diff --git a/src/semidiscretization/semidiscretization_euler_gravity.jl b/src/semidiscretization/semidiscretization_euler_gravity.jl index 3ca429f63b6..294cc69f471 100644 --- a/src/semidiscretization/semidiscretization_euler_gravity.jl +++ b/src/semidiscretization/semidiscretization_euler_gravity.jl @@ -19,8 +19,8 @@ struct ParametersEulerGravity{RealT <: Real, TimestepGravity} background_density :: RealT # aka rho0 gravitational_constant :: RealT # aka G cfl :: RealT - resid_tol :: RealT - n_iterations_max :: Int + resid_tol :: RealT # Hyp.-Diff. Eq. steady state tolerance + n_iterations_max :: Int # Max. number of iterations of the pseudo-time gravity solver timestep_gravity :: TimestepGravity end @@ -124,6 +124,7 @@ function SemidiscretizationEulerGravity(semi_euler::SemiEuler, SemidiscretizationHyperbolic{Mesh, <:AbstractHyperbolicDiffusionEquations}} u_ode = compute_coefficients(zero(real(semi_gravity)), semi_gravity) du_ode = similar(u_ode) + # Registers for gravity solver, tailored to the 2N and 3S* methods implemented below u_tmp1_ode = similar(u_ode) u_tmp2_ode = similar(u_ode) cache = (; u_ode, du_ode, u_tmp1_ode, u_tmp2_ode) @@ -217,6 +218,9 @@ end calc_error_norms(func, u, t, analyzer, semi.semi_euler, cache_analysis) end +# Coupled Euler and gravity solver at each Runge-Kutta stage, +# corresponding to Algorithm 2 in Schlottke-Lakemper et al. (2020), +# https://dx.doi.org/10.1016/j.jcp.2021.110467 function rhs!(du_ode, u_ode, semi::SemidiscretizationEulerGravity, t) @unpack semi_euler, semi_gravity, cache = semi @@ -275,33 +279,33 @@ function update_gravity!(semi::SemidiscretizationEulerGravity, u_ode) finalstep = false @unpack n_iterations_max, cfl, resid_tol, timestep_gravity = parameters iter = 0 - t = zero(real(semi_gravity.solver)) + tau = zero(real(semi_gravity.solver)) # Pseudo-time # iterate gravity solver until convergence or maximum number of iterations are reached @unpack equations = semi_gravity while !finalstep - dt = @trixi_timeit timer() "calculate dt" begin - cfl * max_dt(u_gravity, t, semi_gravity.mesh, + dtau = @trixi_timeit timer() "calculate dtau" begin + cfl * max_dt(u_gravity, tau, semi_gravity.mesh, have_constant_speed(equations), equations, semi_gravity.solver, semi_gravity.cache) end # evolve solution by one pseudo-time step time_start = time_ns() - timestep_gravity(cache, u_euler, t, dt, parameters, semi_gravity) + timestep_gravity(cache, u_euler, tau, dtau, parameters, semi_gravity) runtime = time_ns() - time_start put!(gravity_counter, runtime) # update iteration counter iter += 1 - t += dt + tau += dtau # check if we reached the maximum number of iterations if n_iterations_max > 0 && iter >= n_iterations_max @warn "Max iterations reached: Gravity solver failed to converge!" residual=maximum(abs, @views du_gravity[1, .., - :]) t=t dt=dt + :]) tau=tau dtau=dtau finalstep = true end @@ -315,34 +319,37 @@ function update_gravity!(semi::SemidiscretizationEulerGravity, u_ode) end # Integrate gravity solver for 2N-type low-storage schemes -function timestep_gravity_2N!(cache, u_euler, t, dt, gravity_parameters, semi_gravity, +function timestep_gravity_2N!(cache, u_euler, tau, dtau, gravity_parameters, + semi_gravity, a, b, c) G = gravity_parameters.gravitational_constant rho0 = gravity_parameters.background_density grav_scale = -4.0 * pi * G + # Note that `u_ode` is `u_gravity` in `rhs!