Skip to content

Commit

Permalink
Merge branch 'main' into threaded-copy-coupled
Browse files Browse the repository at this point in the history
  • Loading branch information
efaulhaber authored Jun 17, 2024
2 parents b58a762 + 5398b22 commit 58707b1
Show file tree
Hide file tree
Showing 5 changed files with 280 additions and 29 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "Trixi"
uuid = "a7f1ee26-1774-49b1-8366-f1abc58fbfcb"
authors = ["Michael Schlottke-Lakemper <[email protected]>", "Gregor Gassner <[email protected]>", "Hendrik Ranocha <[email protected]>", "Andrew R. Winters <[email protected]>", "Jesse Chan <[email protected]>"]
version = "0.7.16-pre"
version = "0.7.17-pre"

[deps]
CodeTracking = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
Expand Down
24 changes: 14 additions & 10 deletions src/equations/linear_scalar_advection_1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,10 @@ A constant initial condition to test free-stream preservation.
"""
function initial_condition_constant(x, t, equation::LinearScalarAdvectionEquation1D)
# Store translated coordinate for easy use of exact solution
RealT = eltype(x)
x_trans = x - equation.advection_velocity * t

return SVector(2.0)
return SVector(RealT(2))
end

"""
Expand All @@ -49,13 +50,14 @@ in non-periodic domains).
function initial_condition_convergence_test(x, t,
equation::LinearScalarAdvectionEquation1D)
# Store translated coordinate for easy use of exact solution
RealT = eltype(x)
x_trans = x - equation.advection_velocity * t

c = 1.0
A = 0.5
c = 1
A = 0.5f0
L = 2
f = 1 / L
omega = 2 * pi * f
f = 1.0f0 / L
omega = 2 * convert(RealT, pi) * f
scalar = c + A * sin(omega * sum(x_trans))
return SVector(scalar)
end
Expand Down Expand Up @@ -161,7 +163,7 @@ function flux_engquist_osher(u_ll, u_rr, orientation::Int,
u_L = u_ll[1]
u_R = u_rr[1]

return SVector(0.5 * (flux(u_L, orientation, equation) +
return SVector(0.5f0 * (flux(u_L, orientation, equation) +
flux(u_R, orientation, equation) -
abs(equation.advection_velocity[orientation]) * (u_R - u_L)))
end
Expand Down Expand Up @@ -200,14 +202,16 @@ end

@inline function splitting_lax_friedrichs(u, ::Val{:plus}, orientation::Integer,
equations::LinearScalarAdvectionEquation1D)
RealT = eltype(u)
a = equations.advection_velocity[1]
return a > 0 ? flux(u, orientation, equations) : zero(u)
return a > 0 ? flux(u, orientation, equations) : SVector(zero(RealT))
end

@inline function splitting_lax_friedrichs(u, ::Val{:minus}, orientation::Integer,
equations::LinearScalarAdvectionEquation1D)
RealT = eltype(u)
a = equations.advection_velocity[1]
return a < 0 ? flux(u, orientation, equations) : zero(u)
return a < 0 ? flux(u, orientation, equations) : SVector(zero(RealT))
end

# Convert conservative variables to primitive
Expand All @@ -217,11 +221,11 @@ end
@inline cons2entropy(u, equation::LinearScalarAdvectionEquation1D) = u

# Calculate entropy for a conservative state `cons`
@inline entropy(u::Real, ::LinearScalarAdvectionEquation1D) = 0.5 * u^2
@inline entropy(u::Real, ::LinearScalarAdvectionEquation1D) = 0.5f0 * u^2
@inline entropy(u, equation::LinearScalarAdvectionEquation1D) = entropy(u[1], equation)

# Calculate total energy for a conservative state `cons`
@inline energy_total(u::Real, ::LinearScalarAdvectionEquation1D) = 0.5 * u^2
@inline energy_total(u::Real, ::LinearScalarAdvectionEquation1D) = 0.5f0 * u^2
@inline function energy_total(u, equation::LinearScalarAdvectionEquation1D)
energy_total(u[1], equation)
end
Expand Down
20 changes: 11 additions & 9 deletions src/equations/linear_scalar_advection_2d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,8 @@ varnames(::typeof(cons2prim), ::LinearScalarAdvectionEquation2D) = ("scalar",)
function x_trans_periodic_2d(x, domain_length = SVector(10, 10), center = SVector(0, 0))
x_normalized = x .- center
x_shifted = x_normalized .% domain_length
x_offset = ((x_shifted .< -0.5 * domain_length) -
(x_shifted .> 0.5 * domain_length)) .* domain_length
x_offset = ((x_shifted .< -0.5f0 * domain_length) -
(x_shifted .> 0.5f0 * domain_length)) .* domain_length
return center + x_shifted + x_offset
end

