIKNi3kt29s0i3i06G8l4RIX68fTPt7Y3HMkAsLxRfWAFYQMmguHxd0GG6CRLgMAAHAZbcNTXdRtcCOegsZuIHR3dz916lRISAh74ezZsxu9BU86ZFG2waznh3ayu0FlqTH7toM8ZsPdG8Z7qdJnxgIAMhlJVQUhVzhjBkZWleBC1l0eIdXR7bQfW8XW1fK4adIBY6H2RaA5f5AfEmkvmcUmLmNnm4ty6PoBDMMlA56rcxfdtdNcn2B+y/YWywlXD5xv49kT4wspjdJcUcwk+zQKuuvndVdOWFetWCOPm+5ArlfQphNH4Q206VpRjstzrzGrXCe9gxGciVuN/8aiUHnjRPGMjAydTjd16tSpU6c2ygGbaRRcnn/jMYyCACDqMoAss9FD8hNjUi52qxK1dWkKTT7N+UPmomxu75EgsJEM8ZhjdwB6/vz51n6Y771X9z3lvwZZlK1xONWsv3nRcPuKgw1wodiYc4d+XbVnQ9Hnr2jsVxexqdyxzlR4j72EyVIR94rl+AQDjpGVNU4FiDQb7t6Q9q87krFR/fsnLnerVhPFcdnQSXXu4jZlIT/YxpVZvmkFW8ufjfuryxs3CgIAx81LEOZUnZ/+5iUAuzcLwsWDFxQGAIBAOmAMe5W5ICs1NR0DaKwoCACjR49+7bXX6t6umaZFaCWh+ZiAC8SM2K8FTk4TNgqKae8b0lPIiuKmOV3jYjcQ+vr6JiUlTZgwgS6cLykpWbFihbUxUzO89j3lI192sIEoaoAsbpqDDbg+wYoXq02GhRHRblPfc9L3XDb8Ra53cM17DPP+sFplWxjZBxeIjRnXq/ZvqllPcNxfXqK/4ygqW6O5dAQZ9AVLpyCT0VSUXfaL3TKDGhAy5d+1XiwI7+4g0aZs03JKo6xX2xzD9WupPLrDmSuzYts3yGQ3LZOsKst/fyyprJBExxGutVyB9LcvZ58/NdS3riz1+vDSSy8dOnTIYiHbqreZZpykKQMhpdfIR7/C8bUdkh9z7AbCQ4cOvf7665GRkV26dAEADw+P+fPn05KezdQCJ0w56Q7W6+9ctZ4ts0CbeMyQkaI5e4AfGils30PQ1ql+DC8gxGJAz1SYBQgBRRUumQIAvJbh0mdqejCUXqO/nWRtX+IYz/lrCLlCEj2ClhjluNXtD2e8l6o8bMMqWtJnpIPBJWQy1bcmT5d81oFWRfmWlbzAEODUPbvmMXelg+RPQubm+fZ3hC1ZUXHP2P/J4wb7NGYg7N+//++//56SkqLVauklZWVlp0+fbsRTPLYwVosajUapVLKXNNMAmjIQak7t1d+40MjT/E2F3UCYnJx89uzZhQsX0oEQAAQCQWhoaHZ2dlO17YmhfMtKe10Zc1lh5e66nx4odWXFllX621cAgCwvLt34cd1nRahg6VQLBbWKrV+TVWUAiJ6SxIWSWimjqZfNRdk2paUdQNsHyoZNxngCrlegnCV9aw9BWJRsiJXxGEJFXziquXSfuYSQ18880lySZy7Js7cWF0nlw6fVOa+DzCabJZ41YBjXO8jmGjXi5hVX9vVszED4/PPPL1y4MCIiQiwWYxiGYZi7u7uFVe/Tx7Vr1z777LMvvviCfnv8+PE2bdr06tXr+PHjj7ZhTzShckxHomx1U8RCUdQzFk6ETxB2A6FIJLJOVDMYDM2FvdYoZnxsr89HuLi7v7S4ziNI+j3rtegHt8nvAAAmFOHOZTNLBz5v8fzlNnE+IXMDnHAZNwcAKL2m6POatCteq/bSwS8grcqZg9NQek3lju8AQHslQXlwsyHtqsaJ3zrGE2BcvkWQRhTpeMhXc+Yfc2m+820DAOnAcQ484l2efdVUmF25q44HEcPty1V7f6rXeRnOJ6V+XrJRSDTmjcbT0/Ps2bMZLFJTU2lvlqeYjh07DhxYy4YlOzv77Nmz48Y1voPKfwcMINoLP13UFIGQ69tCPrrup+THE7uBsLi42KJqMCsr6/fff2/duvXDb9UTBtc7kDLqba4yF2Rx7HQmaoFhGE9Aj3PiQoml/IqdXax7XRzvIMAwU8G9yr++BwCcLxL3HlGzB8EBgPI/v6774PfBBWL3WZ8CAMfdB3DCXJLv5GR4+dbVxuxa2twYwVG85MhCyJCRbC6yrM/RXklwsEvZT8vY5e1sKK26YutqjsIb49ZRis71a+Wk5oU1f5tal3cd27B97bF48eJ27dq1ZBEWFjZlypTGPcvjz4kTJw4fPnzx4mOiyf6k0mSjo9qrp+zJhjz+2M3Rf+edd3r16iWRSDgczpkzZ7Kyss6ePXvw4MFmd2xr1Kf2AaLYRhAMZb+ucJ+5tC4pFkuq9v4o6T/G5qQUgyHtqu7qabrnx1D+62fykTOAoqqrLzBMNnQis7by7w2CkI6yYfW5pVIkravJCwi1EKlxjGzYZMK1VhaoMfOmMS9DEj3C3i6u49+0HKJEqGLzSlFkX3sTD8hs1N+8JOhuQ2+e0lSRaiXHw08+4iXHTcWlrnx5Q0qpEMCeQsHbg9sBNOaNZujQGo86egxGJpM988wDGYg/PuTm5hqNtWTDOBxOYKClsVzXrl3lcrlAIBgyZMj27dtdXFyasI1PFX28sR9vN+bQvT34wW1rVXM9UdjtEUokknPnzg0aNMhkMh07dkwmkyUkJPTs6chz9Ynm6tWrX3755b59+z7//PP6KqwKI3rxQzraXCUfNdPJFFA25uJcsqquHAGM4NR2vwQAUbdBhJsXr0U7+f1C1JLv32MqKARhUfzWHfmt65KaYGHIvFmxvbpIv2Lrau3lY46FRhkEYVEYr1YijzHrFpCkg11sTPhhmGLGYgdyi+6zPnWf/bnNVRwPP/eZSwCgYvu3jpXHK/78Wne9IYpNV0qRG9csXD2tAfs6YM2aNczr9PT0P//885tvvtm/f3/jnuVRkZOTc7c29+7ds97s0KFDdLx0dXW9ft12yU0zztDRDcvVoFLbI1aNCccroE7Xp8cWR1XbYrF42bJly5YtY5akpaVZlNg/Nbz11luHDh3i8XgikeiLL7748MMPnd+X6xNs4eZlLs4t+d/7nm9907DaI8XLSyyWqBP+FnV5hu3kzm/dwTqkibsPBQD9zYsYh0vX+HNZnVFR1ABEmgs+esF3xU5wDq5XAKOvSOl1qmM7ZYNecKaDay4rLNu42GvRBmaJpK76Rd21MxhfQAsCVIOQNvGouTjX5r7IqFce2sLx8ENtbHhwM6ppyGQkleUO0nB4QWEWgsVO8k8OGhLIlYjt9nEbRl5ezdNAeHh4eHg4AKxevfrBj6xUKgcNGtSjRw+DwRAeHj5v3jz2Wp1O9/XXX0dERGRkZIwZM8bf3x8Afv31V4FAYDabFQrFsGHD6jxFcnLy6dOnb9y4sW5dtTxYfn7+pk2bIiMjU1NTZ8+e7eBhGiFEUdV9l9zcXDpHoaqqKiwsrMEfuRkODkP98V33qFfC6pAt/S9Tt3wJm2+++Yb5fT9NZGZmKpVKHo8HAC1btnz77bfrFQiRUV+4YqbPkt9rFhGE24T5hMytYe0x5WZQOjW7l2kquEepq9iBUHVkGz800kI4tGL7t8KI3oaMFI6bNx0IXcbWiAEVfjrd672NDgYnrcHFcmH77vRrxfQPSGWFtaShTTiunsJO/Zi3yKBTHf/L5ugxg9hK0dhUlKO/c03Sx7ZVDaVW6m8nwa0kvkcguFr+q/XXz3EDQnktwt0mLXDc1Hr9Q9jE51DLoghZ9xdVqnrkH9nj2LFjdBi4d+/ekSM1Eg203GijTJUZjcaoqChPT8/u3bsPHmypU7Vq1aru3bsPGTJEp9ONHz9+7969169fP3/+PF00NX369Pbt29PR0fEpgoKC/v23JqPqjTfe+O6777y9vf39/T/44IOvvrKtQ3v37t2LFy8KhcKEhIR+/fpNmDDh6NGjZWVl7777rrt742iA/WeZ0Ar75npzIHSE3UBYUVExffr0lJQUpVJJ3h/RMpvNT2sgFN/XC5VKpTbHamjKy8vT09PXr19Pv9VhArLTaImE396/x4Fb5smtMA4O6sN/iPqM5LTqQDocCWRjpOB0ETxz36tLn5tuyrrFYUmUycbNBQD2AY15d7ktO5D3oRfi7r7A5YuHTsZwgl6oPXuA4xNEq2hyA8MowMRDJzvfMO25eLKiWBr7IgCYS/J0SSckg8ZjtUVY2A2gMVOwOQOZAsbDzeqOsmvR3TbXb5wPrH6LYzChJSaq/etDHC6lU9caPpW6ykbNxP1a2W6wXKGYt5pSlmtxvvUGkthpGJdHkqS5NN+Ydk3UM8b2J6TI0jXz3d9aY3utFZdKgba2MVNwsxL18qBKNy7DB00iazt0Eg4tG20il8tv3LixevXqGzdusAOhQCCIjIz88svG0SUfOnTo6NG2M4N27tw5Y8YMABAKhRkZGYWFhbt27WrXrlohyM/Pb+/eva+//joArF27dvbs2Uy6wIYNG6ZNm0Y/R3bp0iUhoSa/SavVXrx40dvbGwDatGnz559/2guELVu2nDu3xmSuRYsWLVrU0U0vKipKTEx0da2ZSl+2bNn06dMd7PKw0Wg0jzaLwmYD+rrCy+W8m0XqwIc/hafT6Xg8XgN+/42F0WhECLGntwQCAYdTR5fP7urvvvuuR48es2bNYoooKIpqrKvxcUOn0zHfHJfLdVCzpVar8/PzExMTq9/yFeA/UqKjEkNmHrmKvPnkABeV9tIRXt9nsfpMNF4sxaacwO6NrR4X4nTozQnpxHyXpnupmr/XC6JHCrrU5JeLx78FAKb70Av5veIAQJNyntuqPS02bSovpggO5h8KAOLn3zCZTFUbF8smvYOJnOrYIbk7JpTSxye1GvXhP7gR0URtA0V2A2iulGMfJGIr9LtJnHuhVRwAAB5yLOpDsqT6A54pxvgYOT64Vo6J4doZY/o16TjWeB3BJUI7F38yze39n63zZcjyQrK0gOPpb1RXmqycog3Xz/MjooGkSI1am3iM28W2+wcyGjCpm/Ozwq+dwVtJwYUHALAsEuEUibl4mE1GiyM04EYQFRUVFRU1ZsyYWbNmbd68ub67O8nFixe5XO7du3cHDhzIBDma9PR05nFQLBbfvXs3PT29f//+9BKpVJqRUW1LGx0d/f77769YsQLDsHXr1oWFhfF4tpVac3JymHsQn88vKSnR6XQW5m4NxsvLq1OnTowKD47jOI7TVjmPCoTQ49mA51qQ/xSJ3ol46J1CgiAeh0BYX9syu4HQ29v7lVcslb+rqqoa0rTHHldXVyb4qVQq9jOmBYGBgX5+fkuXVvtFUBSl0+nEYp7y4OadkrCjRZ2Gt3AXLf61vg24p6OK9KSJEEjppw6E9NmpgrbV/koYgRtcPVHuHUH0cGYX5aE/6IxQk8nEGJprL/6LCSX649tF3gFcFwUACEZV+7+birK1F4/IR7ykU3jxeVzcOWFcQQfWHGfLtsSsTwW+QRaeguwGMB+nny+aFNjOXJI7sycPADRnD4i6Dcbui7z8cIs6tl0OPAAAIABJREFUUoi/GFbrONywTmZ3Lz7rUPob5/XXzog69RXw+dbGbJqsVDI3HS8vwIrzBa1rZc8CQmU7vpV3GQA4AS3bimZ/bldTWyAQzlpme5UVhTrI1pgujeZyWG0RjJujUqkEjSQ0LBaLbSr6nj9/vkePB9W6lEqlkydPbteunU6ni4qKSkxMFN1/gKB/yeygpVQqNRoN8xxML6FfR0ZGUhS1ZMkSFxeXiIgIi/o/NhqNhv0wzuPxlEplYwVCACAIgn21NsoY9VPJxFb4W+fJJgiETyh2A6FAIKioqLAICU/rYH1YWJhOV21OpFQqO3SoR14lDS6S9sC132bpKvN+cxnzen13T6tCAJCuRJ0UGAAg0lz28yd+K/fSa/khHS2yUpHJqE7YzS6NoCHVVZhR7zb5Xa5XdT66qTDbXJIn7NCTUlUhvRYAXCfWw11ZeegPfou2jLeGk9pvaUoIkbHSeRCq2vujiOXIODwA++ASSSKC7RBDuHritVVgcJmC1zpCbMd1RdipryC8OyBkLrIqw8cwj7krmYCtv3WZ37qDTdEDY+ZNU8E9cS8bBRjWHMihBvvhnNo3E82Fw2ahHCK6O3MEZ6CzY/R6PfObNJlMP/30kzOB8MKFC7t377ZerlAo3nnnHaVSGRwcDABCoZAgiIsXLzIdPhzHZTKZRqOhO4UqlcrFxcXFxcXeA2Lnzp3/+OOPvLy8N9+07UhOw37EpChKq9XK5fI6P0UzjU5fb6xMDzcqULhrHSO3FIJ/89CPt6kqIwqUYAFirKcXNsTvKa+asxsIJ0yYsHHjxtatW3fo0IF+2jWZTP/73/8GDKiHy/CTgpubW2RkZG5urr+//4kTJ2bOrLc+gqTvqLYAwesvKzlVDah4SlcCD4e0qupAiHG47rNqtK0rtn4tHzFdm3iMSZ7EuDzvD3+2Pg7t5WTKu8sMJJoLs3Qp54QdejJhSXV0u7B9T+vSC5sgkwHw+mVUAUB6FXrGFwOAsk3LXcfOwSVyr0Ub2H0yfzHmJ8YulqCenjUXmCk/s3LX92yneF5ACC8gRH1mP84TiKycjSllBS6R4yIpZjWUjQw6XFLzPWjOH8IIQtDORnKpqTDLcXEFm/gcFBdoPUJbRPEbU/8sPj5+xowZBQUF7IXPPvusM/t27969e3e7IXnu3LkDBw6kf94Gg8GiF9uuXTuVSuXp6QkAWq02NDS0bdu2TB9LpVK1bduW2Xjt2rUxMTEKheKDDz5Yvny5vYkxPz8/ZpVarQ4ODm6srnMz9QLH4IVW2B8Z1PIudgctTRSsTqF+uEW58eGVMDxIgmerUY4GTU+gfu9P0Ff004rdnvK0adNmz549dOhQX19fNzc3Nzc3Ly+vAwcONGXjmpIffvjh9OnTBw4c8Pb2njDBSiezLkhlhfKfTe7hkXt6OiEKY8WdKtTXB0tj6ZVyPHyZkgxTURbGEyj//ZPSV6swU+pKc7ENjU1TboY26UTJuneZJYIOPWndI/2NC8bsOwBgKrhnrixxsmHyuOn1qjus/jjKanM+XCAm1ZXGzJvWM3yxAVh8Tq06X0Lmyg+pZeuouXBIe+kIIXWl3RAtUB7crL91mdJr1N+/a7FKe+UkW3HGdczr/NYRNpsq7hkji3FKYcBEwdF8api/5SUji5nC69qYTqFbt27dvn07W2Lt1q1bjdKRmjBhwpgxYwAgPT3d3d2dlhGeMGFCUlISALz44ovnz58HgLy8vIiICDc3t/HjxycnJ9P73rp1a+TI6rTe1atXt23bduDAgZGRkePGjVuyZAliyempVComfPJ4vBEjRty8eRMAzp49++KL9dO5baYRmdgK/yMD2ZN+UJtg5GHzyUJq+0AicTTnlTB8qD82MwxfFkX82o94MYEscboS8WIJROwyFzWCU33T4ciYd9euXR071hqRW7iwIXf5JwKxWPzCCy88yBE0Z/bP6CRYphk7N7zeA/HpSjSpNZFSXvMrrdqzQdixD22G7vnmNwDg9e7/GA1S/c1LhowUXrBlfZUxN92Yc8dlbM2EGYZh5oIsQuqqu36e3zqCFxjqNtkybDhAeXirpPdwdtmGM6RVoRA5BgCuL7wJAKX/e18yYIxFJV9MAD7/PLmM5RCMS1wsBnuR0YCJJPaqdCV9RnA8/HG+iN9ruMUqfot27NJAXOpiLsrm+ttQB9RePs4PjXTGcPV0EQqRYV5W01vm0nxzdjp07lvnEZykT58+0dHRFgsbRWJtxIgRu3fvNhqNhYWF8fHx9OzduHHjgoKCAGDmzJlbt249fPjw3bt3f/rpJwAICAiYNWvWvn37qqqqPv74Y4Wi+hscMmRI+/bVKc2dOnUSi8Vms5meTdy5c2dmZubgwYPXrVs3evRoPz+/r776aseOHdnZ2Tk5OfWqSmqmcYlUYGIOnC1Cvb0sn0qLdTD8kDnKHVvXm7D2sx/kh01ujU1PMO8byqmzV/hrBvbxNcpDgB3Pp15o9eRMSSI7nDx5UqvVWiw8evSove3/IyxdunTx4sXMW5Ik1Wo1/Vp5dEdpwn7ZJqPGVL9jFmiRx+/GkwVUr701e+pSE01FOQghQ/ZtTeIxhJAxP9NcUVJ9XlWFqTi3+rxKJbMXZTKS6irKaGCWmMuL8pdOQQhRei0iSYSQPiPFmJvhZNsKP59lLityvA27AQihcj2S/2qsPntFSVX878b8TESaLfYyU0jxmzFPQ7EbX7xukc1TlG9ZZb2Q1KhsNgAhxP4PIISMuRmFX75u88hFX80z5qbbXGXBOxfMH1+2/BQIIe2100U/LnPmCE6yZs0ak8nyN7R9+/ZGPMXTwblz53r06MFeYv1LaGIe8wZ8dpXstMsUn0OxF54volpvMy1NIh3saCRRjz2m1Sl1bPP6GXOb7cYbZaY118lXTtm4WJoAg8Gg1+vru5fdHmGfPn3oF5cuXbp37167du1CQkKeGsHDhwE9PxelMh/LtzGT5AC6/xQix+iUGRpBWBQ9NGpIT0FGPQBoLx/HhWLpwOcBABmNhIuH9aGQ0aA+ucdUnMM4/RIuHq7j3wQA/a3LtFGDPjURF0rsWVpb4Dn/W7v5lna4U4VCZPc/PkFozh8Ude5vkWgKAAQGA/3wQ7loemj1xhiOQ20/Qs25eH7L9hyvAEPmTWTQWVgGFq183evt73CJXLvjW16fOHY+Uen/3nMZM5v5jFyfILkdb2TFSx856f10IAf93NfG/IogvLvR3akJVyfp37//e++916lTJ3q6DgBIkty3b1+zD0MzD8g7EXigBN69SL5/CV4Jw1Mq0L4sJOTAR53wqSGOem9cHLYOILrvNQ/2w9rbSbdZe5O6WYEShprdxTwSsHU3m0LgtLGoFQg/++yzCxcuBAUF+fr6zps3j85y7tq1q7u7++HDh5999lkcx2/duvWImvpkEBOAx+dScYH1KKNJU6IQGeYtBD0JFQZw5QMAGO5c1ZyPd5v6nrTfaAAMACS9h6P7AlQVf30viR7O1FcwGLNStZeO1BJwwTA6g7Ri+7f80EhcKJEOGAtOh2nd1VOirnaT4+1+HHn1CQipqyR6hObCYZvK1zH+2IEcNJ2R8sYJj3mr2BvoUxM5Cm+OV4D3BzZsksQ9huEiCQAQQW0sojW/TWdC4V3zHid4ASHIZLQM6hRlKsomXOrOhc7RoGId6uJu4x+HYTiqKAZfS9noBjNkyJDy8nJ2NZhWq42NdSqvtZlmHEBgMLEVPqEV/k82+jWN6uqB/RuLt5E7dTsIlmILI4jlV6mtA2zf3H6+Ta3rTci4JgBo74ZVGFCeBvmJn4wUm1pPAX/88cekSZPWrFmzcOFCdq1PixYtZs2adeLECYtMtmasiQ3A9mfXz4uAmVFrLcMyVNX7ctx9OV5BAKA5f4jONCFcPDCs+vsSdx1oIa5Gw2/Z3m3qIlHteoPib+eTynL3mcuq6wcoklJVOtMwZDRU7Fxbr89S/XFYU4qC8O7i3pZzeDSxAfi/eZSJ9eBYtf8XZKwxvHSbspCu3DBm3jBkpFjsLhs6ke5o8rsN5QW3rb1qkoWno+rYTvWpvRZHMJfm1+lWSLM/G8UE4Liti5pUlmu3f+PMQZykQ4cOGo2mnIVGo3laK5eaaXowgLhAbMdA4t0IZ6Mgzcww/EgelamycX+7VIJ0JPTxvj+6A9DPBz9RUGvLfdlUvrYpDKEaQK1AGBwc7GD4xdfXNybGjk5VM/cJd8VwDG5W1uP7pqvuAIA9Okq4ecqGTkSkufLvDYAoACArS0rWVScrCTr0tJnAgvEEupSz2qQT7IWyQS9gPAHdeQIAfeolex5+Vkfje75Rb63nNCWEsK4urk8wx83L5paeQmgtw86yXEN1KecoXU0pgv7mBdp6wlSQpbt6ir0vWVVW+r/q4V8yP0MZXyP0ai4tKPvJskZe1H0IL8BSL55w83IdNw+cID4HxQbYvmUQcoVwpKX0xIPw5ZdfWnhiEwQxZ84ce9s300zTIOXCzDb46hQbY56b0qhpIbUeFPv7YMdZgfBiCXoxgezwl7nPfvOa61TFY+bvXisQ0sljAJCYmLho0SJ/f//OnTt/+umnFRUV9HJfX1/LAzRjRWwAdiCnHoEwvQq1lmEAECqHOyzpntIfPgSK8lq4nu73EHJ3yTNjAACZTYXLbKehm4pz1Cd247Xl08S9Ys0FmRXbq+U0+W2ixNFxzjQMkWaov1RS2v2P4wzDA7EDrCIKrwVr2TN2VXt/pjuvou5DZMOn1W4cxWGU3giuubRmrAKZTRwPyx8q1yuQG9AaamePI7OJ61e374SehJOF1GA/O5MoGEbYykdtACRJFhcXd+pUXUOyY8eOtWvX/vvvvzk5ORERtss/mmmmKZnXnvgjg7IwddKTsC2DejG01lXf3wdj9wjX3qA+iCQKJnHf60icLETPHTGTj1PnsNa1zegtdenS5fPPP58wYcLq1as//PBDRlHCnqJgM2xi/PED2c5OFCOAdCVqLccAIESGpSlZvw6cMBdls97i4h7DAAAQEkXZljXguHi4jHldEBbFXljx59fm0gLpM8/TbwmZK8fdKYtEU/adym3OqlEzpLPmCOskxh9nPzQY0q5RmppqSsWMxYSrBwBgBMeQnszekXDxYEyJCa9Atyk1NSFc70D5yJetz1X190bNpSPsJeoTuzSn6/b5SyhAHdwwN/viharv3yVVFXUexx4VFRUDBgzo2bPnsmXL6JI+mnHjxk2dOrWgoKB79+4jRjSy2VMzzTQAbyGMbYGvvVlL4/7ve1SUOxZQezqwnSumNqFsNQKAEj3sz6Gmh+I8HGIDsB0DCQ4OK64+Rtk0jjKFgoKCrJ2jm6mTgb7Y5VJUZddNthb5GiTlgowLANBahqWzAqH7zKXaxGO6lLPMkvJNKwwZKRiXZ/NGDwAYX2guL6LUtaYAuQEhhKsXEx1NuemlGz92pm0cr4Ba7oBOUKwDDAOF04K3XT2wEj3KUld/avXpvcactJrVGMZU4ldu/5ZU1gQbQ3qy5vxB5m3V/l8Y/QHN+YOGdMsJRQAQ9xjGcfVkL+G36mBTbsaCAzlUbICjK0XQazjOb7h+pk6ny8rKOnjw4NKlSy08/2Qy2dSpU7dt22bh6t5MM4+KdyPw729SGpYB6y93qOmhlhcIPU2YUIgA4IdUalwLnHmUxDHY3J+zPpU6XvC49AprtT4/P7+4uLjiPnq9XqVSMW/LysqysrIeVUOfIIQc6OWFHclz6nmHPaMWIsfusCoodNdOEW5eos41nT9BeDecLzLcuaI8tMXm0WgNUmSu5RIs6R1nSLuiPlPd9SHcvESdnKr+xoUSfpvOzmzJ+jjVmjJOgmMwxA+Pv98pdHnuNX6raiEbZDIWf/MWs6Xi5Y8JSY26irk4ly2Npks5y2QAGe+lIrONsMELDrPIqeGHdHSmjOSA/QnC6iP3isN4D6QcFhcXR2vHqNVq5opjNO779OlDOxk108wjp5UM6+ON/3jrvoWyBl0uRaOCbDwpDvDBjucjMwU/3KJmt6u1gZcQNvYhpieQ5QYgERzLR3POkueLH1lcrFU+ce3aNS8v23kNDFu3bn2Y7XlKiAnA43PRGCdsz9NYVXceAgCAMkN1j8pcnEfpNYSsRvSEHhrVJZ+x1//ACEIY2deiHkB/86IhI0UeV21DgYukkr62rW4t0Fw4ZC7Mlo+uRyYI++M4SUwA9udd9GpbAACMw0MmA13kgHG4riyJHI67L6mqYGYQLWSyPd9aw6SJur7wFtih/I9V4i4DBeHVapxFq2a7v/KJY//kO1VIY0YRbg83C9zPr3qw+ty5c0eOHFm5cuWUKVPi4uKY5DUPDxtlo80080j4IBKPPWT+LZ0a2wIv0KJxLXGhrYr0/j7YF8nU7iyqpRSsr6DYAGxMC6zffnORDgVJsO6e2NQE8uqzHFG9tY0bgVrnlEqlS5cutefkRJIkLbzUTJ3EBWKfXyMRWMsVWZJWe0atlRRLq0IKTwwARN2HFK+aIx8xg1lrvHdLl3za3rgoAABOWBuyI9LMaxHO6LEhk7F4zXyvBXXXRXDc/eotrlafCUKaYf74a2dMepIQEKA+sYtw9ZT0Gw0AgGFCVs9Vl3LOePeG64S3mLdcn2COe7WXsbkkD+PxCbl76bpFHnNXYjzbv2Fxt8EYt2YVP7htnR/wQA6KC7RZN9GYMLPvgwcPHjx4cHJy8i+//IKznKfqdBZtppkmo7M7ljeRe6oQ7cykDuSgnQNtp9SFuWAGEn2USH3SxfbMwmddibYu1EBfrIUUA4BJx8nFl8lV3R+Bl2Gtq6tjx46LFy92sHVeng2h52asaSnFpFzsalm1m4QD0qpgMivlMFSOpSlRD08MAHC+0CJVEhOKKK1afWqvoE1njqe/k40RduilvXSEVFXQipoYwbGYKrNHA+S206rg2eD67eLKh/au2MlCNMQPE0YNYAKVqeBe5Y61TIm9oF1XdkKp9uJhca9YJhDqUxOBNAsj+wg69LQXBQGAkSDQ37zE9Q5ii7LaIz6HerVtU0smtmvXDq/tv4jsqiU308wjgMCgvw/W36eOoNXfB08oQKNtDZwCAA+Hl9vUrPq2F9HhL9NzwXgvKzXUh02tQDh//nzHW7/1lt1Bp2YsoIso6g6EShQir/kphMiBKSXE+EJx9yHsjblega4vvFm6/gNruW0HUBql8V4qzkxi4bhihqPHHQblv1t5fq2cSSdhSFOiUHm9w0ZMAB6fQw3xI3j+rRFVnZCGCyWC9jUOfITUFQuq0RBwGTeXYBktSXoPN5fkcRQ+siF1OIeUblgs7hlT+dc6Z0okNWY4V4y2D3zogfDChQuJiYmMY1FxcfHly5eZtVqttvkZtJknkakh+FB/xHXuAlLw4esexKzT5OVnObymffisFQhDQiwrji1o3bpx6qUeE65evXrgwIGBAwfSFm7ffffdjRs3ZDJZXFxc374PaiYQE4AvSyI/iHT0fVIIMlWoFWtSLUSG7XdYg1i190e3qe8x1fHOQGlVuMSFLdRZseM7l5EvY1YTjYg0U+qqmo6X2cweSHSGDGU9iggZYgOwF45RX/cAzaUjptx0l+deAwDCxZ2Wb2Uo/f4910nvcL0DAcCUn0mwEnkwgaj8t8/dpr1vU3CHjajLM4RE7v3RJoyoe7DxaB7VzQOTP/yioW3btm3bVkvlYPPmzey3Q4YMgWbqgiTJ3377Ta932jGosdHr9Y/WcLHBDeBwOCNHjmx0AaNh/hg4r+gIML4lvjUDrbhKLuncpAOk/+mJBy8vL5Ikmdw8sVg8ZMiQ0NBQxmLmQejnjV2vQEzmi01yNciVj4lZX0KIHEu77ijd1JCegnG4sth6+LpxPPzYbrcAYMy6TRn0hFUgNGXfqdr3MzMa6aRRH0OBFoQcaEDYiFRgGjOkK1GgTzDGspU3Zt2SDZ3EbCbuHYfzqy/ysl8+9V32BxPLMZxwGTe3zigIAKLO/Z1vWHwuinFYONFY9O3b14F2jF6v37lzZxM040mnoKBg9uzZEydOrHvTZmpz/PhxHo83efLkujd9yKzrhUfsMr/elvBseEVSvflPB0IfHx+2s7arq2tYWBhJkg52cR4+Af188MO51AT7plyMuBpDiKyWB4U1ihmLi7+aU69ACAAWPUh7mTJcv1ai7jU6pcrDW8U9hrHTVh1Dq4fXq2E0GMAwf+xADpoXHlIjhEaaMU4tpTFxj6HMa8X0D2v1aDFM0LZLA07tmPgcFD+sKQLhsGHDHJtLJCYmNkEzHiGnTp06evRoz549hw6t+ZZ//fXXoKCg/v37O3kQhJBCofjhhx8eShOfaqZOnfqYzEP7ibHxLfE1N8jlXZquU/jkGCc+fHAcd3NzUyqVX375ZaMcMMYfi3c4zsnIbTO48oGLQ7F9c2dSWSaLs+HkUC+0SSfYxekMykNbqoW5AQBAn3IOmeoxymT9cZwnxh+Lz6FMhVkV97VsBOHdac8pBlNuRrWIKEJcn+CGnch5rlcgHIO2Lg993t7Ly+v11193vM3HHzulgfDk0q1bNxcXF41GwywpLCzcv3//Y3J3bqYpWdQR/yGVqmxCDYmnv0eo0Wi2bLEsP2/Tpk2/fv0sFkZHRysUCk9Pz/Hjx7/7bj1s3O0RG4B9kEguumR3g1OFNvKpQuXYnSrkKbR9/zVm3TEX50BtfwmbnCxEjIynrwibF15zIu3lE7hISsiiLHbBCEIZ/ztGEILwHgDg8eZqjOCkVqIcDQzxq9WeC8Vod1b1wY1GDo9HAsCZIjTMv4GPVoP98eknyVU38S7F5NFL5FB/vEfpOVwg4odEMtsQrh604pop/27Ftm8959uWf9uRSUV74T4imytr8fV1qkhn9z6bXI5iHNbRNxYEQdDV9A5wc3NU7PgUYF21de3atcjISJsbN/N0EyjBYgPw729S7zvMsWhEHk0gvHLlSlJSEkJo4sSJjMApw8WLF4uKinAcj4mJsUgit0dKSoper+/atTo5XqPRHDx4EMfxTp06BQcHv/JK3SXhWq126tSp//zzD0LIXiVlfQmUYF91J4rsd++eDcZeaGl5q+3qgZ0qQtHetm/B4m6DkdH+EVlsvEVRqLqO9ePL5AstcWbM3XX8PJv1c7LYF7m+LTFhtWa39sJhca/YXffQ3ixqiF+tn8rKFErCqe4tGRDweRgAjArCnm/RwMgh48KPfYhMlV9S3zdVGrQ0idxDpXLcfdmBEBfLqvNo5ApJn5H2DrXiKvV2B5jcuo5fTp4GfXqFfDfC7vDLAB9sbEM/TjMPyMmTJ7t37/7UDwg3Y4/3IvF++81vtMfFTRKjHkEgPH36NEVRM2bMOHz4cM+ePc+fP8/2Pjx9+vSxY8cWL158+/bt999///PPP3d8tLKysi1btvz777+xsbFMIHz55ZfXrl2rUCjeeOONBQsWBATYNhA/e/bshQsXysrKAgMDw8LCpk+fnpeXFx8fv2yZpYlPg5lmJcFXJzEB+Iqr5Hsdbe+I8fgO6uTYpCnR6u4EXZFzqRQdzKUYE2pk0FEAFooqiDRXbFvjNvFt5m3l7vXiXrFpVSixFBXrgImjJgqO5VOpY7leQgAAlcoslTbCvPbzLXFkMirjf+PFvuy9xUQ9/6JYYBmllAc3C9p24QWF2bMLpkXM2ZKt9jiQg4b54wvt/J+beRgYDIbvvvvOYhq+Xbt2FpLipaWlOp0OIaTX69VqtclksvClauapp60L1scb/+k2xR7Keng8gkC4ZcuWsLCwvn37Dhky5I033jh27Njw4TXGrWvXrn3vvfcAoE2bNseOHVOpVFKptLy8nKIodmpvWloaXeyhUCjmzZtXXFzMrLp+/brZbFYoFAAQHR29YcOGTz75xGZLevXqtW/fPubtmDFjrl69GhcX50DXMS8vLyUlhT2T8eqrr/r7O1vb7gw9XOFaGVGoNLjwnJod0ev1Nm8TaZV4AJ/U6xEADPbG9t3Dng+oHszUJOwhXNwF0bU6VUijNORmaCvLVZs+lb+6AgDkc77S6/V3KnEvAbb/nmFii+r2nCzCWkkwOVadpm6vAQ0AGXSayyf4Qyb39MQvnLnUr1MrTFxrzJAETFeUq826QynLRYNesP4PFOhAbSJSy0m93uT4XPuz8NGBqM7NnMH6P/Boc+gdQFHUhg0bxo0bR18gbMxm844dO1xcXAiCYKo1jh8/rtVq1Wr1yJEj2Q+sDjh37pxGoxk0aBD9trKycv/+/VKp1N/fPyoqasECS+UjazAMIwji8uXLd+7ccXFx6dWrl3Vrm3nq+bATPuow+WpbvAlqCh/B4/CMGTOeeeYZ+rVWq7W4us6fP8/MlwgEgitXrtAvlixZwkS7LVu2sN1qLLhw4QJzBLlcfv78eScbhmFYp06dHKsb83g8oVDodh9vb2+BQEA0KmIe0ccbjhXhD3KQKjNBAuYtrj5IjD9+rBBDWPVaUc9hgg69LHbhyFzd31rDFUlwoZggCAIDnDITBJGhxma1gUP5Ne05XIDHBGDEQ4Ajkrgv2kAQRIw/Jry4jyrOsdhAMvB5Uad+HKkrz7eFzSPcVRNiDmSo6mgeiREJRdgw/wf6JzvAyZ9cE5OcnLx+/fqvv/66srLSeu3ChQvbtm0bExNTUlKyY8cOADh16lRCQsLw4cOfeeaZefPqdjBWqVTffffdunXr2JfnjBkz4uLiRo0atWfPnuTkZHv7njp16vz580eOHLl8+bJCoRg0aJCnp6dGoykuLqaox8ivp5kmo5MCa+cKv6U1xbf/CHqEXbpUp7nv378/ODjYImmlvLycmTUUi8WlpaUAIBKJvvzyywULFixevPjUqVM4jo8fb9ceqKysjAmuEomkrKzM3pYNwMPDIzo6+v33q73RKYrS6XSNPm4TG0AdzkcTQ5y6n3K5XOsG3KtAITKSy63+fgPlECw1X64g6KlHjlcAkGabni30AAAgAElEQVSs9l7Ge6nIaOCHRnrM+gQAjNmZ6t3r+XPW6MymV9px2/9lwgguBwcAOJhn/rkvweViDhrQYLRXE0RdBo4Mhhe8Xz0X6ofXLntHJqPy4Gb5iFp5s+wGZGqpgX4ooYBy3KST+aitC+kjbZzff+P+Bx4eERERERERv/zyi/Uqk8kUHx//1VdfAcDgwYNHjRo1bty4DRs20OmsHh4ed+7cycvL8/PzKy8vr6ioaNWqFbNvYmIifVFLpdK5c+eq1Wpm1e3bt/V6vYuLCwD06dNn/fr133//vc229enTp0+fPhat3b/fkVtkZWVlWlramDFj6LcYhrFLL5ykoKDgxo0bOI5HR0fTiq83btzQ6/VmszkkJORBcpROnDhRWVk5evToBh+hiTEajVqt9gEPotPpzGZzYz0LLmyHTTvDGeund75TaDQaEULs4Xcej1enVO9DCYRXr179888/rZdLpdIPPviAfl1SUvLTTz/t2bPH4l/G4/EMBgP9Wq/XM2LEIpFo5cqV48aNi4uLc5xrzufzGfM29hGeIOICsaVXSAoRDRZ7vmMlfh0bgB3IoaK9CQDQXj5myk5jjG1p9DcuYkIxPzRSeyUB4/D4IR1lwyZfV6LWMsxHBEES7HwxivbGcjSoWIe6uD+sLJKqfT8L2nZpIXVxx41Xy/HOFqYLOK65cBgjCGHHaK5fK+vd06pQD0/sdCGU6KvdPGwSn0M1TaX8k0J6ejrT8ZLJZHSXLikpSSqtzpySSqVJSUl+fn5yufyzzz6bPn16u3btAGDTpk1CoZB5urXg8uXLMpmMOQJbN+7BEYvFbm5uzz9fU2PDWIg7j1QqFQqFY8eOnTJlCl03JRKJli9fPmbMmPDwcJu7ZGRksJ8D7CESiaZMmfIEBUIOh/PgeYIURfF4vMYKhH39IFRObc/hzQh19oaDYZhFwqMzGZcPJRBGRkY6znvWarXff//95s2bxWJxbm4ue47N19dXqaz2KFer1b6+vsyq3bt309N4JSUlDlxpfH19L1y4QL9WqVQ+Pj4P9GEeBYESzJ2PXS5FXT0aGG/SqpBFqX6MP/76GXJFVwAAXlAYfj81lEE66Hmgu18Uacy+LQzvxm/dIS2nOqDGBmDxuVS0N7E/G8UE4A/PjsH99c9wiQsArL798b7Q7zp71JocwgiOz5LfK/74yt7uaUqY2Apay7C0KuQhsNvKAznot/7NgbCGiooKZhxFIBCQJEl7kTILRSIRPbhCEMTnn3++aNGi6dOnX7x4USgUOhieYR9BLBaXl5c3Ypu5XK5CoWCf/ebNm/U9iEQiad++/YoVK95///1Ro0b17t27RYsWw4cPZzqaFpjN5n379r355pt1Hrlbt251VsU8VuA4/uABrNFnB5Z1wSccI6e1IZzsFBIEgRCqbwMewdCo2Wz+4YcfXn31VZVKdfbsWYFA4O/vf+jQoc6dO3t4eAwfPjwvLy88PJzu3nbs2JHea/v27TiOz5gxQ6vVvvPOOx999BF7Mo9ddTto0KANGzbQr3Nzcy0sv58UaM3uhgdCJQyvXQPX3RPL06JsNQqUYFzvIK53kMUuhowUQVgXABBFPQMAmov/mrLvpLV6jQ6oMQH4nLPk8i4Qn4MmtnqYRQWkGZFmjOBUDpy5p0xmnVlhys2QDBhjszsI1UX9eIgcS1Miexr2mSpUZkCd69JDfxLZt2+fzWDQtm3bkSPtFpwAgEgk0umqy3KMRiNJkgKBQCgUMrqdOp2OCWl0LBwxYsSQIUOmTZvm5GHZR3jc8PT0XL9+/dSpU69duyaR1JJh0ul0ycnJfn5+/v7+CKFVq1bRtskSicR6PFylUiUnJ7do0YL9BH/79m1PT0+mt1pWVpaamtq2bVs6A4hWVPf19VWr1RqNpmXLGqfojIwMuVzO5XKvXr3at29fDMOKioru3r3boUMHi0Y+xfT0xELk8HsaNaPNQ3xyfQSBcN26dWvXrl27tlrli+69/fbbb0Kh0MPDY8GCBcuXL/fy8jp27NiyZcvowJ6bm0sXHcL9+cLNmzfPmjULALRa7a+//pqYmHjr1i0cx2fNmuXq6jp27Nht27YFBwffuXNn5cqV9tvy+BIbiL93ify4cwO/+7QqFFI77ZjAYIgffigXzQzDTPmZysN/KKZ9wN6g/LcvvJf8TtvbKg/9wQ+JwIXitDI0yA8DgB6eWK4G3VWhk4XUL/0e4nxY5e4fZDFT+K06RPbpfX0bWIu1GrNva5OOe77xNWCWkQwB3FWhVlLMsVLdgRwU+zA7tY+QESNGWJQiOImfnx8zt6dSqby9vblcbkBAADM8o1Kp2CM3v/322+TJk69evXrz5k16jNQm/v7+KpXK5hEeHhSC39IoY105FlwcpobgjGXoqFGjduzYsWjRIubWBABpaWkrV6789NNPt2zZ4ufn17lz57y8vMLCwiNHjvTq1YuxU6Y5derUzp07Fy5c+Pvvv0dERMTExCCE/v777/Dw8Dlz5rz77rsdO3a8cePG33//PWfOnGXLlsXExAwaNOj69euvvPLKpEmT+vXrl5KS8scff3z44YcIoRkzZrz00kuHDh26d+9edHR0ZWXlnj171Gr12LFj586du3z5cnasfbpZ2pmYeJycEvIQ00cfwejQG2+8kcGCLorYsmULbfigUChWr17t7e396quvxsXF0bv4+/uzB0DEYjEdBQFAJBK99tprhw4d+uuvv5iFs2bNevbZZwMCAtasWfMkzhECQLQXdqcKOdBac0y6LYPcmAAsPhcBAC4Qs739aNxnfcKYvOuunCDk7sIOvRj5UAKDwX74ootUhBvmQEb8wZEOGs/1Cab02vIV0/v74IdyLe9n4h7DTPn3bO6bq0EuPEzChVA5pCntniI+h4ptEsmYxxOKopjpQKPRuGbNGpIkPTw8QkJC6LqgzMxM+tIbOXJkVlYWACCEtFptt27Vhly//PKLSCSaOHHiZ599tmnTJos+KPv4ffv2ZUIpc9iHDYkguRxdLq3j73oFIms/LK1bt27fvn0HDx5klsyfP3/ixImenp5z585dtWpV69atu3btGh4ePm7cOIsoiBB68cUXFy9e7Ovr27JlS7qzWFJS0q9fv5CQkB49epw4cQIANBoNQRByuXzixIm0Jmq3bt2io6Plcnm3bt1GjBgRHx8PAHfv3k1JSYmOjh43bty+fftGjhxJUdTSpUvnzJnj7e09atSojRs3PvT/42NDL6/qTuHDO8VjKrHm5eX1gEfg8XhP9BMTF4dnfHF2FbzzFOuAg4GbVbga5o/POWsyUgTPzdPl2VfZq5DJiLPq6z3eWK0+uYfrHZRe1Z2xVYoNwKacIFd0fbi1AfyW4RiHh0izuNuQmADsQA6aWHsQFOPxfZZstu4OAkBaFYTIAWgTjyrbl43ODKcK0eYB/8UJwtu3bx84cMDLy+vHH3/s169fbGysTqdLSEiYOXOmSCRas2bNunXroqKiDh06tHz5cgB4/fXXP/300+PHjyclJX366afMzV2hUNADrQRBfPbZZ5s3b6Y7hUajccOGDWlpaQCwdu3aV199lc/nL1iw4KeffvLx8bl79+6SJUua4GNycVjdoyG/Urlc/uOPP7700kuLFi2il1y+fDk3N/fIkSMAMH36dAf7FhUVVVRU0KOdjH66WCymR0R5PB5dstK1a9fr16///vvvWq2WyQoEADqs8ng8eiTZ19eXz+ebTKbU1NTo6GgASE1N5fP5dEsAoEePHvBfYnEnYvpJclpoTQ++cXlMA2EzABAbgK1Mps4UIQDAMfgkinCvnQa57AqVp0EmE5fLJUcH4YwwZpqt7iAAuAugnQt2sgAN9DRVbF/jNukdZpUu5az+5kW3ydUKq0ivNWbfMQaEm1GNoMwwf5zAyIfdl6ra/wvXv7W422DZ8BdjNWjRJXLW6epVU1rjdPmHPTtGpv8aIsPSlQixnNBWpVD0YGmpHiIVmMsTOUzwoLRp06ZNmzZse225XL5r1y76NV1cYTQaBw6sVu0RCASffvqp0WgcMGAAs4uHhwd7upEgiBdfrPZC4fF41mZS9MZGozE2NvYhfKZGZvDgwbGxsV988cXs2bMBoEWLFiEhIbRfKS1cRSclAsChQ4fY1RoKhcJsNjPzoFVVVRaZMvRe77zzjre394IFC65du/bPP//cuXMnNDTUuhl0IuvevXsJgqALToKCggwGAyNTwJjH/Ufo4435imDbXWqifTOfB+G/+Fz8pDC+Jf5WBzzKHYtyx84VoQsltcZxTBR8dpXs7I5FulJyHnyZXFM3k1Zl1x03NgCPz6UAwHjvFns5z7+1uEdMzcELswBRGe4d2bZK7gI4PpzT0e3hBkJ+6wiup7+pMLt885f+YuznvgT9H1CbYEdmHWMjjP2FnAdCDhTer4lSmeCTJLKzOxbljg31x77v/ZgWvD8OWE8lNMrkwuM8Q5GUlETLUdFvV61axaSirFixYsOGDQghg8Gwe/duAAgNDc3IyDCZTBahiMvlfvLJJ9988w0AFBYWJiQkaDSaqqoqemS4tLSU3j4nJ4dOh8nMzDSZTMnJySRJlpeX0xm5paWlGo2GbsmZM2fy8/OLi4uPHj1qMpkCAgLGjh1Lt+Hu3buXLtnX8n9KeT+SWH6Foh6OGUlzj/DxRcyBl+5LlaaUo/QqBKze2D0V8hVhs8JwlYrkCAnvLaZKI9AdnTQlCrVjhxQTgE0+QX3Vnef9wU/s5YSbF8ezJpGBH9pJc+FwVn5JSO2pxD52pMAbEWFEbwAwFdzDRVIAYNw5fEXo+9Q6rCLTlND7/ph6axmWrkQ+IgwA/s2jenphs8KaH/uasSQtLe3u3bve3t7nzp2jK/qlUumePXvotf369fPx8dm8ebOnp+ekSZMAoHv37oWFhbt377YuEHzzzTcTEhJ27NhBd5o3b9787bff7tq1q0ePHj4+PjiOX7t27eeff961a9f+/fu7dOnC4XD8/f0vXLgwdOhQk8mUmZl57Nixjz76aN++fa1bt+7ZsyedGH/hwoXNmzdv3rx55cqVhw8f3rlzZ3BwMNM1/O8wzB/7iAP7s6mRVo49D05zIHwyCJFjd2qnQaYpq+fDAEDIgd7e2JE8amwLHADSquC5YNvH6eyOKY2QoUSeiX9J+o3G7uu2lG5YLI+bzgusHqXBCA6lLM+p1IfY8Kh4uGiTTpCVpdJnxtJGEwwhckirazToThUKkVdfJCEyLE2J6Mgdn4NiGuoP1czTTUhICK1abLGQeR0aGmoxejlq1Ch7R2PrZLHd3sPCwpjXU6ZMoV8wObS9evWiXzA+OYsWLZo1a1aLFi3ot8ykI6MB+99kYUd8+dWHEgib7w5PBtb1AGlVtezgY/xxxgTY3hwhAGAAQ/2x+FykPrWX0qiY5fxW7TnutZQHPOZ9lYj8Gmy022BwgQhw3HD3hvbiv+zlLaRYrgaZ7A+OUgiy1KiVtLrBIfLq/xgCiM9F/+U00WaeOBYsWLBz587du3fv37//xx9/dMZI7r/Ac8G4xgzH8ht/eLS5R/hkEGJVD2Ax/hkXiK24SiIgMIAMpd05QgCICcA23aFee/NrQlajRyUbOsl6S+tixCZA0K6boF03zbl4c1khezkPB18Rdk9lN8ZnqZE7HxPe/0WHyGB7JgDAtTLEx6HpI3ozzTQYd3f3d955p+7t/mPgGCzogK+4Sj7j28iRqzkQPhkES7ACLTKQwL+f55FWhYaz1DJbSDE5D7tSinxEmJADcvupCUP98ZdPkuriQplQjPEEAEBWFFfuWq+YsdhiS5vFiA8bc0meLvms9JmxgCx7f/TTQIgd1SqLVUwFxYEcNCKoOQo2YxuDwXD9+nXr5e7u7kFBQWazGcdxJ+3BneHvv/82m81jx451ZmOj0fggSUYPuPvjyaTW+JIkKqkUdW5UuePmodEnAw4OARIsU1UzJmAdEmhVNqaEwB4yLnRyx/L3bWYSRymD3rq+vlgHuK1ixIcNpVUZMlIMGddNJXkWqxzrxViMFTMVFPG5VPMEYTP2uH379qpVqwwGA0Loueeeowv1bt26Rbtzv/zyyytWrGjE03l5eS1ebPnEaZOLFy8GBVnqIDomOzvbZKr217xx44aXl5eFB/JTABeH19ri36c2cnF9c4/wiSFEBmlKFOaCAYCRggItCpLUCngxAfiSJNJbhNfZjYvxx/dQk98NrJ6K53oHuoydbbGNg9TThwovKEwxY3HlX9/zAttwvQLZq6wzhthYzIxKuCDjwvVylFyG+vk09wibsU1xcfGqVavoena5XN6uXbuoqKioqCjawWbVqlUPbsjApmfPnk5u2aVLF+e9VGn++eefyZMn07oHbdu2vXLlymNrjfkgzGiDh+4wfdmNaMTH9OYn5SeGEDnGpE1mKFGABOPW/vb6+WA3KtD54jp6hAAQG4D9qfRlUkY1Fw4ZMlIstrHoYDUZyGzSXjoqGzJR1KmvxSoneoS1t5dja29S/XxwwVN4N2imcZDJZBZiaTTt2rUzGAxM/V9+fj5tEn7z5s3MzEwAqKqqunLlCiMpDgB0/YO9UvfKysqUlBSmx0Zz/fr1hIQEWtk8JycnOTnZaDSmpqYihAoKCioqKgBAp9PRMt90OWNFRQWthJeenn706FF6GwDIzc1dvXp1ZWUl3QBa6QYA9P9v70zjmrjWBn6SsIUkKJHNUoGwKSIoV0EUUURwwbaitS5VhHpbl1qX4t6+t0Utr8v1Vtrq9d6rvaKttmoVrAhuLIIVFBEBQUVJMCwxQELIvs68H47vNA2ILAkpcv4/PsyckznzzGFmnjPnPItSCQ/HMEytVre2tsKgsgKBIDs7u76+vtdd2Nc42ICYYWTjRlxDirDf4GP3+/fQU7HhSx8AYEUGEUPJP9VgL1tFIwhgkuLrTrFvXIW7qpoHuFpl8BuzLBACADC5VHz5B0zWBsiG6qu9xZA+T8WGFjG+g0g/PsVmIXvRgQaOS2+kKx/fAwDIS3Lld3MAAKon96U30gCm0zznSrLPYNIX6ooIoGrA+PHjpVLp119//e233wIAKioqoqKifvnlFzqdfvDgwZSUlJKSksGDB8+cORMGVv3222/z8/PDwsLWrVvH4/EMWjt69OjPP//MZDKJOD4AgA0bNrS2tgYGBi5btkytVpeUlMTGxmZlZe3atevatWtlZWWRkZEAgJqamvnz52/YsEGj0XC53JiYmOLi4rS0tKKiogkTJmzYsAGucXI4HAzD7t+/D3cfPHgQERGB4ziHw1myZMnq1auVSmVDQ0NMTMytW7fy8/P37t07YcKEI0eOEGHb+hGr/cj/emRM3/oBrQgzMzMTExNhMFwAwJdffhkZGblo0aKCggKzytUxPoNIT8Uv/vXVbR2bQc4aRpJrQVe+5NQ+4/MpL5ylmO9vtPEzTKxa3QZ8+9yJEABAsbN3XL1bdO6fmvqnBlWExVB7tBjgSnFPxh8u3NuOJNeCWW8iRTjAwDFMIcVVSgAAppRhCikAAFMpMbkUx3Fco8LkUlynfWUzQ4YMIbzmZ8yYwWKxRowY4ebmFhERkZeXFxkZyWKx4CdaY2PjwYMH4+Pjra2t33rrrWPHjum3U11d/f33369atcrV1XX27NmwMD8/v7q6Ojw83N7e3t/fPysrKzY2lkwmjx8/PjU1dfr06TExMTCX6qhRo5KTk0UikZWVlYuLy2effRYREQGT6Nra2k6fPh1mQQ8PD6fT6REREWFhYQCA6OhoNzc3AICfn9+ePXsEAoGtre3QoUM3b948ffr01atXr1mzxtbW9uOPP96/f78R+75vCHMmUSkg13h+FAN6jTAmJubevXtEOns/P793333X3d39z5lO08fu9++hp2J8lH0H7/fZw0gUEujEd4JgZPBfVt7UncrSzqhNf2Lvxx403OAHJS341tHmuT0whZQRtcjS1dOg3IIM3OgktgT3G/ziAo88ws5wMJ3OSge0b9iSrP/4DTl8EBhlT/JgIEU4wCBT7Ga+cGanh73Id0EdFUodFQoAsBrmYzXM0IO+i0DNZGlpSQT0t7S0VCqVjx49IiJiW1hYQFVEcOfOHaiTAADEol1ZWRmZTIaH+Pr6ent7w9b006wShIaGNjY2crnc4uJimMFj2rRphw4dOnPmzMOHDw2mW9sTGBioUCiePHlSWVkZHR0NZ18fP34Mw6PrO/73Iz4aQT78EIt8wzjLHgNaERpgZWUll8vv3bs3ZcoUIxpMGws3OqlJgSu0gGoBnrThcz06kPBNGql0rgW9C+kCI57nXibXNwUuc6+4WT8tUkczvJ8oZBBkptS1Lf/6H+dt/4KuHQb42IEnbb8rwv0V2PbRZCZJZWtr5WJr+OOYYeQOhwsIhHHx9PTUj4gtFAr1a93d3YmVPCKFuLe39/Xr1w0O6cS2Zfny5ceOHRs+fDg03pkzZ86WLVuio6MxDCstLX38+PHw4cNhQPCbN28GBAQYjOZXrFhx9OjRMWPGMBgMAICbm9uoUaOgOjeQtr8Q503+n7uaBhnZlWaEZ/xP97o3I/b29kFBQa6uruvWrTO3LB1AIQEPBoktwUGn85YBXQuKbcV08nJzjHIl+WxJmerLjHIlGfxNHUoyV+pa+8Ub+PvX4qoOkjF6DyI9/f/PYrYEl2jweF/yVBcsypXUXudZU5AfPaJLyGQyHo8nFou5XC60KwEAaDQaGPZapVK1tbWJRCIul6tWqxsbG5ubm+VyuVgsFgqFPB7P3d193rx5cP2vsrKysrJSv/Hw8HBHR0e4dHf9+nWhUNjS0jJz5kwqlQoNcGAhDL397Nkz6PPQ2toqFAqfP38RVmLp0qVHjhwZO3Ys3BUIBC4uLtCmRiQSlZWVAQBGjhxZXV3d1NRkZ2cHrWbq6urg7xcsWHDmzBkihXJKSgqMDy4UCvvjGiEAgG4JFnkZzY+CRIxQXldkMtnJkycNCn19fSMiIgAAX331VUhICIzgV1paGhQUBAB44403GhsbO2xt586dOp1ux44dcBfDMIVCQaPRTCe/Pu9c1S0fTprhSmb+oJEmWMLUXBKJBI7yugsmEwt/2OuwKrmXUvVYgJeBKaTSG+l2M5a0Tzp4qAp70IofDqMAAL55gD1oxY+EU4wuQHcxuwCvATqdLj8/n8lkjh49mii8f/++paWlv79/h4cUFRV9+umnhYWFRElVVVVMTExtbW13z15UVEToDABATEwMjUbj8/n5+fkAgDFjxnC5XPjlNGHCBHhGb2/vtra25uZmAMDbb79tY2OTm5vb1tbm5eUVEBBg0D6GYVlZWRQKZcSIEefOnfP09Jw7dy6GYZcuXcJxPCAggMViZWVlQXvO6OjowYMHX758WSKR0On0WbNepIUpKCiAYcEBACKRKDMzk8lkTpo06erVq+PGjXNzc2ttbc3IyAgMDBw9evS1a9dEIhGVSiWSIesfDgB4+PBheXn50KFDYUb0ZcuWRUdHE3FQe4xCobCysuobt406GR6Srv0p0iJCzz9KrVbjON5tpxfcfNy9e/fixYvty2GEvR9++EEmk3WlHY1Gk56efu3aNaKkoaEhNTU1LS2tsLCw82N37dp15coVHMflcvnSpUtxHFer1aNGjXrZ73fs2PHFF18QuzqdTiqVdkVIo5BYpN1XpqsQYn5nNUShWCzuQVOa51x+SmLb5R97L1XPBOgEfkqiuv5ph1VX6rFpl15c+4wszTmOzhQCdBezC/AakJOTs3HjxnPnzhElarX6nXfeycnJedkhhYWFoaGh+iWVlZXu7u6mE/I1Ji4u7sSJE71vRy6Xa7Xa3rfTRbIbsDdOauqkGFGiUqmUSmV32zHb1Khard60aROfzzcoT09P53K5s2fPnj59+tq1a1/ZjkAgOHLkyNmzZ+HCLwAAw7AVK1YsXLgwNjb2119/NZim0Cc3N7eqqio7O7usrIxKpS5evDg/P//AgQPfffddby7NdMCMCkTWvd6AYzqKHbPDEKNmhxowofXnlA6rCIshhRYU8vFpb6C5/deEqVOnEtkYILm5ucRMIALRIZFvkNb5k+dn6zo0Ju86ZjOWSUtLGzfO0GQfAPD999/v3bsXAODk5FRRUdHc3Ozo6NjY2CiVSvWToeTn58Mv+iFDhqxevbqh4fdwXMXFxQwGw8bGBgAQHBx89OjRAwcOdCjD1KlT9VNvx8TEyGSySZMmdWIpU1NTc+fOnYqK393Pk5KSYKbNPuBNK/IpIcXNBvegAqn0xRKaTCYjtZtCfDUMB+v31sOpmF7SQwE6IWAS4FZ3KNsQAJqV1s0iaV4TOYhJoailUrUJBOgmBgKQSKQ+my1/XWGz2Z6engMw/Syiu2wZTb7TjK8v1P1rUs/nY82jCCsrK728vDqMdVtaWkqkh7a1ta2oqIiMjHR2dj5w4EBCQgJcLdi3b19wcPDLGr9//z6xYMNgMOAychd55fvLxcXF399/wYIFcNfCwsLV1dXWtp3BomkY5YizZXitHIxzJNnavginq9Pp+kyADjG6AOKcnxkhUdYvadOdjj3XUXOa8NnuJFtbS1MI0F3MLkB/Qa1Wp6amGhSyWKzo6Gj9EgzDOBzOtGnT+k4yRL+FBEDqFMrYdG0GF3/LrYcDYjMoQp1OV1lZuWDBAiINtD4ikQh+zAEAbG1todkxhULZs2fPtm3bEhISLl26FBwcrP8l13kLxjUOptFo+ooQGsv0ma+FGwO0qjRlQtL73mTy/9t0Gjc6fg8wugBkKxtVVTF1ZMchP3zs8Bop6XIDfmnUi054/XrApNTU1Li6uhLPCEFdXZ2tre2QIUMEAoFCoYATlWKxuLCw0N3dXT+1bOfI5XI+n08klQUA3L9/v6mpacqUKdbW1l1Jrffs2TM+n3/27NmSkhKNRuPn59ehdx0CAWFYgiOTKPE3dFOGWvQs/qhJFGFFRUVmZmb7ciZAXJEAABQ+SURBVBsbm/Xr158/f54Ir9AeGo1GhO+TyWTEQBvqwsmTJ3/44YedaEGDFuRy+es0SUUmAU8G6Z4A9zZHzJc+w9orQFaY9bJa30EgrRYHAIwcjFwjukdpaWlhYeHevXtzcnK8vLwMan/66aetW7cOGjQoIiICfrc1NDR89dVXBw4c+O233/Ly8latWtV5+2Kx+Pjx49nZ2RMnTtyyZQssTEpKioqKCgsL27p1a1JS0uDBgzs8tq2trb6+HsMwmUzGYrFYLJZMJrt06RKLxXJwcOjtlSNed6YMJU17g/RFiW7vX3pyuEkUYUBAQHsDYoKnT59Cf4aioiIul+vh4aE/B+Lu7i4Wv/AUk0qlREQGAMD+/ft37tx55cqVysrKl1lUAwDc3Nxu3rwJtyUSiX4LrwE+g0g1EvxNY/iQ/mnBNSrq6LCX1foMIh2s0v11eL/5AvvzEBQUFBQUZBAAjGDIkCFtbW04jhO+2CkpKfPmzbOxsZk2bdqXX34ZFxdHo9F0Oh2GYTDFAUSlUkFrdTs7u7Vr1+ov7goEgoKCgqSkJABARETEN9988+WXX3Z4di6Xu3jxYgBAfX398OHDAQB8Pn/t2rU6nU4ikdjb27c/RKPRCIXCM2fO6F9C93oEoQeO49CBsjdgGIZhmFnW7PcGkwLTdLFv4iFDMP0L6cpsjRmmRrdv3w43SkpKxo0bB7Xgv//976ioKC8vr3nz5rHZ7ICAAK1Wa2VlRSi8vXv3hoSEQPOWbdu2xcfH6+tCrVZLZN6Kior65ptv4PbTp0/nzJljumsRCARwFdN0pzDA2w54MX53dVcqlbm5ue+8806fCdCey5cvv/fee0ZsUCdq0YmF1NHhHdZ625FUOhCjl5T46tWrc+fONePkZEFBweTJk4m17f6LpaUlm822traGE6e5ublE/C06nV5YWBgVFdXW1paUlLRv3z74m4qKirS0tJfl2CsoKGAymXDbwcEhLy/vZYqw/dD5lTZoUqm0paXl9OnTRImzs3Nra+u2bdtefamIPwIjasE8GL3h9u3bw4YN6zChh6mxBeB/g8gf3dAc93k8etRIotzKysrC4hWazmxWo6dPn1YoFCUlJb6+vlOmTOFyuRKJBACwfv16mAOsrKyMcGOor68PCwubNGkSAIBMJu/evfv8+fNQEcrl8mPHjj1//lwgEBw+fHj16tW2traJiYknTpyg0WhqtXrhwoWmu4qbN2+mpqb2pSIcMZjElvy+W11d/fnnn5tREcrl8vj4eOMqQtrEmE5qhw8CthZgqp4L7SeffDJx4kQYB9IsJCcnMxgMfW/l/ohKpbp69WpgYOD69evXr18/cuTIpqYmYmWBTqdDZycmk/nZZ59t27Ztz549tbW1P//8865du17WJp/PJ1pgMBjt3aV6g729va+v77lz5+CuTCZzcnLauXOnVvvqgNomIjk5ed26dWaMrvDPf/4zJibGw8OjuwfGxcVFR0f33uYrNTV16tSpH3zwQS/b6RkJfiA5uzY551lGSAcuCZ1gNkW4cOFCfRWVnPwivgmVSv3b3/4GAJg5cyZR++abb+r7GFEoFOLNa2tru2aNYVLZTtYgjQve53F5lniR3xrWx+f8c/EmjfToPQtbFCW3I27fvs3lctuXu7m5jR8/vvNjV61aBb+q582bt2nTpszMTBzHCaUCp7zgtouLy+bNm9euXevg4JCcnNz5tzgxVaPT6fogYfrGjRtNfYpOSElJWbNmjRnHZBcuXFiyZAn8ZjAXff9W1Ge+ME2j0QLwbreOQq+TfoY1BThRzS2EuRn2Wi+R9gYXF5cOZ4FeaW+i0+l27tz5