` above @unpack u_ode, du_ode, u_tmp1_ode = cache u_tmp1_ode .= zero(eltype(u_tmp1_ode)) du_gravity = wrap_array(du_ode, semi_gravity) for stage in eachindex(c) - t_stage = t + dt * c[stage] + tau_stage = tau + dtau * c[stage] # rhs! has the source term for the harmonic problem # We don't need a `@trixi_timeit timer() "rhs!"` here since that's already # included in the `rhs!` call. - rhs!(du_ode, u_ode, semi_gravity, t_stage) + rhs!(du_ode, u_ode, semi_gravity, tau_stage) # Source term: Jeans instability OR coupling convergence test OR blast wave # put in gravity source term proportional to Euler density # OBS! subtract off the background density ρ_0 (spatial mean value) + # Note: Adding to `du_gravity` is essentially adding to `du_ode`! @views @. du_gravity[1, .., :] += grav_scale * (u_euler[1, .., :] - rho0) a_stage = a[stage] - b_stage_dt = b[stage] * dt + b_stage_dtau = b[stage] * dtau @trixi_timeit timer() "Runge-Kutta step" begin @threaded for idx in eachindex(u_ode) u_tmp1_ode[idx] = du_ode[idx] - u_tmp1_ode[idx] * a_stage - u_ode[idx] += u_tmp1_ode[idx] * b_stage_dt + u_ode[idx] += u_tmp1_ode[idx] * b_stage_dtau end end end @@ -350,7 +357,7 @@ function timestep_gravity_2N!(cache, u_euler, t, dt, gravity_parameters, semi_gr return nothing end -function timestep_gravity_carpenter_kennedy_erk54_2N!(cache, u_euler, t, dt, +function timestep_gravity_carpenter_kennedy_erk54_2N!(cache, u_euler, tau, dtau, gravity_parameters, semi_gravity) # Coefficients for Carpenter's 5-stage 4th-order low-storage Runge-Kutta method a = SVector(0.0, 567301805773.0 / 1357537059087.0, @@ -363,47 +370,50 @@ function timestep_gravity_carpenter_kennedy_erk54_2N!(cache, u_euler, t, dt, 2526269341429.0 / 6820363962896.0, 2006345519317.0 / 3224310063776.0, 2802321613138.0 / 2924317926251.0) - timestep_gravity_2N!(cache, u_euler, t, dt, gravity_parameters, semi_gravity, a, b, - c) + timestep_gravity_2N!(cache, u_euler, tau, dtau, gravity_parameters, semi_gravity, + a, b, c) end # Integrate gravity solver for 3S*-type low-storage schemes -function timestep_gravity_3Sstar!(cache, u_euler, t, dt, gravity_parameters, +function timestep_gravity_3Sstar!(cache, u_euler, tau, dtau, gravity_parameters, semi_gravity, gamma1, gamma2, gamma3, beta, delta, c) G = gravity_parameters.gravitational_constant rho0 = gravity_parameters.background_density grav_scale = -4 * G * pi + # Note that `u_ode` is `u_gravity` in `rhs!` above @unpack u_ode, du_ode, u_tmp1_ode, u_tmp2_ode = cache u_tmp1_ode .= zero(eltype(u_tmp1_ode)) u_tmp2_ode .= u_ode du_gravity = wrap_array(du_ode, semi_gravity) for stage in eachindex(c) - t_stage = t + dt * c[stage] + tau_stage = tau + dtau * c[stage] # rhs! has the source term for the harmonic problem # We don't need a `@trixi_timeit timer() "rhs!"` here since that's already # included in the `rhs!` call. - rhs!(du_ode, u_ode, semi_gravity, t_stage) + rhs!