Expand All @@ -47,9 +47,10 @@ A constant initial condition to test free-stream preservation.
"""
function initial_condition_constant(x, t, equation::LinearScalarAdvectionEquation2D)
# Store translated coordinate for easy use of exact solution
RealT = eltype(x)
x_trans = x_trans_periodic_2d(x - equation.advection_velocity * t)

return SVector(2.0)
return SVector(RealT(2))
end

"""
Expand All @@ -60,13 +61,14 @@ A smooth initial condition used for convergence tests.
function initial_condition_convergence_test(x, t,
equation::LinearScalarAdvectionEquation2D)
# Store translated coordinate for easy use of exact solution
RealT = eltype(x)
x_trans = x - equation.advection_velocity * t

c = 1.0
A = 0.5
c = 1
A = 0.5f0
L = 2
f = 1 / L
omega = 2 * pi * f
f = 1.0f0 / L
omega = 2 * convert(RealT, pi) * f
scalar = c + A * sin(omega * sum(x_trans))
return SVector(scalar)
end
Expand Down Expand Up @@ -280,11 +282,11 @@ end
@inline cons2entropy(u, equation::LinearScalarAdvectionEquation2D) = u

# Calculate entropy for a conservative state `cons`
@inline entropy(u::Real, ::LinearScalarAdvectionEquation2D) = 0.5 * u^2
@inline entropy(u::Real, ::LinearScalarAdvectionEquation2D) = 0.5f0 * u^2
@inline entropy(u, equation::LinearScalarAdvectionEquation2D) = entropy(u[1], equation)

# Calculate total energy for a conservative state `cons`
@inline energy_total(u::Real, ::LinearScalarAdvectionEquation2D) = 0.5 * u^2
@inline energy_total(u::Real, ::LinearScalarAdvectionEquation2D) = 0.5f0 * u^2
@inline function energy_total(u, equation::LinearScalarAdvectionEquation2D)
energy_total(u[1], equation)
end
Expand Down
20 changes: 11 additions & 9 deletions src/equations/linear_scalar_advection_3d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -38,9 +38,10 @@ A constant initial condition to test free-stream preservation.
"""
function initial_condition_constant(x, t, equation::LinearScalarAdvectionEquation3D)
# Store translated coordinate for easy use of exact solution
RealT = eltype(x)
x_trans = x - equation.advection_velocity * t

return SVector(2.0)
return SVector(RealT(2))
end

"""
Expand All @@ -51,13 +52,14 @@ A smooth initial condition used for convergence tests.
function initial_condition_convergence_test(x, t,
equation::LinearScalarAdvectionEquation3D)
# Store translated coordinate for easy use of exact solution
RealT = eltype(x)
x_trans = x - equation.advection_velocity * t

c = 1.0
A = 0.5
c = 1
A = 0.5f0
L = 2
f = 1 / L
omega = 2 * pi * f
f = 1.0f0 / L
omega = 2 * convert(RealT, pi) * f
scalar = c + A * sin(omega * sum(x_trans))
return SVector(scalar)
end
Expand All @@ -82,10 +84,10 @@ A sine wave in the conserved variable.
"""
function initial_condition_sin(x, t, equation::LinearScalarAdvectionEquation3D)
# Store translated coordinate for easy use of exact solution
RealT = eltype(x)
x_trans = x - equation.advection_velocity * t

scalar = sin(2 * pi * x_trans[1]) * sin(2 * pi * x_trans[2]) *
sin(2 * pi * x_trans[3])
scalar = sinpi(2 * x_trans[1]) * sinpi(2 * x_trans[2]) * sinpi(2 * x_trans[3])
return SVector(scalar)
end

Expand Down Expand Up @@ -199,11 +201,11 @@ end
@inline cons2entropy(u, equation::LinearScalarAdvectionEquation3D) = u

# Calculate entropy for a conservative state `cons`
@inline entropy(u::Real, ::LinearScalarAdvectionEquation3D) = 0.5 * u^2
@inline entropy(u::Real, ::LinearScalarAdvectionEquation3D) = 0.5f0 * u^2
@inline entropy(u, equation::LinearScalarAdvectionEquation3D) = entropy(u[1], equation)

# Calculate total energy for a conservative state `cons`
@inline energy_total(u::Real, ::LinearScalarAdvectionEquation3D) = 0.5 * u^2
@inline energy_total(u::Real, ::LinearScalarAdvectionEquation3D) = 0.5f0 * u^2
@inline function energy_total(u, equation::LinearScalarAdvectionEquation3D)
energy_total(u[1], equation)
end
Expand Down
Loading

0 comments on commit 58707b1

Please sign in to comment.