+eefW1lZMZnM8vJyAICTkxOcpwEAiMViR0dH4vdCoZDBYMjlcrVa3d4AlcDR0ZFoQSKR6LeAQJgCa0xFxl6RjqM9SBEiEK8P7u7u7u7u3TqEw+HAvHolJSVwLP/8+XO47jBlyhSBQAB/JhKJQkND4fbDhw9Pnz69f//+5ubm7du37969+2W6MDw8HCa2BQA0Nzf399ljxOsKUoTdg81mFxQU3Lp1C+42Nzc3NjYauAP3JVKptLa21owCYBimVqvNKAAAoLW1ddGiRVZWVuYSoKqqKjExkXAMIJPJO3bsINTGn4fGxsYbN25wOJzjx4+//fbbwcHBzc3N/v7+fD6fwWAsWbKkrq7Ozs7uxx9//PrrrwEA69at27t377Rp0woLC9966y14gc3NzSdPnty5cyeZTHZ2dt68efO+ffugsYxWq83MzMzJySGTySNGjJg9e7ajo2NoaOjdu3cDAgJg7nUjXk5ra+vjx4+Jew/DMJVKNcBvxYcPHyYmJpoxo2plZWVJSclPP/1kLgE4HA6GYXfu3CFK5s6d+/HHH3d+1OuffcK4VFVVVVZWEsbcKpVKIBAQWTr7HgzD6urquvsRYFzgJ8VAFqCurm7o0KH6c5Jjx47t0OLfvKjVaplMBrctLS2hmatGoyF8IQoLC1taWsLDwwmlLhKJ7t27R6PRXrnECADAcVwkEhG7gwcPhmb0ZWVlDQ0NEydOfJkTYc+Qy+WnT58eNuz3NXOz3wlmF6D9rdjHwEGVGQMtiUQiHMf1nz4Wi9Xea9YApAgRCAQCMaBBXskIBAKBGNAgRYhAIBCIAQ1ShAgEAoEY0CBFiEAgEIgBDVKECAQCgRjQID/CbpCXl1dWVsZisR49erRp0yaDyFInT57UarV0Or25ufmVCWt6BofDOXHiRHBwcGlp6ccff2xgoL9t27bbt28PHTpUqVSmpKSYIu3GrVu3iouLL1++nJXVQZqkY8eOWVpaWltbi8Xiv/71r0Y/OwDg0aNHRUVFe/bsefToUfvaDRs2VFRUODs7q9Xq7777zhSRrgQCwdmzZykUyo0bNxYvXmwQzE8gEKSkpEyYMOHBgwcLFy40r1vL6w2Pxzt8+HBoaGh5eXl8fLzB/7q8vPzSpUujR48uLS3duHFjJ7FveoxarU5OTg4JCeFwOCEhISEhf0ifeeXKlS1btvj7+0skkk8++WTGjBlGF6Cmpua33377xz/+kZ+f395x8O7du9nZ2aNGjSorK9u0aZMpXBtbWlqys7NPnTq1bt269lmU09PTd+7cOWLECIlEkpiY2HnuvJ6B43hqaiqJRCotLXVwcICxOfVrd+/e7e/vLxQKXVxcZs2a9Yq2EF1Bq9WGh4fD7dOnTx86dEi/lsfjzZs3D24nJSVlZ2ebQobY2Fg+n4/jOJvNTkhIMKg9cODAiRMnTp8+LZVKTXF2HMe5XG5lZWVISEj7qtra2kWLFsHtrVu3FhYWmkIAPp8Pk/J0WPv1118fP3787NmzcrncFGfHcfyLL75oaGjAcbyxsdHOzq6pqUm/ds2aNTA+i1QqjYmJMZEMCBzH4+PjHz9+jOO4QCCYO3euQe3UqVMVCgWO47du3dq2bZspBDh48ODJkyfhdmRkpFar1a/NyMj4z3/+c+zYMS6Xa4qz4zje3Nzc1tbGYrFaW1vb106ePFmj0eA4fv369R07dphCALFY3NTUtGDBgqtXr7avPXPmTGpqampqKnxeTEF6enpGRgbcDgoKSktL06/99ddfd+/eDbdjY2OFQmEnTaGp0a5y9+5dwkuUxWKdP39ev/bKlSvEF5iHh0d6errRBVAoFLdv33ZycgIAuLu7X7hwAf+jDyidTo+Li1uwYIHpchEPGzZMPxGdPpmZmYQrsbu7e1pamikEcHJy6iTbkZ2d3bJly+bPn0+lmioea11dHUw6PXToUBsbm+rqav3aCxcu+Pr6AgBoNFpVVZVQKDSRGAMcHMcvXrzo4+MDAGAymYWFhUQubgBAY2Mjn8+HX4EeHh4Gj6qxSE9Ph/9rAACFQikuLjb4wdtvv52QkKDv729cHBwc7Ow6ztBdU1Mjl8uhWz2LxTLRw8hgMDoPHhsbGxsfH2+6eCMSieTUqVNw29/fv7S0VL/2woUL8A4BADg4OFy/fr2TptDUaFepra3VT0lTW1urX8vhcPTTzRjUGgUej0cEjCCTyWq1WiQS6c+OtrW1nT171trauqKiYvPmzX0c54nD4RDzMybqgVciEAh++eUXS0vLysrKLVu2mCK+xn//+1+4wWazNRqNfhY9jUbT0NBAjJaoVGpdXR2RjQ9hREQikUqlIrK/Wlpa8ng8In+h/qNqultR/5Gn0+nPnj0zCKp34cIFV1fX+/fvJyQk6CfP6QMMZDPLwwgAOH/+vKOjY2lp6YcffmiKdYqlS5fCfJkYhhUXFyckJOjXcjgcYtD8yk5AirCrKBQKYlHQ0tKSCFVF1BLrEO1rjSUAhUIhdi0tLaVSqb4inDt3LnwXPHny5O9///vnn39udBk6F4946ZuoB17J/PnzYQ9UVFR89913n376qYlOhOP4xo0bT506pT8kVyqVJBJJ/+2sn6sdYUQUCoX+KMegq/UfVQsLC7VarR9GzogyEM9j+//1uHHjIiIiaDSah4fH0qVL8/LyjHv2V8rWycuqbwgLC7O3t6dSqU5OTsuXL+/QqsBYfPvtt7GxsQbrlAb/oM47AU2NdhUmk0nc62Kx2MBQpfNaYwlAZLQBABhoQQzDWltb4banpyecvutL+qAHOker1ba1tcFtU/fA4cOHV61apZ8yEwBAp9MtLCyIOTq4lmk6GQYy8GYjlgYMulr/VpRIJHQ63ehasP1ZDP7XfD4fntTT0zM/P1//ye0DOpetb2hqaiJ64Pr162q12kQnKioqUigUe/bsMSg36ITO49wiRdhVAgIC9HOzBQYG6tcGBgaKxWK4LZFIDGqNgpOTk62tLXz4ZTKZm5ub/mpZdXX10qVLYa1cLjdudOOu0Ac90DkPHjxYvnw53DZpD1y6dCk4OHjGjBl1dXWVlZVEOYlECggIIJQxhmGvDPWL6Bk2NjZeXl5wjI/juJWVlf5ClI+Pj0bzIiNd+0fVWAQGBhL/6/Y3fFxcHDRslsvl1tbWplu07hA/Pz9iQGa6HuicBQsWsNlsAIBcLqfRaKYYiwAAHj9+zOFwtm/fDgC4fPmyfpX+G+mVnYAUYVdhsVjOzs7Q/CEvL+/DDz8EAJw/f37ZsmUAgGnTpjU0NMDHr7CwEM5cGxcKhRIXFwczQOXk5KxYsQIAUF1dHRwcjOO4l5fX5s2bSSQSNJfatGmT0QWA1NXVCYVCYqh16tSplStXAgBmzZrFZrNhCvLi4uJFixaZSICWlhaFQlFXVwd3y8vLw8LCAAB+fn5wLhTDsIyMjMTERFOc/dq1a/v37z969OjKlSvj4uLg+zcsLAxmsv3oo4/gJFhZWdns2bOtra1NIQMCALBixQrY1bdu3Vq6dCmFQmlsbAwMDFSpVHQ6PTw8/MmTJ0DvSTE6H3300Y0bNwAAAoGAyWR6e3sDACZOnAjvhE2bNkFTmnPnzm3cuNFE6SDEYrFYLOZyuXCXw+EEBQXpdDomkzlmzBj4jJiuBwAASqWyubm5vr4ewzAAAIZh48aNgxZkn332mYeHBwDg3LlzW7ZsIZYMjEhjYyO8DVauXLlkyRKo9rZu3Xro0CEAQHx8/G+//QYAUKlUQqGw81yYKPtEN2hra7ty5YqNjY2Njc306dMBAE1NTc+ePQsODgYAcLncu3fv6nQ6Fos1btw4Uwig1WrT09MZDIZAIFi8eDGJRFKpVAUFBVFRUQAAHo+XnZ0tl8vHjBlj4NVkLDIzMxsbG2k0mkQimTp1qo+PD4/Ha2xsHDt2LACAzWaXl5erVKrhw4ePGTPGFAIUFxeXlpba2dmJxWJ/f/+wsDCFQlFYWBgZGQkAqK+vv3HjhlQqDQkJCQoKMoUAFy9e5PF4cNvS0vKDDz4AAOTk5EyYMIFKpcJRCJVK5fF477//volGwQgAAI7jaWlpdDr9+fPnS5YsoVAoOp3u2rVrcL5aqVRevHiRRqMpFIp3333XRDLk5OSo1Wo+nz9nzhw4A0HcCRqN5vz58yqVikqlvvfee6Y4e3l5eVFREXwWvL29IyMjNRpNbm4ufDXJ5fKMjAwajabVaufMmWMKAXg8HuxklUpFo9EWLlwIALh27drkyZOtra1VKlVaWppKpWIwGPPmzTOFAKWlpfrGunPmzHF2dn7w4AGDwYAuvLdv3xYKhU1NTdHR0Z0bryJFiEAgEIgBDZoaRSAQCMSABilCBAKBQAxokCJEIBAIxIAGKUIEAoFADGiQIkQgEAjEgAYpQgQCgUAMaJAiRPSWoqKipqYmc0uBQCBAfX39vXv3zC1F/wMpQkRvef/992EsJQQCYV527dp18eJFc0vR/0CKENEruFwun8//y1/+Ym5BEAgEyMvLmzJlirml6H+gNEyIHtLS0vLs2bOrV6+OGDGioqLCxcXF1dXV3EIhEAMRtVpdUVHR1tZWU1NjYWHx8OFDPz8/cwvVn0CKENFDWltb2Wx2RkZGQEAAm81mMBjmlgiBGKAolUo2m52TkxMQEMDj8VDgzO6CYo0ieoWnp+cPP/wA8z8gEAgzsmrVKmdn5x07dphbkP4HWiNE9Jy6ujo+nw+TbyAQCPOSl5cXERFhbin6JUgRInpOTk7OpEmTrKyszC0IAjHQ4fF4z549Cw0NNbcg/RKkCBE9p6CgAJqoNTQ0IA8KBMKM5Ofnjx8/HibFLCgoMLc4/QykCBE9p7KyEs6L/vLLL25ubuYWB4EYuFRVVcGH8eLFiy4uLuYWp59BSUpKMrcMiP6KSCSqqqp6+vTpzJkzHRwczC0OAjFwsba2zsrKUiqVTCYTLdt3F2Q1iugVSqXSxsbG3FIgEAigVqspFAqFQjG3IP0PpAgRCAQCMaBBa4QIBAKBGNAgRYhAIBCIAQ1ShAgEAoEY0CBFiEAgEIgBDVKECAQCgRjQIEWIQCAQiAENUoQIBAKBGNAgRYhAIBCIAc3/AWle6hS5kZpLAAAAAElFTkSuQmCC", "image/svg+xml": [ "\n", "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - " \n", + " \n", " \n", " \n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" ], "text/html": [ - "" + "" ] }, - "execution_count": 20, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -375,7 +392,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 7, "id": "3017fd43", "metadata": {}, "outputs": [ @@ -395,7 +412,7 @@ "Plots.AnimatedGif(\"/Users/tristanmontoya/Research/StableSpectralElements.jl/examples/figures/euler_1d_solution.gif\")" ] }, - "execution_count": 21, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } diff --git a/src/Analysis/Analysis.jl b/src/Analysis/Analysis.jl index 4787149f..1e1e1f59 100644 --- a/src/Analysis/Analysis.jl +++ b/src/Analysis/Analysis.jl @@ -5,8 +5,7 @@ module Analysis using JLD2: save, load, save_object, load_object using Plots: plot, savefig, plot!, scatter, text, annotate!, vline!, grid, theme_palette, twinx, @layout using LaTeXStrings: LaTeXString, latexstring - using SparseArrays: sparse, blockdiag, kron - using Arpack: eigs + using SparseArrays: sparse, blockdiag, kron! using OrdinaryDiffEq: OrdinaryDiffEqAlgorithm, ODESolution, ODEIntegrator, solve, RK4, step!, reinit! using StartUpDG: MeshData, vandermonde using RecipesBase @@ -24,7 +23,7 @@ module Analysis using ..File using ..Visualize - export AbstractAnalysis, AbstractAnalysisResults, analyze, save_analysis, plot_analysis, plot_spectrum, plot_modes, tabulate_analysis, tabulate_analysis_for_paper + export AbstractAnalysis, AbstractAnalysisResults, analyze, save_analysis, tabulate_analysis, tabulate_analysis_for_paper abstract type AbstractAnalysis end abstract type AbstractAnalysisResults end @@ -39,10 +38,7 @@ module Analysis export ErrorAnalysis, AbstractNorm, QuadratureL2, QuadratureL2Normalized include("error.jl") - export LinearAnalysis, DynamicalAnalysisResults, KoopmanAnalysis, AbstractKoopmanAlgorithm, StandardDMD, ExtendedDMD, KernelDMD, KernelResDMD, ExtendedResDMD, GeneratorDMD, AbstractSamplingAlgorithmx, GaussianSampling, analyze_running, forecast, monomial_basis, monomial_derivatives, make_dmd_matrices, dmd, generate_samples - include("dynamics.jl") - - export ConservationAnalysis, PrimaryConservationAnalysis, EnergyConservationAnalysis, EntropyConservationAnalysis, ConservationAnalysisResults, ConservationAnalysisResultsWithDerivative, plot_evolution, evaluate_conservation, evaluate_conservation_residual + export ConservationAnalysis, PrimaryConservationAnalysis, EnergyConservationAnalysis, EntropyConservationAnalysis, ConservationAnalysisResults, ConservationAnalysisResultsWithDerivative, evaluate_conservation, evaluate_conservation_residual include("conservation.jl") export RefinementAnalysis, RefinementErrorAnalysis, RefinementAnalysisResults, RefinementErrorAnalysisResults, run_refinement, get_tickslogscale diff --git a/src/Analysis/conservation.jl b/src/Analysis/conservation.jl index 3a0fdfb5..9a099909 100644 --- a/src/Analysis/conservation.jl +++ b/src/Analysis/conservation.jl @@ -214,8 +214,8 @@ function analyze(analysis::EntropyConservationAnalysis, for i in 1:N_t u, dudt, t[i] = load_solution(results_path, time_steps[i], load_du=true) - E[i,:] = evaluate_conservation(analysis, u) ./ factor - dEdt[i,:] = evaluate_conservation_residual(analysis, u, dudt) ./ factor + E[i,:] .= evaluate_conservation(analysis, u) ./ factor + dEdt[i,:] .= evaluate_conservation_residual(analysis, u, dudt) ./ factor end results = ConservationAnalysisResults(t,E) @@ -275,55 +275,6 @@ function analyze(analysis::ConservationAnalysis, return ConservationAnalysisResultsWithDerivative(t,E, dEdt) end -function analyze(analysis::ConservationAnalysis, - model::DynamicalAnalysisResults, - time_steps::Vector{Int}, Δt::Float64, start::Int=1, - resolution=100; n=1, window_size=nothing, new_projection=false) - - (; results_path, N_c, dict_name) = analysis - N_t = length(time_steps) - t = Vector{Float64}(undef,N_t) - E = Matrix{Float64}(undef,N_t, N_c) - - t_modeled = Vector{Float64}(undef,resolution+1) - E_modeled = Matrix{Float64}(undef,resolution+1, N_c) - - u0, t0 = load_solution(results_path, time_steps[start]) - for i in 1:N_t - u, t[i] = load_solution(results_path, time_steps[i]) - E[i,:] = evaluate_conservation(analysis, u) - end - - (N_p,N_c,N_e) = size(u0) - N = N_p*N_c*N_e - - dt = Δt/resolution - if new_projection - c = pinv(model.Z[1:N,:]) * vec(u0) - elseif !isnothing(window_size) - c = model.c[:,1] - t0 = t[max(start-window_size+1,1)] - else - c = model.c[:, (start-1)*n+1] - end - - for i in 0:resolution - u = reshape(real.