Skip to content

TorchBench Nightly

TorchBench Nightly #12

Workflow file for this run

name: TorchBench Nightly
on:
workflow_dispatch:
env:
TRITON_USE_ASSERT_ENABLED_LLVM: "TRUE"
jobs:
TorchBench-Nvidia:
runs-on: ubuntu-latest #[self-hosted, A100]
steps:
- name: Checkout TorchBench
uses: actions/checkout@v4
with:
repository: 'pytorch/benchmark'
ref: '7dc8e8113f8d5dc97aaa2bef94f9d389047cfcde'
path: 'torchbench'
submodules: 'recursive'
- name: Update PATH
run: |
echo "BACKEND=CUDA" >> "${GITHUB_ENV}"
echo "PATH=${HOME}/.local/bin:${PATH}" >> "${GITHUB_ENV}"
df -h
du --max-depth=1 -h
# We don't want to use to use TorchBench nightlies here
# Force user install, TorchBench expects a conda environment
- name: Install TorchBench and models
run: |
echo -e "[install]\nprefix=${HOME}/.local\n" > ${HOME}/.pydistutils.cfg
python3 -m pip install --upgrade pip
python3 -m pip install --upgrade torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
df -h
du --max-depth=1 -h
cd torchbench
python3 install.py detectron2_fasterrcnn_r_101_c4
- name: Install the latest Triton wheel
run: |
python3 -m pip install --upgrade triton-nightly --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/
df -h
du --max-depth=1 -h
# - name: Tune Nvidia GPU
# run: |
# sudo nvidia-smi -pm 1
# sudo nvidia-smi --lock-gpu-clocks=1280,1280
# nvidia-smi
- name: Run TorchBench
run: |
cd torchbench
python3 test.py -v
# - name: Reset GPU clocks
# run: |
# sudo nvidia-smi -i 0 -rgc