(du_ode, u_ode, semi_gravity, tau_stage) # Source term: Jeans instability OR coupling convergence test OR blast wave # put in gravity source term proportional to Euler density # OBS! subtract off the background density ρ_0 around which the Jeans instability is perturbed + # Note: Adding to `du_gravity` is essentially adding to `du_ode`! @views @. du_gravity[1, .., :] += grav_scale * (u_euler[1, .., :] - rho0) delta_stage = delta[stage] gamma1_stage = gamma1[stage] gamma2_stage = gamma2[stage] gamma3_stage = gamma3[stage] - beta_stage_dt = beta[stage] * dt + beta_stage_dtau = beta[stage] * dtau @trixi_timeit timer() "Runge-Kutta step" begin @threaded for idx in eachindex(u_ode) + # See Algorithm 1 (3S* method) in Schlottke-Lakemper et al. (2020) u_tmp1_ode[idx] += delta_stage * u_ode[idx] u_ode[idx] = (gamma1_stage * u_ode[idx] + gamma2_stage * u_tmp1_ode[idx] + gamma3_stage * u_tmp2_ode[idx] + - beta_stage_dt * du_ode[idx]) + beta_stage_dtau * du_ode[idx]) end end end @@ -411,7 +421,8 @@ function timestep_gravity_3Sstar!(cache, u_euler, t, dt, gravity_parameters, return nothing end -function timestep_gravity_erk51_3Sstar!(cache, u_euler, t, dt, gravity_parameters, +# First-order, 5-stage, 3S*-storage optimized method +function timestep_gravity_erk51_3Sstar!(cache, u_euler, tau, dtau, gravity_parameters, semi_gravity) # New 3Sstar coefficients optimized for polynomials of degree polydeg=3 # and examples/parameters_hypdiff_lax_friedrichs.toml @@ -434,11 +445,13 @@ function timestep_gravity_erk51_3Sstar!(cache, u_euler, t, dt, gravity_parameter c = SVector(0.0000000000000000E+00, 1.9189497208340553E-01, 1.9580448818599061E-01, 2.4241635859769023E-01, 5.0728347557552977E-01) - timestep_gravity_3Sstar!(cache, u_euler, t, dt, gravity_parameters, semi_gravity, + timestep_gravity_3Sstar!(cache, u_euler, tau, dtau, gravity_parameters, + semi_gravity, gamma1, gamma2, gamma3, beta, delta, c) end -function timestep_gravity_erk52_3Sstar!(cache, u_euler, t, dt, gravity_parameters, +# Second-order, 5-stage, 3S*-storage optimized method +function timestep_gravity_erk52_3Sstar!(cache, u_euler, tau, dtau, gravity_parameters, semi_gravity) # New 3Sstar coefficients optimized for polynomials of degree polydeg=3 # and examples/parameters_hypdiff_lax_friedrichs.toml @@ -461,11 +474,13 @@ function timestep_gravity_erk52_3Sstar!(cache, u_euler, t, dt, gravity_parameter c = SVector(0.0000000000000000E+00, 4.5158640252832094E-01, 1.0221535725056414E+00, 1.4280257701954349E+00, 7.1581334196229851E-01) - timestep_gravity_3Sstar!(cache, u_euler, t, dt, gravity_parameters, semi_gravity, + timestep_gravity_3Sstar!(cache, u_euler, tau, dtau, gravity_parameters, + semi_gravity, gamma1, gamma2, gamma3, beta, delta, c) end -function timestep_gravity_erk53_3Sstar!(cache, u_euler, t, dt, gravity_parameters, +# Third-order, 5-stage, 3S*-storage optimized method +function timestep_gravity_erk53_3Sstar!(cache, u_euler, tau, dtau, gravity_parameters, semi_gravity) # New 3Sstar coefficients optimized for polynomials of degree polydeg=3 # and examples/parameters_hypdiff_lax_friedrichs.toml @@ -488,7 +503,8 @@ function timestep_gravity_erk53_3Sstar!(cache, u_euler, t, dt, gravity_parameter c = SVector(0.0000000000000000E+00, 8.4476964977404881E-02, 2.8110631488732202E-01, 5.7093842145029405E-01, 7.2999896418559662E-01) - timestep_gravity_3Sstar!(cache, u_euler, t, dt, gravity_parameters, semi_gravity, + timestep_gravity_3Sstar!(cache, u_euler, tau, dtau, gravity_parameters, + semi_gravity, gamma1, gamma2, gamma3, beta, delta, c) end