(forecast(model, dt*i, c)[1:N]),(N_p,N_c,N_e)) - t_modeled[i+1] = t0+dt*i - E_modeled[i+1,:] = evaluate_conservation(analysis, u) - end - - results = ConservationAnalysisResults(t,E) - modeled_results = ConservationAnalysisResults(t_modeled, E_modeled) - - save(string(results_path, dict_name), - Dict("conservation_analysis" => analysis, - "conservation_results" => results, - "modeled_conservation_results" => modeled_results)) - - return results, modeled_results -end - @recipe function plot(results::ConservationAnalysisResults, e::Int=1) xlabel --> latexstring("t") @@ -333,7 +284,8 @@ end results.t, results.E[:,e] end -@recipe function plot(results::ConservationAnalysisResultsWithDerivative, e::Int=1) +@recipe function plot(results::ConservationAnalysisResultsWithDerivative, + e::Int=1) xlabel --> latexstring("t") labels = [LaTeXString("Net change"), LaTeXString("Time derivative")] @@ -349,25 +301,4 @@ end label --> labels[2] results.t, results.dEdt[:,e] end -end - -function plot_evolution(analysis::ConservationAnalysis, - results::Vector{<:AbstractConservationAnalysisResults}, title::String; - labels::Vector{String}=["Actual", "Predicted"], - ylabel::String="Energy", e::Int=1, t=nothing, xlims=nothing, ylims=nothing) - - p = plot(results[1].t, results[1].E[:,e], xlabel="\$t\$", - ylabel=ylabel, labels=labels[1], xlims=xlims, ylims=ylims, - linewidth=2.0) - N = length(results) - - for i in 2:N - plot!(p, results[i].t, results[i].E[:,e], labels=labels[i], linestyle=:dash, linewidth=3.0, legend=:topright) - end - if !isnothing(t) - vline!(p,[t], labels=nothing) - end - - savefig(p, string(analysis.results_path, title)) - return p end \ No newline at end of file diff --git a/src/Analysis/dynamics.jl b/src/Analysis/dynamics.jl deleted file mode 100644 index 57ea2ecf..00000000 --- a/src/Analysis/dynamics.jl +++ /dev/null @@ -1,752 +0,0 @@ -abstract type AbstractDynamicalAnalysis{d} <: AbstractAnalysis end - -abstract type AbstractKoopmanAlgorithm end - -abstract type AbstractSamplingStrategy end - -struct DynamicalAnalysisResults <: AbstractAnalysisResults - σ::Vector{ComplexF64} - λ::Vector{ComplexF64} - Z::Matrix{ComplexF64} - conjugate_pairs::Union{Vector{Int},Nothing} - c::Union{Matrix{ComplexF64},Nothing} - projection::Union{Matrix{ComplexF64},Nothing} - E::Union{Matrix{Float64},Nothing} -end - -struct LinearAnalysis{d} <: AbstractDynamicalAnalysis{d} - results_path::String - r::Int - tol::Float64 - N_p::Int - N_c::Int - N_e::Int - M::AbstractMatrix - plotter::Plotter{d} - L::LinearMap - use_data::Bool -end - -struct KoopmanAnalysis{d} <: AbstractDynamicalAnalysis{d} - results_path::String - r::Int - svd_tol::Float64 - proj_tol::Float64 - N_p::Int - N_c::Int - N_e::Int - M::AbstractMatrix - plotter::Plotter{d} -end - -"""Tu et al. (2014) or Kutz et al. (2018)""" -struct StandardDMD <: AbstractKoopmanAlgorithm - basis::Vector{<:Function} -end - -"""Williams et al. (2015aß)""" -struct ExtendedDMD <: AbstractKoopmanAlgorithm - basis::Vector{<:Function} -end - -"""Klus et al. (2020)""" -struct GeneratorDMD - basis::Vector{<:Function} - basis_derivatives::Vector{<:Function} - f::Function -end - -"""Williams et al. (2015b)""" -struct KernelDMD <: AbstractKoopmanAlgorithm - k::Function - η::Float64 -end - -"""Colbrook and Townsend (2021)""" -struct KernelResDMD <: AbstractKoopmanAlgorithm - k::Function - ϵ::Float64 -end - -struct GaussianSampling <: AbstractSamplingStrategy - σ::Float64 # width - n::Int # number of samples -end - -function LinearAnalysis(results_path::String, - conservation_law::AbstractConservationLaw, - spatial_discretization::SpatialDiscretization, - L::Union{LinearMap{Float64},AbstractMatrix{Float64}}; - r=4, tol=1.0e-12, name="linear_analysis", - use_data=true) - - N_p, N_c, N_e = get_dof(spatial_discretization, conservation_law) - - # define mass matrix for the state space as a Hilbert space - M = blockdiag((kron(Diagonal(ones(N_c)), - sparse(spatial_discretization.M[k])) for k in 1:N_e)...) - - return LinearAnalysis(results_path, r, tol, N_p, N_c, N_e, M, - Plotter(spatial_discretization, results_path), L, use_data) -end - -"""Koopman analysis""" -function KoopmanAnalysis(results_path::String, - conservation_law::AbstractConservationLaw,spatial_discretization::SpatialDiscretization; - r=4, svd_tol=1.0e-12, proj_tol=1.0e-12, - name="koopman_analysis") - - # get discretization information - N_p, N_c, N_e = get_dof(spatial_discretization, conservation_law) - - # define mass matrix for the state space as a Hilbert space - M = blockdiag((kron(Diagonal(ones(N_c)), - sparse(spatial_discretization.M[k])) for k in 1:N_e)...) - - return KoopmanAnalysis(results_path, - r, svd_tol, proj_tol, N_p, N_c, N_e, M, - Plotter(spatial_discretization, results_path)) -end - -"""Default constructors""" -StandardDMD() = StandardDMD([identity]) -ExtendedDMD() = ExtendedDMD([identity]) -KernelDMD() = KernelDMD((x,y) -> (1.0 + x'*y), 0.0) -KernelDMD(k::Function) = KernelDMD(k, 0.0) - - -"""Linear eigensolution analysis""" -function analyze(analysis::LinearAnalysis) - - (; M, L, r, tol, use_data, results_path) = analysis - eigenvalues, eigenvectors = eigs(L, nev=r, which=:LM, maxiter=1000) - - # normalize eigenvectors - Z = eigenvectors/Diagonal([eigenvectors[:,i]'*M*eigenvectors[:,i] - for i in 1:r]) - - if use_data - #load snapshot data - X, t_s = load_snapshots(results_path, load_time_steps(results_path)) - - # project data onto eigenvectors to determine coeffients - c = (Z'*M*Z) \ Z'*M*X - - N_s = size(c,2) - # calculate energy in each mode - E = real([dot(c[i,j]*Z[:,i], M * (c[i,j]*Z[:,i])) - for i in 1:r, j in 1:N_s]) - - # sort modes by decreasing energy in initial data - inds_no_cutoff = sortperm(-E[:,1]) - inds = inds_no_cutoff[E[inds_no_cutoff,1] .> tol] - - return DynamicalAnalysisResults(exp.(eigenvalues[inds]*t_s), - eigenvalues[inds], Z[:,inds], - find_conjugate_pairs(eigenvalues[inds]), - c[inds,:], Z*c, E[inds,:]) - else - dt = 1.0 - return DynamicalAnalysisResults(exp.(dt.*eigenvalues), - eigenvalues, Z, find_conjugate_pairs(eigenvalues), nothing, nothing, nothing) - end - -end - -"""Approximate the Koopman operator from simulation trajectory data""" -analyze(analysis::KoopmanAnalysis, range=nothing) = analyze(analysis, StandardDMD(), range) - -function analyze(analysis::KoopmanAnalysis, - algorithm::AbstractKoopmanAlgorithm, - range=nothing, samples=nothing) - - (; svd_tol, proj_tol, r, results_path) = analysis - - # load time steps - time_steps = load_time_steps(results_path) - if !isnothing(range) - time_steps = time_steps[range[1]:range[2]] - end - if r >= length(time_steps) - r = length(time_steps)-1 - end - - # set up data matrices - - if !isnothing(samples) - (X, Y, t_s) = samples - c, Z, σ, r = dmd(X, Y, algorithm, r, svd_tol) - else - X, t_s = load_snapshots(results_path, time_steps) - c, Z, σ, r = dmd(X[:,1:end-1],X[:,2:end], algorithm, r, svd_tol) - end - (r,N_s) = size(c) - - # calculate energy in each mode - E = real.([dot(c[i,j]*Z[:,i], (c[i,j]*Z[:,i])) - for i in 1:r, j in 1:N_s]) - - # sort modes by decreasing energy in initial data - inds_no_cutoff = sortperm(-E[:,1]) - inds = inds_no_cutoff[E[inds_no_cutoff,1] .> proj_tol] - - return DynamicalAnalysisResults(σ[inds], - log.(σ[inds])./t_s, Z[:,inds], - find_conjugate_pairs(σ[inds]), c[inds,:], - Z*c, E[inds,:]) -end - - -"""Approximate the Koopman generator (requires known dynamics + simulation trajectory data)""" -function analyze(analysis::KoopmanAnalysis, - algorithm::GeneratorDMD, range=nothing) - - (; r, svd_tol, proj_tol, results_path) = analysis - (; basis, basis_derivatives, f) = algorithm - - # load time step and ensure rank is suitable - time_steps = load_time_steps(results_path) - if !isnothing(range) - time_steps = time_steps[range[1]:range[2]] - end - if r >= length(time_steps) - r = length(time_steps)-1 - end - - # set up data matrices - U, t_s = load_snapshots(results_path, time_steps) - X = vcat([ψ.(U) for ψ ∈ basis]...) - N_s = size(X,2) - dUdt = hcat([f(U[:,i]) for i in 1:N_s]...) - Y = vcat([dψdu.(U) .* dUdt for dψdu ∈ basis_derivatives]...) - - # perform (standard) DMD - c, Z, λ, r = dmd(X,Y,StandardDMD(),r,svd_tol) - - # calculate energy - E = real([dot(c[i,j]*Z[:,i], M * (c[i,j]*Z[:,i])) - for i in 1:r, j in 1:N_s]) - - # sort modes by decreasing energy in initial data - inds_no_cutoff = sortperm(-E[:,1]) - inds = inds_no_cutoff[E[inds_no_cutoff,1] .> proj_tol] - - return DynamicalAnalysisResults(exp.(λ[inds].*t_s), - λ[inds], Z[:,inds], find_conjugate_pairs(λ[inds]), - c[inds,:], Z*c, E[inds,:]) -end - -function forecast(results::DynamicalAnalysisResults, Δt::Float64; starting_step::Int=0) - (; c, λ, Z) = results - n_modes = size(Z,2) - if starting_step == 0 - c0 = c[:,end] - else - c0 = c[:,starting_step] - end - return sum(Z[:,j]*exp(λ[j]*Δt)*c0[j] for j in 1:n_modes) -end - -function forecast(results::DynamicalAnalysisResults, Δt::Float64, c0::Vector{ComplexF64}) - (; λ, Z) = results - n_modes = size(Z,2) - return sum(Z[:,j]*exp(λ[j]*Δt)*c0[j] for j in 1:n_modes) -end - -function analyze_running(analysis::KoopmanAnalysis, - algorithm::AbstractKoopmanAlgorithm, - range::NTuple{2,Int64}; - integrator=nothing, - sampling_strategy=nothing, - window_size=nothing) - - (; results_path, N_p, N_c, N_e) = analysis - - n_s = range[2]-range[1] + 1 - model = Vector{DynamicalAnalysisResults}(undef, n_s - 1) - - time_steps = load_time_steps(results_path) - U, t_s = load_snapshots(results_path, time_steps[range[1]:range[2]]) - println("t_s = ", t_s) - time_steps = load_time_steps(results_path) - - if !isnothing(sampling_strategy) - (; n) = sampling_strategy - else - n = 1 - end - X = Matrix{Float64}(undef, N_p*N_c*N_e, (n_s-1)*n) - Y = Matrix{Float64}(undef, N_p*N_c*N_e, (n_s-1)*n) - - for i in (range[1]+1):range[2] - - open(string(results_path,"screen.txt"), "a") do io - println(io, "Koopman analysis of time step", time_steps[i], " of ", time_steps[end]) - end - - # set finite window if desired - if isnothing(window_size) || (i - range[1]) < window_size - window_size_new = i-range[1] - else - window_size_new = window_size - end - - # sample around trajectory - if !isnothing(sampling_strategy) - u, _ = load_solution(results_path,time_steps[i-1]) - reinit!(integrator, u) - sample_range = ((i-range[1]-1)*n+1, (i-range[1]-1)*n+n) - - X[:,sample_range[1]:sample_range[2]], Y[ - :,sample_range[1]:sample_range[2]] = generate_samples( - sampling_strategy, integrator, t_s) - - samples = (X[:, (((i-range[1])-window_size_new)*n + 1) : sample_range[2]], - Y[:,(((i-range[1])-window_size_new)*n + 1) : sample_range[2]], t_s) - - # use trajectory data only - else - samples=nothing - end - - model[i-range[1]] = analyze(analysis, - algorithm, (i-window_size_new,i), samples) - - save_object(string(results_path, "model_", i, ".jld2"), - model[i-range[1]]) - end - - return model, X, Y -end - -function forecast(analysis::KoopmanAnalysis, Δt::Float64, - range::NTuple{2,Int64}, forecast_name::String="forecast"; window_size=nothing, algorithm::AbstractKoopmanAlgorithm=StandardDMD(), new_projection=false) - - (; results_path, N_p, N_c, N_e) = analysis - time_steps = load_time_steps(results_path) - forecast_path = new_path(string(results_path, forecast_name, "/"), - true,true) - save_object(string(forecast_path, "time_steps.jld2"), time_steps) - if koopman_generator - solver = load_solver(results_path) - f(u::Vector{Float64}) = vec(rhs!(similar(reshape(u,(N_p,N_c,N_e))), - reshape(u,(N_p,N_c,N_e)),solver,0.0)) # assume time invariant - end - - u = Array{Float64,3}[] - t = Float64[] - model = DynamicalAnalysisResults[] - for i in (range[1]+1):range[2] - if isnothing(window_size) || (i - range[1]) < window_size - window_size_new = i-range[1] - else - window_size_new = window_size - end - if koopman_generator - push!(model,analyze(analysis,algorithm,f,(i-window_size_new,i))) - else - push!(model,analyze(analysis, algorithm, (i-window_size_new,i))) - end - u0, t0 = load_solution(results_path, time_steps[i-1]) - if new_projection - c = pinv(Z) * vec(u0) - push!(u,reshape(real.(forecast(last(model), Δt, c)[1:N_p*N_c*N_e]), (N_p,N_c,N_e))) - else - push!(u,reshape(real.(forecast(last(model), Δt, last(model).c[:,end]))[1:N_p*N_c*N_e], (N_p,N_c,N_e))) - end - push!(t, t0 + Δt) - save(string(forecast_path, "sol_", time_steps[i], ".jld2"), - Dict("u" => last(u), "t" => last(t))) - end - return forecast_path, model -end - -function monomial_basis(p::Int) - return [u->u.^k for k in 1:p] -end - -function monomial_derivatives(p::Int) - return [u->k.*u.^(k-1) for k in 1:p] -end - -function find_conjugate_pairs(σ::Vector{ComplexF64}; tol=1.0e-8) - - N = size(σ,1) - conjugate_pairs = zeros(Int64,N) - for i in 1:N - if conjugate_pairs[i] == 0 - for j in (i+1):N - if abs(σ[j] - conj(σ[i])) < tol - conjugate_pairs[i] = j - conjugate_pairs[j] = i - break - end - end - end - end - return conjugate_pairs - -end - -find_conjugate_pairs(::Vector{Float64}; tol=1.0e-8) = nothing - -function make_dmd_matrices(X::AbstractMatrix{Float64},Y::AbstractMatrix{Float64}, algorithm::ExtendedDMD) - (; basis) = algorithm - - Φ_X= vcat([ϕ.(X) for ϕ ∈ basis]...) - Φ_Y= vcat([ϕ.(Y) for ϕ ∈ basis]...) - - return Φ_X' * Φ_X, Φ_Y' * Φ_X, Φ_Y' * Φ_Y -end - -function make_dmd_matrices(X::AbstractMatrix{Float64},Y::AbstractMatrix{Float64}, algorithm::KernelDMD) - - (; k, η) = algorithm - N_s = size(X,2) - G_hat = [k(X[:,i], X[:,j]) for i in 1:N_s, j in 1:N_s] - - return (G_hat + η*norm(G_hat)*I, - [k(Y[:,i], X[:,j]) for i in 1:N_s, j in 1:N_s], - [k(Y[:,i], Y[:,j]) for i in 1:N_s, j in 1:N_s]) -end - -function dmd(X::Matrix{Float64},Y::Matrix{Float64}, algorithm::StandardDMD, - r::Int=0, svd_tol=1.0e-10) - - (; basis) = algorithm - - Φ_X = vcat([ϕ.(X) for ϕ ∈ basis]...) - Φ_Y = vcat([ϕ.(Y) for ϕ ∈ basis]...) - - if r > 0 - # SVD (i.e. POD) of initial states - U_full, S_full, V_full = svd(Φ_X) - - U = U_full[:,1:r][:,S_full[1:r] .> svd_tol] - S = S_full[1:r][S_full[1:r] .> svd_tol] - V = V_full[:,1:r][:,S_full[1:r] .> svd_tol] - - # eigendecomposition of DMD matrix (projected onto singular vectors) - K_hat_trans_decomp = eigen((U') * Φ_Y * V * inv(Diagonal(S))) - - # map eigenvectors back up into full space - Z_unscaled = Φ_Y*V*inv(Diagonal(S))*K_hat_trans_decomp.vectors - σ = K_hat_trans_decomp.values - r = length(σ) - else - K_trans = Y*pinv(X) - K_trans_decomp = eigen(K_trans) - - Z_unscaled = K_trans_decomp.vectors - σ = K_trans_decomp.values - r = length(σ) - end - - Z = hcat([Z_unscaled[:,i] ./ norm(Z_unscaled[:,i]) for i in 1:r]...) - c = pinv(Z)*X - - return c, Z, σ, r -end - -function dmd(X::AbstractMatrix{Float64},Y::AbstractMatrix{Float64}, - algorithm::Union{ExtendedDMD,KernelDMD}, r::Int=0, svd_tol=1.0e-10) - - G_hat, A_hat, _ = make_dmd_matrices(X,Y,algorithm) - - # diagonalize the Gram matrix (method of snapshots) - G_hat_decomp = eigen(G_hat) - S_full = sqrt.(abs.(G_hat_decomp.values)) - - # order by descending singular values - sort!(S_full,rev=true) - U_full = G_hat_decomp.vectors[:,sortperm(S_full)] - - # truncate the SVD if needed - if r > 0 - U = U_full[:,1:r][:,S_full[1:r] .> svd_tol] - S = S_full[1:r][S_full[1:r] .> svd_tol] - else - U = U_full[:,S_full .> svd_tol] - S = S_full[S_full .> svd_tol] - end - r = length(S) - - # koopman eigenfunctions evaluated at the data points - K_hat_decomp = eigen((inv(Diagonal(S))*U') * A_hat * (U * inv(Diagonal(S)))) - V_hat = hcat([K_hat_decomp.vectors[:,i] ./ norm(K_hat_decomp.vectors[:,i]) - for i in 1:r]...) - V = U * Diagonal(S) * V_hat - c = transpose(V) - - # koopman modes - W_hat = pinv(V_hat) - Z = hcat([transpose(transpose(W_hat[i,:]) * inv(Diagonal(S)) * U' * X') - for i in 1:r]...) - - # koopman eigenvalues - σ = Complex.(K_hat_decomp.values) - - return c, Z, σ, r - -end - -function dmd(X::AbstractMatrix{Float64},Y::AbstractMatrix{Float64}, - algorithm::KernelResDMD, r::Int=0, svd_tol=1.0e-10) - - (; k, ϵ) = algorithm - - (X_1, Y_1) = (X[:,2:2:end], Y[:,2:2:end]) - (X_2, Y_2) = (X[:,1:2:end], Y[:,1:2:end]) - - G_hat, A_hat, _ = make_dmd_matrices(X_1,Y_1,KernelDMD(k,0.0)) - - # diagonalize the Gram matrix (method of snapshots) - G_hat_decomp = eigen(G_hat) - S_full = sqrt.(abs.(G_hat_decomp.values)) - U = G_hat_decomp.vectors[:,S_full .> svd_tol] - S = S_full[S_full .> svd_tol] - r = length(S) - - # koopman eigenfunctions evaluated at the data points - K_hat_decomp = eigen((inv(Diagonal(S))*U') * A_hat * (U * inv(Diagonal(S)))) - V_hat = hcat([K_hat_decomp.vectors[:,i] ./ norm(K_hat_decomp.vectors[:,i]) - for i in 1:r]...) - Q, _ = qr(V_hat') - N_s1 = size(X_1,2) - N_s2 = size(X_2,2) - - G_X2 = [k(X_2[:,i], X_1[:,j]) for i in 1:N_s2, j in 1:N_s1] - G_Y2 = [k(Y_2[:,i], X_1[:,j]) for i in 1:N_s2, j in 1:N_s1] - - println((size(inv(Diagonal(S))),size(V_hat))) - ϕ_X = hcat([G_X2 * (U * inv(Diagonal(S))) * Q[:,j] for j in 1:r]...) - ϕ_Y = hcat([G_Y2 * (U * inv(Diagonal(S))) * Q[:,j] for j in 1:r]...) - G = ϕ_X'*ϕ_X - A = ϕ_X'*ϕ_Y - - K_decomp = eigen(pinv(G)*A) - Z = X_2*pinv(K_decomp.vectors) - c = transpose(K_decomp.vectors) - σ = Complex.(K_decomp.values) - - return c, Z, σ, r -end - -function generate_samples(sampling_strategy::GaussianSampling, integrator::ODEIntegrator, t_s=nothing) - (; σ, n) = sampling_strategy - int_copy = deepcopy(integrator) - u_centre = int_copy.sol.u[1] - N = length(u_centre) - X = Matrix{Float64}(undef, N, n) - Y = Matrix{Float64}(undef, N, n) - for i in 1:n - if i == 1 - reinit!(int_copy,u_centre) - else - reinit!(int_copy,u_centre + σ*randn(size(u_centre))) - end - if !isnothing(t_s) - step!(int_copy, t_s, true) - else - step!(int_copy) - end - X[:,i] = vec(int_copy.sol.u[1]) - Y[:,i] = vec(int_copy.sol.u[end]) - end - return X, Y -end - -function plot_analysis(analysis::AbstractDynamicalAnalysis, - results::DynamicalAnalysisResults; e=1, i=1, modes = 0, - scale=true, title="spectrum.pdf", xlims=nothing, ylims=nothing, - centre_on_circle=true) - l = @layout [a{0.5w} b; c] - if scale - coeffs=results.c[:,i] - else - coeffs=ones(length(results.c[:,i])) - end - - if modes == 0 - modes = 1:length(results.λ) - conjugate_pairs = results.conjugate_pairs - elseif modes isa Int - modes = [modes] - conjugate_pairs=nothing - else - conjugate_pairs = find_conjugate_pairs(results.σ[modes]) - end - - if isnothing(xlims) - xlims=(minimum(real.(results.λ[modes]))*1.05, - maximum(real.(results.λ[modes]))*1.05) - end - - if isnothing(ylims) - ylims=(minimum(imag.(results.λ[modes]))*1.05, - maximum(imag.(results.λ[modes]))*1.1) - end - - if centre_on_circle - xlims_discrete = (-1.5,1.5) - ylims_discrete = (-1.5,1.5) - else - xlims_discrete = nothing - ylims_discrete = nothing - end - - p = plot(plot_spectrum(analysis,results.λ[modes], - label="\\tilde{\\lambda}", unit_circle=false, - xlims=xlims, - ylims=ylims, - title="continuous_time.pdf", xscale=-0.03, yscale=0.03), - plot_spectrum(analysis,results.σ[modes], - label="\\exp(\\tilde{\\lambda} t_s)", - unit_circle=true, xlims=xlims_discrete,ylims=ylims_discrete, - title="discrete_time.pdf"), - plot_modes(analysis,results.Z[:,modes]::Matrix{ComplexF64}; e=e, - coeffs=coeffs[modes], conjugate_pairs=conjugate_pairs), - layout=l, framestyle=:box) - - savefig(p, string(analysis.results_path, title)) - return p -end - -function plot_spectrum(eigs::Vector{Vector{ComplexF64}}, plots_path::String; - ylabel="\\lambda", xlims=nothing, ylims=nothing, title="spectra.pdf", - labels=["Upwind", "Central"]) - p = plot(legendfontsize=10, xlabelfontsize=13, ylabelfontsize=13, xtickfontsize=10, ytickfontsize=10) - max_real = @sprintf "%.2e" maximum(real.(eigs[1])) - for i in 1:length(eigs) - max_real = @sprintf "%.2e" maximum(real.(eigs[i])) - sr = @sprintf "%.2f" maximum(abs.(eigs[i])) - plot!(p, eigs[i], - xlabel= latexstring(string("\\mathrm{Re}\\,(", ylabel, ")")), - ylabel= latexstring(string("\\mathrm{Im}\\,(", ylabel, ")")), - legend=:topleft, - label=string(labels[i]," (max Re(λ): ", max_real,")"), - markershape=:star, seriestype=:scatter, - markersize=5, - markerstrokewidth=0, - size=(400,400) - ) - end - savefig(p, string(plots_path, title)) - return p -end - -function plot_spectrum(analysis::AbstractDynamicalAnalysis, - eigs::Vector{ComplexF64}; label="\\exp(\\tilde{\\lambda} t_s)",unit_circle=true, xlims=nothing, ylims=nothing, - xscale=0.02, yscale=0.07, title="spectrum.pdf", numbering=true) - - if unit_circle - t=collect(LinRange(0.0, 2.0*π,100)) - p = plot(cos.(t), sin.(t), aspect_ratio=:equal, - linecolor="black",xticks=-1.0:1.0:1.0, yticks=-1.0:1.0:1.0) - else - p = plot() - end - - plot!(p, eigs, xlabel=latexstring(string("\\mathrm{Re}\\,(", label, ")")), - ylabel=latexstring(string("\\mathrm{Im}\\,(", label, ")")), - xlims=xlims, ylims=ylims,legend=false, - seriestype=:scatter) - - if !unit_circle && numbering - annotate!(real(eigs) .+ xscale*(xlims[2]-xlims[1]), - imag(eigs)+sign.(imag(eigs) .+ 1.0e-15)*yscale*(ylims[2]-ylims[1]), - text.(1:length(eigs), :right, 8)) - elseif numbering - annotate!(real(eigs).-0.1, imag(eigs), - text.(1:length(eigs), :right, 8)) - end - savefig(p, string(analysis.results_path, title)) - - return p -end - -function plot_modes(analysis::AbstractDynamicalAnalysis, - Z::Matrix{ComplexF64}; e=1, - coeffs=nothing, projection=nothing, - conjugate_pairs=nothing) - #println("conj pairs: ", conjugate_pairs) - (; N_p, N_c, N_e, plotter) = analysis - (; x_plot, V_plot) = plotter - - n_modes = size(Z,2) - p = plot() - - if isnothing(coeffs) - coeffs = ones(n_modes) - end - - if isnothing(conjugate_pairs) - conjugate_pairs = zeros(Int64,n_modes) - end - - skip = fill(false, n_modes) - for j in 1:n_modes - - if skip[j] - continue - end - - sol = reshape(Z[:,j][1:N_p*N_c*N_e],(N_p, N_c, N_e)) - u = convert(Matrix, V_plot * real(coeffs[j]*sol[:,e,:])) - - if conjugate_pairs[j] == 0 - linelabel = string(j) - scale_factor = 1.0 - else - linelabel = string(j, ",", conjugate_pairs[j]) - scale_factor = 2.0 - skip[conjugate_pairs[j]] = true - end - - plot!(p,vec(vcat(x_plot[1],fill(NaN,1,N_e))), - vec(vcat(scale_factor*u,fill(NaN,1,N_e))), - label=latexstring(linelabel), - ylabel="Koopman Modes", - legendfontsize=6) - end - - if !isnothing(projection) - sol = reshape(projection,(N_p, N_c, N_e)) - linelabel = string("\\mathrm{Projection}") - u = convert(Matrix, V_plot * real(sol[:,e,:])) - plot!(p,vec(vcat(x_plot[1],fill(NaN,1,N_e))), - vec(vcat(u,fill(NaN,1,N_e))), - label=latexstring(linelabel), xlabel=latexstring("x"), - linestyle=:dash, linecolor="black") - end - - savefig(p, string(analysis.results_path, "modes.pdf")) - return p -end - -@recipe function plot(eigs::Vector{Vector{ComplexF64}}; - symbol="\\lambda", labels=["Central", "Upwind"]) - - legendfontsize --> 10 - xlabelfontsize --> 13 - ylabelfontsize --> 13 - xtickfontsize --> 10 - ytickfontsize --> 10 - markersize --> 5 - markerstrokewidth --> 0 - legend --> :topleft - fontfamily --> "Computer Modern" - - for i in eachindex(eigs) - @series begin - #max_real = @sprintf "%.2e" maximum(real.(eigs[i])) - #sr = @sprintf "%.2f" maximum(abs.(eigs[i])) - seriestype --> :scatter - markershape --> :star - label --> labels[i] - xlabel --> latexstring(string("\\mathrm{Re}\\,(", symbol, ")")) - ylabel --> latexstring(string("\\mathrm{Im}\\,(", symbol, ")")) - eigs[i] - end - end -end \ No newline at end of file diff --git a/src/Analysis/error.jl b/src/Analysis/error.jl index 53120bb1..88a2eb1d 100644 --- a/src/Analysis/error.jl +++ b/src/Analysis/error.jl @@ -1,29 +1,21 @@ -struct ErrorAnalysis{d} <: AbstractAnalysis +struct ErrorAnalysis{d,V_err_type} <: AbstractAnalysis N_c::Int N_e::Int - WJ_err::Vector{<:AbstractMatrix{Float64}} - V_err::LinearMap + WJ_err::Vector{Diagonal{Float64, Vector{Float64}}} + V_err::V_err_type x_err::NTuple{d, Matrix{Float64}} total_volume::Float64 results_path::String end -function ErrorAnalysis(conservation_law::AbstractConservationLaw, - spatial_discretization::SpatialDiscretization, - error_quadrature_rule=nothing) - return ErrorAnalysis("./", conservation_law, - spatial_discretization, - error_quadrature_rule) -end - function ErrorAnalysis(results_path::String, conservation_law::AbstractConservationLaw, spatial_discretization::SpatialDiscretization{d}, error_quadrature_rule=nothing) where {d} - (; N_e) = spatial_discretization + (; N_e, reference_approximation) = spatial_discretization (; xyzq) = spatial_discretization.mesh - (; V,reference_element,approx_type) = spatial_discretization.reference_approximation + (; V,reference_element,approx_type) = reference_approximation (; J_q) = spatial_discretization.geometric_factors if isnothing(error_quadrature_rule) @@ -32,10 +24,8 @@ function ErrorAnalysis(results_path::String, x_err = xyzq else # Note: this introduces an additional approximation if the mapping and # Jacobian determinant are over degree p. - # Otherwise we have to recompute the Jacobian rather than just # interpolate, which I haven't done here. - (; wq, rstq, element_type) = reference_element error_quad = quadrature(element_type, error_quadrature_rule) r_err = error_quad[1:d] @@ -56,10 +46,9 @@ function ErrorAnalysis(results_path::String, sum(sum.(WJ_err)), results_path) end -function analyze(analysis::ErrorAnalysis{d}, - sol::Array{Float64,3}, - exact_solution::AbstractGridFunction{d}, - t::Float64=0.0; normalize=false, write_to_file=true) where {d} +function analyze(analysis::ErrorAnalysis{d}, sol::Array{Float64,3}, + exact_solution, t::Float64=0.0; + normalize=false, write_to_file=true) where {d} (; N_c, N_e, WJ_err, V_err, x_err, total_volume, results_path) = analysis diff --git a/src/Analysis/refinement.jl b/src/Analysis/refinement.jl index 0bf28d87..dd817bb0 100644 --- a/src/Analysis/refinement.jl +++ b/src/Analysis/refinement.jl @@ -1,15 +1,16 @@ """Analyze results from grid refinement studies""" -struct RefinementAnalysis{d} <: AbstractAnalysis - exact_solution::AbstractGridFunction{d} +struct RefinementAnalysis{ExactSolution} <: AbstractAnalysis + exact_solution::ExactSolution sequence_path::String analysis_path::String label::String end -struct RefinementErrorAnalysis{d} <: AbstractAnalysis - exact_solution::AbstractGridFunction{d} +struct RefinementErrorAnalysis{ExactSolution} <: AbstractAnalysis + exact_solution::ExactSolution sequence_path::String end + struct RefinementAnalysisResults <: AbstractAnalysisResults error::Matrix{Float64} # columns are solution variables eoc::Matrix{Union{Float64,Missing}} @@ -18,21 +19,24 @@ struct RefinementAnalysisResults <: AbstractAnalysisResults energy::Matrix{Float64} end - struct RefinementErrorAnalysisResults <: AbstractAnalysisResults error::Matrix{Float64} # columns are solution variables eoc::Matrix{Union{Float64,Missing}} dof::Matrix{Int} # columns are N_p, N_e end -function analyze(analysis::RefinementErrorAnalysis{d}, n_grids=100) where {d} +function analyze(analysis::RefinementErrorAnalysis, n_grids=100) - (; sequence_path, exact_solution) = analysis + (; sequence_path) = analysis results_path = string(sequence_path, "grid_1/") - if !isfile(string(results_path,"error.jld2")) error("File not found!") end + if !isfile(string(results_path,"error.jld2")) + error("File not found!") + end conservation_law, spatial_discretization = load_project(results_path) + d = dim(spatial_discretization) + (N_p, N_c, N_e) = get_dof(spatial_discretization, conservation_law) dof = [N_p N_e] error = transpose(load(string(results_path,"error.jld2"))["error"]) @@ -52,7 +56,8 @@ function analyze(analysis::RefinementErrorAnalysis{d}, n_grids=100) where {d} error = [error; fill(NaN, 1, N_c)] eoc = [eoc; fill(NaN, 1, N_c)] else - error = [error; transpose(load(string(results_path,"error.jld2"))["error"])] + error = [error; + transpose(load(string(results_path,"error.jld2"))["error"])] eoc = [eoc; transpose([ (log(error[i,e]) - log(error[i-1,e])) / (log((dof[i,1]*dof[i,2])^(-1.0/d) ) - @@ -69,21 +74,22 @@ function analyze(analysis::RefinementErrorAnalysis{d}, n_grids=100) where {d} return RefinementErrorAnalysisResults(error, eoc, dof) end -function analyze(analysis::RefinementAnalysis{d}, +function analyze(analysis::RefinementAnalysis, n_grids=100; max_derivs::Bool=false, - use_weight_adjusted_mass_matrix::Bool=true) where {d} + use_weight_adjusted_mass_matrix::Bool=true) (; sequence_path, exact_solution) = analysis results_path = string(sequence_path, "grid_1/") if !isfile(string(results_path,"error.jld2")) error("File not found!") end - conservation_law, spatial_discretization = load_project(results_path) + d = dim(spatial_discretization) (N_p, N_c, N_e) = get_dof(spatial_discretization, conservation_law) dof = [N_p N_e] time_steps = load_time_steps(results_path) N_t = last(time_steps) u, _ = load_solution(results_path, N_t) + error = transpose(analyze(ErrorAnalysis(results_path, conservation_law, spatial_discretization), u, exact_solution)) @@ -179,37 +185,20 @@ function analyze(analysis::RefinementAnalysis{d}, return RefinementAnalysisResults(error, eoc, dof, conservation, energy) end -function plot_analysis(analysis::RefinementAnalysis{d}, - results::RefinementAnalysisResults; e=1) where {d} - - (; analysis_path) = analysis - (; error, dof) = results - - if d == 1 - xlabel = latexstring("\\mathrm{DOF}") - elseif d == 2 - xlabel = latexstring("\\sqrt{\\mathrm{DOF}}") - else - xlabel = latexstring(string("\\sqrt"),"[", d, "]{\\mathrm{DOF}}") - end - - p = plot((dof[:,1].*dof[:,2]).^(1.0/d), error[:,e], - xlabel=xlabel, ylabel=(LaTeXString("\$L^2\$ Error")), - xaxis=:log, yaxis=:log, legend=false, linecolor="black", markershape=:circle, markercolor="black") - savefig(p, string(analysis_path, "refinement.pdf")) - return p -end - @recipe function plot( - analysis::Vector{<:Union{RefinementAnalysis{d},RefinementErrorAnalysis{d}}}, + analysis::Vector{<:Union{RefinementAnalysis,RefinementErrorAnalysis}}, results::Vector{<:Union{RefinementAnalysisResults,RefinementErrorAnalysisResults}}; - n_grids=nothing, pairs=true, xlims=nothing, reference_line=nothing, e=1) where {d} + n_grids=nothing, pairs=true, xlims=nothing, reference_line=nothing, e=1) + + results_path = string(analysis.sequence_path, "grid_1/") + if !isfile(string(results_path,"error.jld2")) error("File not found!") end + _, spatial_discretization = load_project(results_path) + d = dim(spatial_discretization) if d == 1 xlabel --> latexstring("\\mathrm{DOF}") elseif d == 2 xlabel --> latexstring("\\sqrt{\\mathrm{DOF}}") else xlabel --> latexstring(string("\\sqrt"),"[", d, "]{\\mathrm{DOF}}") end - if !isnothing(xlims) xticks --> get_tickslogscale(xlims) end - + ylabel --> LaTeXString("Error Metric") xaxis --> :log10 yaxis --> :log10 @@ -291,59 +280,4 @@ function tabulate_analysis_for_paper(results::NTuple{2,RefinementAnalysisResults (v, i, j) -> (v == "NaN") ? "---" : v), tf = tf_latex_booktabs) -end - -""" -This function is provided by getzze on GitHub, - see https://github.com/JuliaPlots/Plots.jl/issues/3318 - -get_tickslogscale(lims; skiplog=false) -Return a tuple (ticks, ticklabels) for the axis limit `lims` -where multiples of 10 are major ticks with label and minor ticks have no label -skiplog argument should be set to true if `lims` is already in log scale. -""" -function get_tickslogscale(lims::Tuple{T, T}; skiplog::Bool=false) where {T<:AbstractFloat} -mags = if skiplog - # if the limits are already in log scale - floor.(lims) -else - floor.(log10.(lims)) -end -rlims = if skiplog; 10 .^(lims) else lims end - -total_tickvalues = [] -total_ticknames = [] - -rgs = range(mags..., step=1) -for (i, m) in enumerate(rgs) - if m >= 0 - tickvalues = range(Int(10^m), Int(10^(m+1)); step=Int(10^m)) - ticknames = vcat([string(round(Int, 10^(m)))], - ["" for i in 2:9], - [string(round(Int, 10^(m+1)))]) - else - tickvalues = range(10^m, 10^(m+1); step=10^m) - ticknames = vcat([string(10^(m))], ["" for i in 2:9], [string(10^(m+1))]) - end - - if i==1 - # lower bound - indexlb = findlast(x->xx>rlims[2], tickvalues) - if isnothing(indexhb); indexhb=10 end - else - # do not take the last index if not the last magnitude - indexhb = 9 - end - - total_tickvalues = vcat(total_tickvalues, tickvalues[indexlb:indexhb]) - total_ticknames = vcat(total_ticknames, ticknames[indexlb:indexhb]) -end -return (total_tickvalues, total_ticknames) end \ No newline at end of file diff --git a/src/ConservationLaws/ConservationLaws.jl b/src/ConservationLaws/ConservationLaws.jl index 02ad8055..b4717362 100644 --- a/src/ConservationLaws/ConservationLaws.jl +++ b/src/ConservationLaws/ConservationLaws.jl @@ -52,9 +52,9 @@ module ConservationLaws u_in[i,:], u_out[i,:]) a = numerical_flux.halfλ*wave_speed(conservation_law, u_in[i,:], u_out[i,:], n_f[:,i]) - @inbounds for e in 1:N_c + for e in 1:N_c f_n_avg = 0.0 - @inbounds for m in 1:d + for m in 1:d @muladd f_n_avg = f_n_avg + f_s[e,m]*n_f[m,i] end @muladd f_star[i,e] = f_n_avg + a * (u_in[i,e] - u_out[i,e]) @@ -73,9 +73,9 @@ module ConservationLaws @inbounds for i in axes(u_in, 1) f_s = compute_two_point_flux(conservation_law, two_point_flux, u_in[i,:], u_out[i,:]) - @inbounds for e in 1:N_c + for e in 1:N_c temp = 0.0 - @inbounds for m in 1:d + for m in 1:d @muladd temp = temp + f_s[e,m]*n_f[m,i] end f_star[i,e] = temp diff --git a/src/ConservationLaws/euler_navierstokes.jl b/src/ConservationLaws/euler_navierstokes.jl index 332a8bee..f21edf6a 100644 --- a/src/ConservationLaws/euler_navierstokes.jl +++ b/src/ConservationLaws/euler_navierstokes.jl @@ -305,18 +305,19 @@ Domain should be [0,2]ᵈ. struct EulerPeriodicTest{d} <: AbstractGridFunction{d} γ::Float64 strength::Float64 + L::Float64 N_c::Int function EulerPeriodicTest(conservation_law::EulerEquations{d}, - strength::Float64=0.2) where {d} - return new{d}(conservation_law.γ,strength,d+2) + strength::Float64=0.2, L::Float64=2.0) where {d} + return new{d}(conservation_law.γ,strength,L,d+2) end end function evaluate(f::EulerPeriodicTest{d}, x::NTuple{d,Float64},t::Float64=0.0) where {d} - ρ = 1.0 + f.strength*sin(π*sum(x[m] for m in 1:d)) + ρ = 1.0 + f.strength*sin(2π*sum(x[m] for m in 1:d)/f.L) return [ρ, fill(ρ,d)..., 1.0/(f.γ-1.0) + 0.5*ρ*d] end diff --git a/src/File/load.jl b/src/File/load.jl index d3085e54..4114c7c8 100644 --- a/src/File/load.jl +++ b/src/File/load.jl @@ -68,5 +68,5 @@ function load_snapshots_with_derivatives(results_path::String, t_s = (times[N_t] - times[1])/(N_t - 1.0) - return U,dU,t_s + return U, dU, t_s end \ No newline at end of file diff --git a/src/File/save.jl b/src/File/save.jl index 25afd25e..27dddab0 100644 --- a/src/File/save.jl +++ b/src/File/save.jl @@ -24,8 +24,7 @@ end function save_project( @nospecialize(conservation_law::AbstractConservationLaw), @nospecialize(spatial_discretization::SpatialDiscretization), - @nospecialize(initial_data::AbstractGridFunction), - @nospecialize(form::AbstractResidualForm), + initial_data, @nospecialize(form::AbstractResidualForm), tspan::NTuple{2,Float64}, results_path::String; overwrite=false, diff --git a/src/GridFunctions/GridFunctions.jl b/src/GridFunctions/GridFunctions.jl index 3c560f8b..9407f59a 100644 --- a/src/GridFunctions/GridFunctions.jl +++ b/src/GridFunctions/GridFunctions.jl @@ -168,8 +168,19 @@ end return u0 end - @inline function evaluate(::NoSourceTerm{d}, - ::NTuple{d,Vector{Float64}}, ::Float64) where {d} + function evaluate(f::Function, + x::NTuple{d,AbstractMatrix{Float64}}, + t::Float64=0.0) where {d} + u0 = Array{Float64}(undef, size(x[1],1), + length(f(Tuple(0.0 for m in 1:d)...,t)), size(x[1],2)) + @inbounds for k in axes(x[1],2), i in axes(x[1],1) + u0[i,:,k] .= f(Tuple(x[m][i,k] for m in 1:d)...,t) + end + return u0 + end + + @inline function evaluate(::NoSourceTerm{d}, ::NTuple{d,Vector{Float64}}, + ::Float64) where {d} return nothing end diff --git a/src/Solvers/Solvers.jl b/src/Solvers/Solvers.jl index 7c373495..bd440410 100644 --- a/src/Solvers/Solvers.jl +++ b/src/Solvers/Solvers.jl @@ -252,7 +252,6 @@ module Solvers spatial_discretization.N_e) end - @inline function project_function(initial_data::AbstractGridFunction{d}, ::UniformScalingMap, W::Diagonal, J_q::Matrix{Float64}, x::NTuple{d,Matrix{Float64}}) where {d} @@ -260,18 +259,18 @@ module Solvers end @inline function project_function( - initial_data::AbstractGridFunction{d}, V::LinearMap, W::Diagonal, J_q::Matrix{Float64}, x::NTuple{d,Matrix{Float64}}) where {d} + initial_data, V::LinearMap, W::Diagonal, J_q::Matrix{Float64}, x::NTuple{d,Matrix{Float64}}) where {d} - (; N_c) = initial_data N_p = size(V,2) N_e = size(J_q,2) - u0 = Array{Float64}(undef, N_p, N_c, N_e) u_q = evaluate(initial_data,x,0.0) + u0 = Array{Float64}(undef, N_p, size(u_q,2), N_e) VDM = Matrix(V) @inbounds @views for k in 1:N_e WJ = Diagonal(W .* J_q[:,k]) + # this will throw if M is not SPD M = cholesky(Symmetric(VDM' * WJ * VDM)) lmul!(WJ, u_q[:,:,k]) @@ -282,8 +281,8 @@ module Solvers end """Returns an array of initial data as nodal or modal DOF""" - @inline function initialize(initial_data::AbstractGridFunction{d}, - spatial_discretization::SpatialDiscretization{d}) where {d} + @inline function initialize(initial_data, + spatial_discretization::SpatialDiscretization) (; J_q) = spatial_discretization.geometric_factors (; V, W) = spatial_discretization.reference_approximation diff --git a/src/SpatialDiscretizations/SpatialDiscretizations.jl b/src/SpatialDiscretizations/SpatialDiscretizations.jl index a60a0080..6b8609e3 100644 --- a/src/SpatialDiscretizations/SpatialDiscretizations.jl +++ b/src/SpatialDiscretizations/SpatialDiscretizations.jl @@ -111,6 +111,8 @@ module SpatialDiscretizations x_plot::NTuple{d, Matrix{Float64}} end + dim(::SpatialDiscretization{d}) where {d} = d + function project_jacobian!(J_q::Matrix{Float64}, V::LinearMap, W::Diagonal, ::Val{true}) VDM = Matrix(V) diff --git a/test/advection_3d.jl b/test/advection_3d.jl index c8018205..02521ef4 100644 --- a/test/advection_3d.jl +++ b/test/advection_3d.jl @@ -10,9 +10,8 @@ function advection_3d() M = 2 p = 4 - reference_approximation = ReferenceApproximation( - ModalTensor(p), Tet(), mapping_degree=4, - sum_factorize_vandermonde=false) + reference_approximation = ReferenceApproximation(ModalTensor(p), Tet(), + mapping_degree=4, sum_factorize_vandermonde=false) form = StandardForm(mapping_form=SkewSymmetricMapping(), inviscid_numerical_flux=CentralNumericalFlux()) diff --git a/test/euler_1d_gauss.jl b/test/euler_1d_gauss.jl index c9c0b1bf..9eed12c8 100644 --- a/test/euler_1d_gauss.jl +++ b/test/euler_1d_gauss.jl @@ -3,7 +3,14 @@ function euler_1d_gauss() L = 2.0 conservation_law = EulerEquations{1}(1.4) - exact_sol = EulerPeriodicTest(conservation_law); + + function exact_sol(x,t) + γ = 1.4 + ρ = 1.0 + 0.2sin(π*x) + v = 1.0 + E = 1.0/(γ-1) + 0.5*ρ + return SVector{3}(ρ, ρ*v, E) + end p = 5 M = 4 diff --git a/test/runtests.jl b/test/runtests.jl index f83c4ab8..aba3081c 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -1,5 +1,5 @@ push!(LOAD_PATH,"../") -using Test, StableSpectralElements, OrdinaryDiffEq, TimerOutputs +using Test, StableSpectralElements, OrdinaryDiffEq, TimerOutputs, StaticArrays include("test_driver.jl") include("burgers_fluxdiff_1d.jl")